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Abstract

The internal phenotypes of netted muskmelon (Cucumis melo L. var. eticulates Naud.) are

always associated with its external phenotypes. In this study, the parameters of external

phenotypic traits were extracted from muskmelon images captured by machine vision, and

the internal phenotypes of interest to us were measured. Pearson analysis showed that

most external phenotypic traits were highly correlated with these internal phenotypes in

muskmelon fruit. In this study, we used the random forest algorithm to predict muskmelon

fruit internal phenotypes based on the significantly associated external parameters. Carot-

enoids, sucrose, and total soluble solid (TSS) were the three most accurately monitored

internal phenotypes with prediction R-squared (R2) values of 0.947 (root-mean-square error

(RMSE) = 0.019 mg/100 g), 0.918 (RMSE = 3.233 mg/g), and 0.916 (RMSE = 1.089%),

respectively. Further, a simplified model was constructed and validated based on the top 10

external phenotypic parameters associated with each internal phenotype, and these param-

eters were filtered with the varImp function from the random forest package. The top 10

external phenotypic parameters correlated with each internal phenotype used in the simpli-

fied model were not identical. The results showed that the simplified models also accurately

monitored the melon internal phenotypes, despite that the predicted R2 values decreased

0.3% to 7.9% compared with the original models. This study improved the efficiency and

accuracy of real-time fruit quality monitoring for greenhouse muskmelon.

Introduction

Netted muskmelon (Cucumis melo L. var. eticulates Naud.) is a widely grown fruit in China.

Its external and internal phenotypes, such as surface netting, color and nutrient contents, are

easily affected by environmental factors. With increasing demands from consumers and the

market, it is necessary for growers to monitor muskmelon internal phenotypes without fruit

destruction. Previous studies [1, 2] have shown that the muskmelon external phenotypes (i.e.,

fruit color and skin netting) and internal phenotypes are closely related. Thus, the non-

destructive testing of fruit internal phenotypes can be achieved through monitoring fruit

appearance, namely, through fruit external phenotypes. Several techniques have been
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employed to assess internal phenotypes and maturity of muskmelon fruits; these techniques

include electronic nose, specific gravity, near infrared spectroscopy (NIRS), chlorophyll fluo-

rescence and machine vision [3].

Due to the ease-of-use, low cost and high adaptability, machine vision has been widely used

for image acquisition [4]. Machine vision technology had been used in monitoring parameters

relevant to plant biomass [5], yield [6], soil nutrition, hydration [7, 8], product quality [9, 10],

germination, etc. Although real-time non-destructive testing technology has improved experi-

mental efficiency, it is still confronted with certain problems in processing large amounts of

data. Fortunately, random forest classification performs well on this type of problem [11].

According to Wikipedia: “Random forests or random decision forests are an ensemble

learning method for classification, regression and other tasks that operates by constructing a

multitude of decision trees at training time and outputting the class that is the mode of the

classes (classification) or mean prediction (regression) of the individual trees.” random forest.

At present, random forest regression and classification have been widely used in estimating

yield [12, 13], chlorophyll content [14], leaf nitrogen concentration [15], leaf area index of

plant canopy [16], and gene expression [17], etc. Moreover, random forest is more efficient

and has advantages over other real-time non-destructive testing technologies.

In this study, ‘wanglu’, a relatively new variety grown in China, was selected as our research

subject. A total of 402 ‘wanglu’ fruit images were collected by a machine vision system, and 65

external phenotypic parameters were extracted from each image. Correspondingly, the fruit

internal phenotypes, including the contents of sugar, total soluble solid (TSS), vitamin C, chlo-

rophyll a, chlorophyll b, and carotenoids, were measured destructively [17]. For these internal

phenotypes, sugar and vitamin C contents were measured by high-performance liquid chro-

matography, and pigment was measured by spectrophotometry. Fruits rich in sugar and TSS

tend to have high vitamin C content, higher nutritional value, and a flavor profile preferred by

most consumers. The pigment content of fruit peel affects its appearance. In this study, 402

samples were randomly divided into three groups. Two third of these samples were used for

model construction, and the remaining samples were used for model validation. We then con-

structed the muskmelon internal phenotypes monitoring models by the random forest algo-

rithm based on muskmelon external phenotypic parameters. The fruit internal phenotypes

real-time monitoring system established in this study will reduce the amount of destructive

muskmelon sample in determining fruit maturity and harvest time, and it can be applied in

fruit automatic grading and then improving fruit distribution efficiency.

1. Materials and methods

1.1 Materials and measurement methods of fruit internal traits

The experiment was conducted in a greenhouse (32 m×16 m, Venlo-Type, Shanghai Dushi

Green Company, China) at Shanghai Jiaotong University (31˚11´N, 121˚29´W), China. The

greenhouse was divided into 16 rows in the east-west direction and each row had 102 pots

with 1 plant per pot. There were 102 muskmelon plants in each experimental season. The

muskmelons were vertically planted in pots with a total volume of 16 L of substrate containing

2:2:2:1 mixture of meteorite: perlite: peat: organic fertilizer. The bulk density and saturated

water content were 0.21 g/mL and 140%, respectively.

Cultivation management was as follows: seedlings were transplanted into pots at the two

true leaf stage pruned to a single branch. Planting density was 6.5 plants per square metre. The

top growing point was removed when the leaf number of a plant reached 24 and one fruit was

set after hand-pollination. The heating, ventilation, internal and external shading of the green-

house were controlled automatically by the greenhouse computer control system. We set 4
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different irrigation treatments, and each treatment was repeated 4 times. The 4 water treat-

ments were alternating 50~60% relative water content (RWC), 60~70% RWC, 70~80% RWC,

and 80~90% RWC. All the treatments applied the same irrigation amount of 50–60% for the

seedling stage and the same irrigation amount of 55–70% for the extension stage. The plant

irrigation management was controlled by an automatic drip system.

A total of 134 fruits of “wanglu”, a cultivar of netted muskmelon (C. melo L. var. eticulates
Naud.), were produced in either the autumn of 2016 or the spring of 2017 under different sub-

strate water status. The samples were collected every 5 days and continued from the ten days

after pollination until fruit matured. The internal phenotypes were determined destructively

after being imaged with a machine vision system. Nine fruit internal phenotypes, including the

content of fructose, glucose, sucrose, total soluble solid (TSS), vitamin C (Vc), chlorophyll a,

chlorophyll b, carotenoids, were measured as previously reported [17].

1.2 Machine vision system and sample image

The machine vision acquisition system shown in Fig 1 was built by our research team. It has

stable intensity illumination, which is necessary for consistent imaging. The parameters of the

single lens reflex (SLR) camera (Canon ES05, Japan) settings were as follows:M-gear, shuttle

speed = 1/320 s, focal length = 60 mm, exposure compensation value = 0, and ISO = 200. In

addition, a total of 60 light emitting diode (LED) lamps (the highest power was 60 W) con-

trolled by a 10-gear dimmable driver, were installed on the two aluminium (Al) panels fixed

on two-sides of a photo box. The photo box can be opened from the top and two sides.

After fruiting, a total of 130 muskmelon fruit samples were collected from different planting

seasons and taken back to lab or 10 samples every five days. Each sample was imaged with

machine vision before measuring internal phenotypes. The sample was placed on the centre of

a shadow-less lamp equipped with a rotating base, and pictures were taken at 35-cm distance

from three angles with 120˚ interval from each other, and color calibration cards (RAL-K7,

Germany) and transparency scale plate was used as correction standard for color and size,

respectively. The fruit image in 5616�3744 pixels was outputted in JPG format and stored in a

secure digital memory (SD) card, which can be exported from USB interface.

Fig 1. Machine vision system. a, photo box (60 cm×60 cm); b, curtain; c, single lens reflex (SLR) camera (Canon,

Japan); d, camera tripod; e, straightedge; f, aluminum (Al) panel; g, specialized backdrop; h, muskmelon; i, shadowless

lamp (30 cm×30 cm); j, 10-gear dimmable driver; k, computer.).

https://doi.org/10.1371/journal.pone.0221259.g001
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1.3 Image processing step

To ensure forecasting result accuracy, all of the extracted external phenotypic parameters were

matched to certain internal phenotypes. The image processing method was as follows (Fig 2):

i) filtering original image background by Open-CV (Open-CV Foundation, USA); ii) correct-

ing image characteristics with an image-like enhancement algorithm to avoid color and net-

ting distortion; and iii) maximizing image preservation. For each image, a total of 65

parameters were extracted, which included 45 color parameters, 6 netting traits’ parameters,

and 14 parameters of morphological traits (Table 1). The color parameters were the mean, SD,

median, range, and coefficient of variation (CV) of each of the nine color traits (red (R), green

(G), blue (B), lightness (L), color channel a, color channel b, hue (H), saturation (S), value (V))

involved in three color space models, RGB, lab, and HSV. The six netting traits’ parameters

were contrast, dissimilarity, homogeneity, energy, correlation, and angular second moment

(ASM).

Fig 2. Muskmelon image processing. a: original image; b: original image is processed with 2B-R-G (deformation of the

super-green’s method—2G-R-B in muskmelon); c: threshold filtered image mask for b-image; d: remove small objects

from c-image; e: remove small holes from d-image; f: open operation for e-image; g: segmented image obtained after f-

image masking; h: morphological parameters extraction sketch.

https://doi.org/10.1371/journal.pone.0221259.g002
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1.4 Random Forest model construction and validation

In total, 26,130 parameters (402 images×65 parameters per image) were obtained. In the study,

each image was considered as a single RF model and was trained with ntree as 300 and mtry

from 1 to 100 [18]. For the feature selections of the simplified models, we chose the mean

squared error to represent the criteria of relative importance in RF models. Moreover, we

adopted 10-fold cross-validation and a three repetition strategy to check the prediction power

of each model. Evaluation parameter for model accuracy included the root-mean-square devi-

ation (RMSE), mean absolute deviation (MAE) and R2 between forecasted and measured val-

ues. A relatively higher R2 value and lower RMSE value suggested accurate prediction results.

They were calculated as:

R2 ¼

Pn
i¼1
ðŷi � �yÞ2

Pn
i¼1
ðyi � �yÞ2

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi� ŷiÞ
2

s

Table 1. Parameters of muskmelon color, netting, and morphology traits.

No. Extracted Index Description Category

1–5 R mean/SD/median/Range/CV Red Color

6–10 G mean/SD/median/Range/CV Green

11–15 B mean/SD/median/Range/CV Blue

16–20 L mean/SD/median/Range/CV Brightness

21–25 a mean/SD/median/Range/CV Color channel

26–30 b mean/SD/median/Range/CV Color channel

31–35 H mean/SD/median/Range/CV Hue

36–40 S mean/SD/median/Range/CV Saturation

41–45 V mean/SD/median/Range/CV Value

46 Contrast Definition and grooving depth of texture Texture

47 Dissimilarity The difference of grey scale

48 Homogeneity The local changes of image texture

49 Energy Degree of thickness and uniformity of texture

50 Correlation The correlation of local grey scale

51 ASM Angular Second Moment

52 Contour area Melon area Morphology

53 Perimeter Melon circumference

54 w External rectangle width

55 h Externally Rectangular High

56 Hull area External convex hull area

57 X-w The width of the smallest circumscribed rectangle

58 X-h The minimum height of the circumscribed rectangle

59 MA Melon fits the long axis of the ellipse

60 ma Melon fits the minor axis of the ellipse

61 r Melon minimum circumcircle radius

62 Equivalent diameter Diameter of the same area circle

63 Aspect ration Minimum rectangular aspect ratio

64 Extend Melon area ratio to straight rectangular area

65 Solidity Melon area with convex hull area ratio

https://doi.org/10.1371/journal.pone.0221259.t001
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where ŷi is the estimated fruit internal phenotype value, yi is the measured value, �y is the mean

of measured value, and n is the number of measured value in the validation data.

All the correlation analyses were operated by random forest package in R 3.4.1 software and

the R codes were performed on the RStudio-0.98.109 platform.

2. Results

2.1 Data analysis of fruit internal traits

The fruit internal phenotype parameters are shown in Table 1. The establishment of fruit qual-

ity monitoring models based on machine learning requires the support of a large amount of

variability and dynamic and variant data. Hence, before model construction, diverse musk-

melon samples and many real-time data were collected. A good data set is a prerequisite for

establishing robust models.

2.2 Selecting parameters for model construction

The relationship of fruit external and internal traits were conducted by Pearson correlation

analysis [19–21] (Fig 3) and the external phenotypic parameters significantly associated with

Fig 3. The correlation analysis between internal and external phenotypic parameters of muskmelon. The solid horizontal line

represents P = 0.05, i.e.,–log10 P = 1.301. (The abscissa refers to the number of each indicator in Table 1. In order to visually show

the correlation, the P value of the ordinate significance test is converted to -LOG10(P).

https://doi.org/10.1371/journal.pone.0221259.g003
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internal phenotypes (P<0.05) were used for constructing the model (Table 2). Each parameter

obeys a normal distribution.

Results showed that most of the external phenotypic parameters were significantly corre-

lated with the internal phenotypes. In addition, the relevant external phenotypic parameters of

each internal phenotype were different in both number and type. For example, the chlorophyll

b content in fruit skin was significantly correlated with 56 external phenotypic parameters,

including 39 color parameters, 5 netting parameters, and 12 morphology parameters. Chloro-

phyll b had the most related external phenotypic parameters among all the internal

phenotypes.

2.3 Random Forest model construction and validation

All the external phenotypic parameters showing significant correlation with internal pheno-

types were used for constructing the original forecast model. After validation, the R2 parameter

for evaluating model accuracy were>0.75 for most of the internal phenotypes, except vitamin

C and chlorophyll a contents in fruit skin, indicating that all the internal phenotypes were

well-predicted. Further, the R2 values for predicting sucrose, TSS, and carotenoid were the

highest, which were 0.947 (RMSE = 0.019 mg/100 g), 0.918 (RMSE = 3.233 mg/g), and 0.916

(RMSE = 1.089%), respectively (Table 1).

2.4 Analysis of the contribution value of external phenotype parameters to

internal phenotypes

The varImp function in random forest was used to analyse the contribution value of each

external parameter to internal phenotypes in the original forecast model. The top 10 parame-

ters associated with each internal phenotypic trait were chosen to construct a simplified fore-

cast model to shorten the model running time (Table 2 and Fig 4).

The top 10 external phenotypic parameters for sucrose and total sugar contents were all

color parameters. Among these parameters, H-median had the most contribution to sucrose

content, followed by B, R, G and I, whereas S-median was the highest contributor for total

sugar content, then followed by b, B, and H. In addition, the top 10 external phenotypic

parameters of glucose content were all related with the morphology traits of r, MA, ma, X, h,

hull-area, w, perimeter, X-w, h, and equivalent diameter. For fructose, the related top 10 exter-

nal phenotypic parameters included 6 color parameters from three color spaces and 4

Table 2. Statistics analysis of all melon samples and the performance of original and simplified RF models.

Internal trait Statistics analysis Original random forest model Simplified random forest model

Sample no. Maximum Minimum Mean(Std) Mtry = RMSE R2 Training time

(s)

Mtry = RMSE R2 Training time

(s)

Fructose (mg/g) 123 71.12 4.79 16.83±3.75 3 5.092 0.761 43.65 1 5.034 0.750 37.55

Glucose (mg/g) 123 72.25 0.21 9.90 ±3.18 5 5.111 0.758 49.94 2 6.553 0.735 43.98

Sucrose (mg/g) 123 46.90 1.05 12.99 ±4.23 11 3.233 0.918 107.69 3 4.447 0.839 38.19

Total sugar (mg/g) 123 164.20 10.20 39.71±10.32 5 11.697 0.821 75.70 1 11.254 0.818 25.90

Total soluble solid (TSS,

%)

101 18.50 5.80 10.64±3.20 7 1.089 0.916 72.99 4 1.135 0.908 35.63

Vitamin C (mg/100 g) 129 110.84 3.38 41.11

±16.75

18 11.637 0.585 162.43 17 10.707 0.529 103.31

Chlorophyll a (mg/g) 130 1.64 0.27 0.84 ±0.23 19 0.157 0.681 173.76 19 0.163 0.653 95.08

Chlorophyll b (mg/g) 130 1.12 0.16 0.39 ±0.14 27 0.074 0.815 229.36 24 0.071 0.808 100.65

Carotenoids (mg/100 g) 101 0.40 0.12 0.24 ±0.05 9 0.019 0.947 63.10 7 0.021 0.936 52.24

https://doi.org/10.1371/journal.pone.0221259.t002
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morphology parameters (ma, hull-area, h, and r). These results indicated that color space and

color component effects fruit sugar content.

The top 10 external phenotypic parameters for TSS were all color parameters, including

median, SD, and mean in trait b of Lab, median and mean in trait S of HSV, as well as median

and B mean in trait H of RGB. However, the top 10 parameters of Vc comprised parameters

correlated with the netting trait, morphology traits (perimeter, MA, h, hull-area), as well as

color traits (S median, S mean, b median, b mean, H median), suggesting the complexity of

predicting Vc compared with other internal quality traits.

As for the top 10 external phenotypic parameters for three kinds of pigments in fruit skin, 7

morphology and 3 color parameters were associated with chlorophyll b; 8 color and 2 netting

parameters were associated with chlorophyll a, and 10 color parameters were exclusively asso-

ciated with carotenoids.

2.5 Simplified random forest model with top 10 phenotypic parameters

and validation

A simplified random forest model was established based on the top 10 external phenotypic

parameters related with each internal phenotype. After validation, all the R2 values for forecast-

ing internal phenotypes with simplified random forest model were more than 0.75, and among

them, the R2 of forecasting carotenoids and TSS contents were 0.936 (RMSE = 0.019 mg/100

g) and 0.908 (RMSE = 1.135%), respectively, suggesting that the simplified model forecasted

the internal phenotypes well (Table 2).

3. Discussion

In the study, with machine vision technology, the external phenotypic parameters of musk-

melon samples from different planting seasons, different growth stages, and under different

substrate water status were extracted and used for constructing a simplified random forest

model. When forecasting muskmelon internal phenotype with this model, the R2 values for 7

of 9 internal phenotypes were >0.75, indicating that muskmelon external phenotypes were

highly associated with their internal phenotypes, which is similar to the results of Wang et al.

[9] and Wei et al. [22]. Moreover, the R2 values for sucrose, carotenoids, and TSS were 0.918

(RMSE = 3.233 mg/g), 0.947 (RMSE = 0.019 mg/100 g), and 0.916 (RMSE = 1.089%), respec-

tively, indicating that the forecast accuracy was improved greatly.

Fig 4. The number of external phenotypic parameters included in the top 10 parameters for each internal trait.

https://doi.org/10.1371/journal.pone.0221259.g004
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Further, to improve model forecasting efficiency [19], the 10 external phenotypes that con-

tributed most to each internal phenotype in the original model were selected. They were not

identical for each trait. The contents of sucrose, total sugar, carotenoids, and TSS were highly

associated with color parameters of external phenotypes. Among all the internal phenotypes,

sucrose content was a key factor related with muskmelon sweetness which can affect the mar-

ket value of muskmelon [20]. At present, muskmelon fruit sucrose content can be monitored

from its external phenotypes by forecast modelling during fruit development, and prediction

accuracy increased with the increase in parameter number in the forecast model. The other

important factor related to the fruit taste of muskmelon was TSS [21], a mixture of many com-

pounds such as saccharin acid. It is associated with phenotypic color parameters and could be

well forecasted (SD±1.135%). Additionally, the carotenoid content in fruit skin was also associ-

ated with the external phenotypic color parameters, which was nearly the same as those for

TSS. The same result was also reported by Tao et al. [23].

In addition, among the top 10 contribution parameters of each internal phenotype, the

color parameters accounted for the most percentage compared with netting and morphology

parameters. As all color parameters were involved in predicting internal phenotype, it is neces-

sary to analyse all color parameters except for the mean.

After simplification, the original and simplified random forest models showed similar fore-

casting accuracy with R2 within 0.3–7.9% of what was reported in Guo et al. [18], Svetnik et al.

[24] and Heung et al. [25]. The forecast results were similar between the two models because

the random forest algorithm was not sensitive to the parameters that were not significantly

related with the forecast traits. Thus, the forecast accuracy did not decrease after the model

was simplified. That is, the simplified model still satisfied the need of forecasting muskmelon

internal traits.

In this study, the muskmelon image was captured under fixed illumination conditions,

which are not the same as real production conditions. In real production conditions, the natu-

ral light is unstable and may disturb the image effects. Therefore, the random forest model pre-

sented here may have problems in real muskmelon production conditions, and further studies

are needed.

4. Conclusion

The non-destructive estimation of muskmelon fruit internal phenotypes is achievable by the

random forest model based on the external phenotypic images captured with machine vision

technology. Both the original and simplified models effectively forecasted fruit internal pheno-

types, with R2 value>0.70 for most of estimated internal phenotypic traits (except vitamin C).

Moreover, the model can be used for muskmelons at different growth stages and under differ-

ent substrate water statuses. This study provides new insights into the monitoring of musk-

melon internal phenotypes.
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