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Parity–time-symmetric circular 
Bragg lasers: a proposal and 
analysis
Jiahua Gu1,2, Xiang Xi1, Jingwen Ma1,2, Zejie Yu1 & Xiankai Sun1,2

We propose a new type of semiconductor lasers by implementing the concept of parity–time symmetry 
in a two-dimensional circular Bragg grating structure, where both the real and imaginary parts of the 
refractive index are modulated along the radial direction. The laser modal properties are analyzed with 
a transfer-matrix method and are verified with numerical simulation of a practical design. Compared 
with conventional distributed-feedback lasers with modulation of only the real part of refractive 
index, the parity–time-symmetric circular Bragg lasers feature reduced threshold and enhanced modal 
discrimination, which in combination with the intrinsic circularly symmetric, large emission aperture are 
clear advantages in applications that require mode-hop-free, high-power, single-mode laser operation.

Semiconductor lasers are an important building block in fiber-optic communication, where lasers of pure out-
put spectrum, compact size, high reliability, and low cost are usually desired1. Many efforts have been made to 
obtain high-performance lasers. For example, distributed-feedback and distributed-Bragg-reflector structures 
have been developed for creating large discrimination in threshold gain among different oscillation modes of a 
laser cavity, which facilitates the realization of single-mode lasers2,3. In the meantime, quantum well and quantum 
dot structures have been employed for improving power efficiency and thermal stability4. Circular Bragg lasers 
constructed by cylindrical distributed Bragg reflectors were studied decades ago, where high-Q-factor, large-area, 
single-mode laser emission can be obtained in a broad operation range5–8. With the intrinsic circular aperture and 
low-divergence emission angle, such lasers have advantages in coupling their emitted light directly into an optical 
fiber or to on-chip photonic components, thus lending themselves to a wide range of applications in integrated 
photonics, optoelectronics, and fiber-optic communication.

The concept of parity–time (PT) symmetry was first developed by Bender et al. in quantum mechanics9. A 
Hamiltonian is called PT symmetric if it commutes with the PT operator, which requires that the real (imaginary) 
part of the complex potential be an even (odd) function of the coordinates. It was found later that this concept 
also applies to optical systems due to the resemblance between the Schrödinger equation and the wave equa-
tions10. PT symmetry in optics can be realized similarly by introducing modulation to both the real and imaginary 
parts of the refractive index, where the modulation pattern follows an even and odd function respectively11. This 
trick has been implemented in several photonic structures to achieve otherwise unattainable functionalities, such 
as lasers and laser amplifiers12–18, coupled nanobeam cavities19, unidirectional reflectionless20 and nonreciprocal 
transmission21 optical components.

In this paper, we for the first time introduce the PT symmetry into the design of circular Bragg lasers. By using 
a transfer-matrix method, we first analyze the reflection and transmission properties of the PT-symmetric circu-
lar Bragg reflectors (CBRs), from which the PT-symmetric circular Bragg lasers are constructed. A comparison 
between the modal properties of the PT-symmetric circular Bragg lasers and their conventional counterparts 
concludes that the former possess a significantly lower threshold and larger modal discrimination for the targeted 
lasing mode, both of which contribute crucially to the development of mode-hop-free, single-mode lasers for 
high-power applications. Numerical results from finite-difference time-domain simulation of a practical design 
show good agreement with those from the transfer-matrix method.

Results
Structural description of the proposed PT-symmetric circular Bragg lasers.  Figure 1(a) illustrates 
the two-dimensional PT-symmetric circular Bragg laser on a chip. Such lasers can be fabricated from a III–V 
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epiwafer which is able to provide optical gain under optical or electrical pumping. The PT symmetry is obtained 
in the CBR by introducing modulation to both the real and imaginary parts of the refractive index along the radial 
direction (r) as shown in Fig. 1(b), which can be realized respectively by selective etching and metal deposition on 
the III–V epiwafer12. More specifically, the complex refractive index of the CBR is expressed by
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where r0 is the starting radius of the CBR and n0 is the average effective refractive index. ∆​nr and ∆​ni are the 
modulation depths of the real and imaginary part of the refractive index, respectively. l is an integer starting 
from 0. Δ​r is the thickness of each modulated layer. The modulation period of the refractive index is Λ​ =​ 4·Δ​r. 
With N periods of modulation, the CBR spans a length of N·Λ​ in the radial direction. It should be noted that the 
layer thickness Δ​r generally should not be set as a constant for two reasons: First, the phase of the eigenmodes 
of traveling waves in the cylindrical coordinates, i.e., the Hankel functions, does not follow a linear dependence 
with r. Therefore, Δ​r should follow the local period of the Hankel functions for obtaining perfect phase matching, 
thus rendering chirped modulation along the radial direction5,8. Second, the wavelength in each modulated layer 
is different and thus Δ​r should be inversely proportional to the real part of the refractive index of the respective 
layer. In this study, the above two effects are negligible for large radius under the weak-modulation condition 
(∆​nr ≪​ n0). The PT symmetry is satisfied under the condition that the real and imaginary parts of the refractive 
index are respectively an even and odd function of position along the radial direction (r).

Reflection and transmission properties of the PT-symmetric circular Bragg reflectors.  We 
develop a transfer-matrix method similar to that in ref. 22 for analyzing the PT-symmetric CBR. It is convenient 
to consider the optical field components satisfying the Helmholtz equation in cylindrical coordinates, which can 
be expressed by the z component of the electric and magnetic fields
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where r, ϕ, and z are the radial, azimuthal, and axial coordinates respectively, and k0 is the wavevector in vacuum. 
By using the effective medium approach, we can simplify the problem from three dimensional into two dimen-
sional so that the refractive index n(r, z) reduces to n(r) as defined in Eq. (1) and ∂​2/∂​z2 can be dropped from 
Eq. (2). Assuming that the r and ϕ dependence of the field can be separated, we obtain Ez(r, ϕ) =​ Ez(r) exp(jmϕ), 
where m is an integer representing the azimuthal modal number. Introducing Ez(r, ϕ) into Eq. (2) leads to
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where k(r) =​ k0 n(r) is constant within each modulated layer. The solution of Eq. (3) can be expressed as a linear 
combination of the Hankel functions of the first and second kinds23
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where kq and rq denote respectively the wavevector and radius of the qth layer. Hm
(1) and Hm

(2) represent the 
outward- and inward-going cylindrical modes, with their amplitudes denoted by A r( )q

m( )  and B r( )q
m( )  respectively. 

We can rewrite Eq. (4) and its derivative in a matrix form

Figure 1.  (a) Schematic of the proposed PT-symmetric circular Bragg laser, where light is confined tightly by 
the PT-symmetric circular Bragg reflector to the center region. (b) Radial profile of the PT-symmetric circular 
Bragg reflector, showing periodic modulation of both the real and imaginary parts of the refractive index.
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where Mq
m( ) is defined as the coefficient matrix. Based on the continuity conditions of the electric and magnetic 

fields at each interface, the relation between Layer q and q +​ 1 can be expressed as
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where Tq
m( ) is the transfer matrix from Layer q to q +​ 1. As a result, by multiplying the transfer matrices of each 

layer we establish a relation between the amplitudes in Layer 1 and N +​ 1:
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Let us consider an outward-going cylindrical wave impinging on the 1st layer of the CBR with an amplitude 
A r( )m

1
( )

0 . By setting BN
m( )(r0 +​ L) =​ 0 in Eq. (7), we obtain the reflection coefficient R =​ |B r( )m

1
( )

0 /A r( )m
1
( )

0 |2  
=​ |−​U21/U22|2 and the transmission coefficient T =​ |AN

m( )(r0 +​ L)/A m
1
( )(r0)|2 =​ |U11 −​ U12 ×​ U21/U22|2.

We aim at designing a circular Bragg laser which emits circularly symmetric beam (m =​ 0) at a vacuum wave-
length λ0 of 1550 nm. Without loss of generality, we may assume the average effective refractive index n0 to be 
1.55 and the resulting effective wavelength inside the CBR λeff =​ λ0/n0 =​ 1.00 μ​m. The thickness of each modulated 
layer Δ​r is set to be 125 nm, and thus the modulation period Λ​ is 4Δ​r =​ 500 nm. We choose the number of the 
modulation periods N to be 500 and the corresponding radial length L to be N·Λ​ =​ 250 μ​m. We investigate the 
reflection (R) and transmission (T) response of the PT-symmetric CBR to an outward-going wave impinging on 
the innermost layer. Figure 2(a) shows the calculation results when ∆​nr =​ ∆​ni =​ 1.0 ×​ 10−3 or 1.5 ×​ 10−3. It is clear 
that R can be larger than 1 at the designed wavelength and stronger modulation of the refractive index leads to 
enhanced R. These behaviors do not contradict with the conservation of energy because the PT-symmetric CBR 
structure forces more electric field to be distributed in the gain regions. Therefore, we can control the reflection 
strength of the CBR by designing an appropriate modulation depth. Meanwhile, the transmission T remains 
wavelength independent and always equal to 1. As a comparison, Fig. 2(b) plots the results for a traditional CBR 
with ∆​ni =​ 0 and ∆​nr =​ 1.0 ×​ 10−3 or 1.5 ×​ 10−3. Under the same modulation depth ∆​nr, the reflection at the tar-
geted wavelength is much weaker than that in Fig. 2(a) and is always smaller than 1. Moreover, R and T add up to 
1 in accordance with the conservation of energy in the traditional sense.

It is interesting to study the behavior of R and T when ∆​nr and ∆​ni are unequal. Figure 2(c) shows the results 
for ∆​nr =​ 1.0 ×​ 10−2 and ∆​ni =​ 1.0 ×​ 10−3, where the modulation to the real part of the refractive index dominates. 
The reflection and transmission spectra are similar to those of the traditional counterpart (∆​ni =​ 0) as shown in 
Fig. 2(d), where the reflection for the side modes is enhanced due to the strong ∆​nr. The only difference is that the 
PT-symmetric CBR provides overall stronger reflection, which can exceed 1 at the peak, than the traditional CBR 
owing to the additional modulation ∆​ni. Figure 2(e) shows the results for ∆​nr =​ 1.0 ×​ 10−3 and ∆​ni =​ 1.0 ×​ 10−2, 
where the modulation to the imaginary part of the refractive index dominates. In this case, the reflection and 
transmission spectra take similar patterns where R is greatly suppressed at the targeted wavelength and enhanced 
for the side modes. These results also resemble those of a structure with pure gain modulation (∆​nr =​ 0) as shown 
in Fig. 2(f), although the PT-symmetric CBR provides overall stronger reflection owing to the additional modu-
lation ∆​nr. The results in Fig. 2(c–f) have clearly shown that when ∆​nr and ∆​ni are unequal, the larger of the two 
determines the reflection and transmission characteristics. The imbalance between ∆​nr and ∆​ni results in reflec-
tion reduction at the targeted wavelength and enhancement for the side modes, leading to worse discrimination 
between the designed and unwanted modes. Therefore, it is crucial to balance the ∆​nr and ∆​ni in a PT-symmetric 
CBR for designing robust single-mode lasers.

It is important to note that, under different modulation schemes in Fig. 2, the devices operate in different 
phases (PT-symmetric phase or broken-PT-symmetric phase). In a recent work24, Ge et al. proposed a gen-
eralized conservation relation between the transmittance and reflectance |T −​ 1| =​ (RL·RR)1/2, which can be 
adopted to determine the presence of PT symmetry and PT-symmetric breaking transitions: the system is in 
the PT-symmetric phase when T <​ 1, in the broken-PT-symmetric phase when T >​ 1, and at the spontaneous 
PT-symmetric breaking point (i.e., the exceptional point) when T =​ 1. Therefore, in Fig. 2(a) the CBRs operate 
at the spontaneous PT-symmetric breaking point with T =​ 1, because the modulation ∆​ni is balanced with ∆​nr. 
In Fig. 2(b,c,d) the CBRs operate in the PT-symmetric phase with T <​ 1, because the modulation ∆​ni is trivial 
compared with ∆​nr. In Fig. 2(e,f) the CBRs operate in the broken-PT-symmetric phase with T >​ 1, because the 
modulation ∆​ni is larger than ∆​nr.

Modal analysis of the PT-symmetric circular Bragg lasers.  Now we analyze a laser structure con-
structed from the PT-symmetric CBRs. The laser structure consists of a central disk-shaped gain or loss region 
surrounded by a PT-symmetric CBR. It should be noted that the proposal of PT-symmetric laser structures does 
not have limitation on the average effective refractive index n0. One can always design the structural parameters 
(e.g., the CBR’s starting radius r0 or the thickness of each modulated layer Δ​r) based on a specific material system 
to satisfy the laser oscillation condition and obtain perfect phase matching at the targeted wavelength. The laser 
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oscillation condition is rCBR · rctr · δdisk =​ 1, where rCBR =​ B m
1
( )(r0)/A m

1
( )(r0) is the complex reflection coefficient of the 

CBR which depends on the modulation depths of the real and imaginary parts of the refractive index. rctr is the 
reflection coefficient at the center of the disk which must be exactly 1 in order to keep the finiteness of the total 
field. δdisk is a complex propagation factor expressed as exp[2 g(λ)·r0 +​ 2j·φ(λ)], which contains the amplitude and 
phase information of light propagating radially in the central disk. g(λ) and φ(λ) represent the wavelength- 
dependent gain/loss coefficient and the phase change, respectively. To satisfy the laser oscillation condition, the 
radius of the central disk region must be chosen such that light at the targeted wavelength λ0 experiences a phase 
change φ of multiple integers of 2π​. Therefore, we choose r0 to be 380 nm which corresponds to the first zero of 
the Bessel function of the first kind25. The light propagating in the central disk region experiences either a gain or 
a loss depending on the sign of g(λ) in δdisk. From the laser oscillation condition we can obtain g(λ) for each mode, 
which is the threshold gain required for lasing. The threshold gain of the first five lasing modes under different 

µ

µ µ

µ µ

µ

Figure 2.  Reflection (R) and transmission (T) spectra of the PT-symmetric circular Bragg reflectors (CBRs) 
calculated by a transfer-matrix method for different modulation depths of the real and imaginary parts of 
the refractive index. An outward-going cylindrical wave impinges on the innermost layer at r =​ r0. (a) With 
∆ni =​ ∆​nr the CBRs operate at the spontaneous PT-symmetry breaking point. (b,c,d) With ∆​ni <​ ∆​nr the CBRs 
operate in the PT-symmetric phase. (e,f) With ∆​ni >​ ∆​nr the CBRs operate in the broken-PT-symmetric phase.
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refractive index modulation is plotted in Fig. 3(a), while their one- and two-dimensional modal field distributions 
are presented in Fig. 3(b–f). For lasers constructed from the PT-symmetric CBRs as shown in ①​ and ②​ where  
∆​nr =​ ∆​ni =​ 1.0 ×​ 10−3 or 1.5 ×​ 10−3, we find a negative threshold gain for the targeted wavelength, indicating that 
no additional gain is necessary for the targeted mode to lase and the lasing can occur even when the central disk 
region is lossy. The difference between the threshold gain of the targeted mode and its adjacent modes is as high 
as 3.99 ×​ 104 cm−1, yielding excellent modal discrimination for single-mode laser operation. Moreover, increase 
in the modulation depths leads to a uniform reduction of threshold gain for all the modes, and thus the large 
modal discrimination is maintained. In contrast, lasers constructed from conventional CBRs with ∆​ni =​ 0 as 
shown in ③​ and ④​ always require a positive threshold gain at the targeted wavelength, no matter how strong the 
modulation depth ∆​nr is. For ∆​nr =​ 1.0 ×​ 10−3 as shown in ③​, the threshold gain is 1.47 ×​ 104 cm−1 and the 
modal discrimination is 3.68 ×​ 104 cm−1. Although the threshold gain of the targeted mode can be reduced by 
increasing ∆​nr, e.g., from 1.0 ×​ 10−3 to 4.0 ×​ 10−3, this results in greater reduction of threshold gain of the 
unwanted modes, causing worse modal discrimination (e.g., 1.81 ×​ 104 cm−1 in ④​) and thus less robust 
single-mode laser operation. Therefore, we conclude that PT-symmetric circular Bragg lasers have clear advan-
tages over their conventional counterparts because the former possess much lower threshold gain and larger 
modal discrimination, both of which facilitate the realization of single-mode lasers.

In order to verify the modal analysis from the transfer-matrix method, we simulated a practical design of 
PT-symmetric circular Bragg laser based on the parameters of a quantum well wafer used previously26. We set the 
refractive index n0 and the modulation depths (∆​nr, ∆​ni) to be 3.40 and 0.006 respectively to satisfy the require-
ment of PT symmetry. The CBR’s starting radius r0 is 175 nm and the thickness of each modulated layer Δ​r is 
57 nm. The number of the modulation periods N is set to be 100, and thus the corresponding radial length L is 
22.8 μ​m. It should be noted that the choice of the number of the modulation periods is related to the preset mod-
ulation depths. Smaller modulation depths can also be adopted at the expense of increased number of the mod-
ulation periods with correspondingly longer radial length20. Figure 4(a) shows the simulated reflection spectrum 
of the PT-symmetric CBR by using the finite-difference time-domain (FDTD) method in Lumerical Solutions27, 
which is in good agreement with that calculated from the transfer-matrix method (TMM) in Fig. 4(b). This indi-
cates that a practical PT-symmetric CBR structure can be engineered for realizing single-mode lasers. We also 
obtained the optical field distribution from the FDTD simulation and the TMM as shown in Fig. 4(c) and (d) 
respectively. It is clear that light of the targeted wavelength (λ0 =​ 1550 nm) is confined to the central disk region 
thus facilitating low-threshold lasing.

Conclusion
In conclusion, we have proposed two-dimensional parity–time-symmetric circular Bragg lasers and analyzed 
their modal properties including threshold gain and field distribution. Such lasers are constructed from a type 
of circular Bragg reflectors whose refractive index is modulated in both the real and imaginary parts along the 

Figure 3.  (a) Threshold gain of lasing modes with different modulation depths of the real and imaginary parts 
of the refractive index. The PT-symmetric circular Bragg lasers with refractive index modulation profiles ①​ and 
②​ operate at the spontaneous PT-symmetric breaking point. The traditional circular Bragg lasers with refractive 
index modulation profiles ③​ and ④​ operate in the PT-symmetric phase. (b–f) |E|2 field distributions of the first 
five lasing modes in (a).
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radial direction. By setting balanced modulation depth to the real and imaginary parts we can obtain significantly 
reduced threshold gain with large modal discrimination for the targeted mode, facilitating robust single-mode 
laser operation. To demonstrate the feasibility for real applications, we also performed finite-difference 
time-domain simulation of a laser structure with practical design parameters, and obtained the results in good 
agreement with those from the transfer-matrix method. Featuring low threshold and robust single-mode opera-
tion in addition to the intrinsic circular aperture and low-divergence emission angle, such parity–time-symmetric 
circular Bragg lasers will find wide applications in integrated photonics, optoelectronics, and fiber-optic 
communication.

Methods
The proposed PT-symmetric circular Bragg lasers can be fabricated from a III–V epiwafer. The modulation of 
both the real (∆​nr) and imaginary (∆​ni) parts of the refractive index along the radial direction can be real-
ized respectively by selective etching and metal deposition on the III–V epiwafer. The performance of the 
PT-symmetric CBRs with various modulation depths (∆​nr, ∆​ni) is investigated with a transfer-matrix method 
derived in Eqs (1)–(7). To realize a practical PT-symmetric circular Bragg laser, the refractive index n0 and the 
modulation depths are set to be 3.40 and 0.006, respectively. The CBR’s starting radius is 175 nm and the thickness 
of each modulated layer Δ​r is 57 nm. The number of the modulation periods N is set to be 100, and the corre-
sponding radial length L is 22.8 μ​m. We employ the FDTD method in Lumerical Solutions and the transfer-matrix 
method to obtain the reflection spectrum of an outward-going cylindrical wave impinging onto a PT-symmetric 
CBR as well as the |E|2 field distribution of the lasing mode (λ0 =​ 1550 nm). In the FDTD simulation, perfectly 
matched layers are set as the boundary condition for the computation in Lumerical Solutions.
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