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Abstract: In recent years, almost all extraction processes in the perfume, cosmetic, pharmaceutical,
food ingredients, nutraceuticals, biofuel and fine chemical industries rely massively on solvents, the
majority of which have petroleum origins. The intricate processing steps involved in the industrial
extraction cycle makes it increasingly difficult to predict the overall environmental impact; despite the
tremendous energy consumption and the substantial usage of solvents, often the yields are indicated
in decimals. The ideal alternative solvents suitable for green extraction should have high solvency,
high flash points with low toxicity and low environmental impacts, be easily biodegradable, obtained
from renewable (non-petrochemical) resources at a reasonable price and should be easy to recycle
without any deleterious effect to the environment. Finding the perfect solvent that meets all the
aforementioned requirements is a challenging task, thus the decision for the optimum solvent will
always be a compromise depending on the process, the plant and the target molecules. The objective
of this comprehensive review is to furnish a vivid picture of current knowledge on alternative, green
solvents used in laboratories and industries alike for the extraction of natural products focusing on
original methods, innovation, protocols, and development of safe products.

Keywords: alternative solvents; green extraction; bio-based solvent; ionic liquids; NADES; water;
solvent-free; compressed gas; supercritical solvent; intensification

1. Introduction

“What you see is what you extract”, with this sentence Choi and Verpoorte [1] pointed that solvent
extraction is one of the most important steps in sample preparation for phytochemical analysis but
we can also generalize to industrial production via extraction of aromas, colors, antioxidants, fat
and oils and fine chemicals for food, cosmetic, perfumery, and pharmaceutical industries. Extraction
solvents are principally volatile organic compounds obtained from non-renewable resources, mainly
petroleum-based, and suspected to be harmful to both human health and the environment. One
such voluminously used solvent is n-hexane, a product of controlled fractional distillation from
petroleum mixtures. The primary advantage of such solvents are the ease of production, and the
chemical properties it possesses that impart ideal functionalities, particularly in terms of solubility for
a variety of products, including vegetable oils. Nevertheless, hexane is produced from fossil sources
and has recently been classified as CMR 3, which means that it is a suspected reprotoxic category
2 substance under the European Directives and Registration, Evaluation, Authorization and Restriction
of Chemicals (REACH) regulations. Due to the new emphasis on environmental and safety protections
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and the development of green chemistry, finding alternative solvents to petroleum-derived solvents
has become a major concern for chemists [2].

This review articulates the current knowledge on alternative, green solvents used in laboratories
and industries alike for the extraction of natural products focusing on original methods, innovation,
protocols, and development of safe products. It should be noted that it does not automatically imply
complete disposal of all the hazards and issues linked with process implementation as new process
modification involves automatically new risks. This review aims to be a complete perspective but
will not systematically address the following topics, which were pertinently covered by recent or
well-established reviews:

• Solvent selection guides offering clear directives and technical data, extensively presented by
pharmaceutical companies: GSK [3], Pfizer [4], and Sanofi [5].

• Evaluation tools of interaction between solvent and solute and their chemical properties such as
Hansen [6] and Cosmo [7].

• Reverse engineering selection for a new platform of solvents [8].
• Life Cycle Analysis of petroleum versus green and alternative solvents [2].

2. Solvent-Free Extraction

As Kerton and Mariotte [2] pointed out with their statement “the greenest solvent, in terms of reducing
waste, is no solvent”, we should always ask ourselves if we really need a solvent. One of the most famous
solvent-free extractions dating back to antiquity is the extraction of olive oil by mechanical pressing.
Olive oils are extracted from the fruits of the olive tree using only physical actions, including crushing
of olive fruits, and mixing and separation of the olive oil from the resulting paste. This technique
has many advantages such as co-extraction of lipophilic and hydrophilic compounds, lipids with
natural antioxidants that inhibit lipid autoxidation, but also a large number of volatile and non-volatile
compounds responsible for aroma and taste. In the 18th century, cold pressing was also used for
extraction to obtain essential oils, or more precisely essences, present in the peels of citrus fruits. Cold
pressing or expression is a technique that originated in Sicily and Calabria, before being used by all
citrus-growing countries. It consists in diluting the pericarp or “zests” (also called flavedo) so that
the essence contained in the oil bags, which line the peel of the fruit, flows outside to be recovered by
some device.

In recent years, development of solvent-free techniques appeared to be of great interest in order to
modernize conventional processes based nowadays on petroleum solvent extraction. The positive
features of solvent-free extraction are numerous: (i) reducing the costs and risks associated with the use
of organic solvents; (ii) facilitating scale-up; (iii) enhancing safety by reducing the risk of overpressure
and explosion. Several techniques such as instantaneous controlled pressure drop (DIC), pulsed
electric fields (PEF), and microwave irradiation (MW) are used to successfully perform solvent-free
extractions of primary and secondary metabolites (essential oils, aromas, edible oils, antioxidants, and
other organic compounds). These are innovative techniques that allow extractions to be carried out in
a practical and efficient way by reducing the extraction time from a few hours to a few minutes because
there is no distillation of the solvent, the limiting step of the processes. They eliminate post-treatment
of wastewater and normally consume only a fraction of the energy used in a conventional petroleum
solvent extraction method.

For example, solvent-free microwave extraction (SFME) uses fresh plant materials without addition
of any solvent. The principle of extraction is as follows: water plant cells are stimulated by internal
heating produced under microwave irradiation, so immediate heating results in a subsequent pressure
and temperature increase inside the plant cell, which distends the cell walls and leads to their eventual
breakdown and the release of target cellular contents (Figure 1) [9].
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rupture of cell walls and all the possible metabolites, including the internal water of the plant, will 
be released and transferred from inside to outside the plant. Solvent Free Extraction techniques like 
SMFE or MHG have been applied to a variety of fresh aromatic plants, citrus, onions and fruit by-
products as presented in Table 1. 
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Figure 1. Microwave solvent-free extraction: From analytical lab to industrial scale.

The SFME technique has been modified to an original “upside down” alembic called Microwave
Hydrodiffusion and Gravity (MHG) [10]. Fresh plants are introduced into the reactor without the
addition of solvents. The physical hydrodiffusion phenomenon allows the extracts to drop out of the
MW reactor under the effect of gravity. Microwaves heat the plant’s internal water which causes the
rupture of cell walls and all the possible metabolites, including the internal water of the plant, will be
released and transferred from inside to outside the plant. Solvent Free Extraction techniques like SMFE
or MHG have been applied to a variety of fresh aromatic plants, citrus, onions and fruit by-products as
presented in Table 1.

Table 1. Solvent free extraction: techniques, applications and experimental conditions.

Material Analyte Process/Conditions Analysis Ref

Red grape Anthocyanins Expeller UV-visible, HPLC [11]

Tomato Carotenoids Spiral-filter press UPLC-MS-Ms [12]

Rice bran Vegetable oil Screw press GC-MS [13]

Walnut floor Vegetable oil Hydraulic press UV-visible [14]

Orange peel Polyphenols DIC: 0.6 MPa, 20 s, 6 cycles HPLC-DAD [15]

Hyssorpus Essential oil DIC: 1 MPa, 100 s, 12 cycles GC-FID, GC-MS [16]

Roselle Anthocyanins DIC: 0.18 MPa, 20 s, 1 cycle UV-Visible, HPLC [17]

Tephrosia seeds Ciceritol DIC: 0.6 MPa, 240 s, 1 cycle HPLC-DAD [18]

Salvia officinalis Essential oil SFME: 650 W, 35 min GC-MS/GC-FID [19]

Strawberry Aromatic
compounds MHG, 1000 W/kg, 30 min. GC-MS [20]

Lettuce Onions Polyphenols
SFME: P.atm, 1 W/g, 15–50 min

MHG, 500 g, P(atm)
300–900 W, T = 5–70 min

HPLC-DAD [21,22]

Tomato Carotenoids PEF: 0.5 kV/cm, 1kJ/kg, 60 ◦C, water HPLC-DAD [23]

Purple-fleshed potato Anthocyanins PEF: 3.4 kV/cm, 35 pulses, 40 ◦C, ethanol HPLC-DAD [24]

Grape seeds Polyphenols PEF: 5 kV/cm, 1–5 pulses, 30% ethanol UV-Visible [25]

See text for the corresponding solvent-free technique abbreviations.
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With SFME, in most cases, the isolated essential oils contain a substantially lower amounts of
monoterpene hydrocarbons and higher amounts of oxygenated monoterpenes than those extracted by
conventional methods. MHG is used to extract many compounds of interest such as colors, antioxidants,
antimicrobials, etc. These solvent-free extraction methods are much faster, simplified, eco-friendly
procedures with high efficiency that allow extraction of bioactive components with reduced energy.

3. Water as Green Solvent

From a “natural” viewpoint, water appears as the greenest solvent. It is not only inexpensive
and environmentally benign, but is also non-toxic, non-flammable, providing opportunities for clean
processing and pollution prevention. The molecule of water is very small with a hard sphere diameter
of 2.75 Å. The size of the water molecule, particularly its smallness, is of paramount importance for the
hydration of solutes. The two partial positive charges on the hydrogen [H+] atoms and the only single
zone of negative charge on the oxygen [O−] atom gives the water molecule a dipole moment of 1.85D.
Whilst considering the contours of the total electron density of the water molecule in the HOH plane
the shape it resembles is a spherical one. One among the most important parameters considered for
characterizing the polarity of the medium and the control exerted over the ionic dissociation of salts is
the macroscopic dielectric constant of a solvent (εr). The high polarity of water can be attributed to
dipole orientations of the hydrogen-bond network present giving it a dielectric constant value of 78.3.
At higher temperatures and pressures the polarity of water is significantly reduced as the hydrogen
bond network is disintegrated. Water has been used for extraction of food and natural products for
centuries with different processes and procedures: maceration, decoction, infusion, and percolation,
but it is known to be a bad solvent for non-polar or some semi-polar compounds.

The use of enzymes provides high selectivity, mild treatment conditions (processes occurring
at low temperatures and for short period time), the possibility of using the whole plant material
and high product quality (low residue levels) compared with other methods such as mechanical
and chemical treatment [26,27]. For example, Kahveci et al. [28] used enzyme-assisted extraction
to increase the recovery of carotenoids, especially lycopene, from tomato paste production waste.
A study was carried out on different types of enzymes (proteases and glucanases) and operations
conditions (5 < pH< 9; 30 ◦C < temperature < 50 ◦C) to extract the bioactive components on spirulina
oil. Spirulina oils obtained by enzyme-assisted extraction were richer in essential fatty acids such as
palmitic, linolenic and linoleic [29].

Subcritical Water Extraction (SWE) uses water under quite different pressure and temperature
conditions and therefore needs specific equipment. Subcritical water ocurrs at temperatures between
the boiling point and critical point of water (100 ◦C at 1 bar and 374 ◦C at 221 bar), at pressures high
enough to keep water in a liquid state. It was observed that temperature has a greater effect than
the pressure on the polarity of subcritical water. Ideally, the organic molecules are more soluble in
water under subcritical conditions due to the lower polarity exhibited it such a state. The dielectric
constant is the parameter used to calculate the polarity of water under subcritical conditions. When
water is heated above 100 ◦C the dielectric constant decreases and water tends to exhibit properties
similar to those of organic solvents [30]. At 214 ◦C, the dielectric constant of water is the same as that
of methanol at room temperature. At 295 ◦C water becomes similar to acetone. For this reason, it is
possible to extract non-polar, moderately polar, and polar chemical compounds. Low-temperature
water extraction could obtain more water-soluble substances, while high-temperature water extraction
could extract less soluble substances. Furthermore, liquid water at elevated temperature is a solvent of
lower polarizability/polarity. Above 200 ◦C water may be an acid or base catalyst because its H3O+ and
OH− ions concentrations are perhaps orders of magnitude higher than in ambient water. Subcritical
water is, therefore, a much better solvent for hydrophobic organic molecules than ambient water.
It can itself be a catalyst for reactions which normally require an added acid or base. Subcritical water
can be used at several stages of analysis, for example, for the extraction (Figure 2) and subsequent
chromatographic separation of analytes.
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SWE gained popularity and there are more uses such as extraction of flavor and fragrance
compounds, essential oils, fatty acids, carotenoids and phenolic compounds [31–34]. For example,
Lachos-Perez et al. [35] have used SWE by varying the temperature-dependent dielectric constant to
extract flavanones such as hesperidin and narirutin from defatted orange peel. Their experiments were
performed in a semi-continuous flow extractor (i.e., batch for the solid and continuous for the liquid).
The maximum yields of hesperidin and narirutin were obtained at 150 ◦C and 10 mL/min. These yields
accounted for approximately 21% of the total amount of these flavanones in the extracts, leading to the
purest extracts obtained in SWE.

Micellar-assisted extraction using micellar media as the extractant is based on forming micelles by
introducing suitable surfactants into an aqueous solution. Surfactants are amphiphilic molecules with
a hydrophilic head and a hydrophobic tail. They exist in different shapes and have varying electrical
properties: nonionic, cationic, and zwitterionic. When the concentration of surfactant is equivalent
to/or exceeds its critical micellar concentration (CMC), the surfactant molecules self assembles, leading
to the formation of micelles. The concentration and nature of the surfactant molecules heavily influence
the structure of the micelles, thus paving the way for different geometries. For instance, the simplest
micelle in water adopts the shape of a sphere bordered by surfactant molecules. These structures are
thermodynamically stable under defined conditions depending on the nature of the surfactant, pH,
temperature and other solutes. Micellar extraction offers a convenient alternative to conventional
extraction systems since it is a fast, highly efficient, simple and user-friendly technique. Su et al. [36]
combined a surfactant (Tween-80) and a microwave- assisted process to extract pectin from orange
peel. Pectin is commonly extracted from apple pomace or citrus peel using hot water for several hours
and at acid pH. Under optimal microwave conditions and in the presence of surfactant, the pectin
yield is increased by 17% compared with microwave- assisted extraction only.

While micellar extraction is similar to liquid-liquid extraction, hydrotropic extraction only involves
one continuous liquid phase. This method uses amphiphilic organic substances with a short alkyl chain
or an aromatic ring with a short alkyl chain, attached to a strongly polar/ionic group, called hydrotropes.
Hydrotropy is the phenomena of increasing the solubility of hydrophobic molecules in water by the
addition of water-soluble organic molecules. They were first described by Neuberg [37] in 1916 as
organic salts able to increase the solubility in the aqueous solutions of an organic compound with low
solubility. Hydrotropes may not form micelles (unlike surfactants). The difference between surfactants
and hydrotrope is given by the concentration used. For the surfactants, the concentration is of the order
of millimolar or less (CMC) while for hydrotropes is in the molar range (the minimum hydrotrope
concentration, MHC) which makes the mass of hydrotropes in water tens or hundreds of grams per
liter [38]. Consequently, the surface tension decrease of hydrotrope solutions requires these higher
concentrations. Hydrotrope-assisted extraction is done through the aggregation of hydrotropes around

www.buchi.com
www.zippertex.com
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hydrophobic molecules. Dandekar et al. [39] proposed a new process for limonoid aglycone extraction
using aqueous hydrotropic solutions. Two different hydrotropes, sodium salicylate (Na-Sal) and
sodium cumene sulphonate (Na-CuS) were studied for maximum yield and the reduction of organic
solvents. They concluded that the extraction efficiency depended on the hydrotrope concentration,
extraction temperature and percentage of raw material loaded. Limonin yield of 0.65 mg/g seeds was
reported using NA-CuS as solvent mixture [40].

4. Green Solvents from Ionic Liquids (ILs) and Deep Eutectic Solvents (DESs) to Natural Deep
Eutectic Solvents (NADESs)

The aversion towards green solvents has generated great interest and growing demand for ionic
liquids (ILs), as an alternative to organic solvents which have several major disadvantages such as their
high volatility, flammability, and toxicity [41]. ILs could be borderline in term of green solvents, where
the heat of combustion for a variety of ILs was established based on literature data, existing correlation
values and a purpose-built model was proposed. The study depicts a clear picture of validation models
for the fire safety issues pertaining to the utilization of ILs for a plethora of applications. An innovative
“safety by design” approach was articulated wherein the magnitude of the harmfulness of ILs were
reduced and validated by a combined OECD Daphnia magna standardized test and fish immunomarkers
assay. Similarly, a multiscale combined experimental approach was considered to provide advanced
knowledge about the thermal and combustion hazard profiles of ionic liquids. Altogether, these
validation systems and experimental models aim in characterizing the comprehensive physicochemical
hazard profiles of ionic liquids.

ILs are commonly defined as a group of non-molecular solvents prepared by the combination of
organic cations and organic or inorganic anions which melt below 100 ◦C [42]. The cations and anions
most commonly used to prepare ILs are presented in Figure 3.

Among ILs some properties of interest are their non-inflammability, thermal stability, low vapor
pressure, and especially their impressive tunability and synthetic versatility [41]. These solvents have
long been recognized as green “designer” solvents. Nevertheless, during the past years, their “green”
aspect has been widely challenged due to their poor biocompatibility and biodegradability [43,44].
To circumvent this problem, Deep Eutectic Solvents (DESs) have been slowly emerging since 2004,
as a green alternative to ILs [45]. DESs, commonly defined as a subclass of ILs, can be prepared by
mixing solid compounds which form a eutectic mixture with a melting point lower than either of the
individual components melting points [46].

This is mainly due to the generation of intermolecular hydrogen bonds between hydrogen bond
acceptor (HBA) and hydrogen bond donor (HBD). DESs share many physicochemical properties with
ILs (high viscosity, low volatility, non-inflammability, chemical and thermal stability) [46]. Moreover,
they present some advantages over ILs, mainly the ease of their storage and synthesis as well as the
low cost of their starting materials [46].

To further meet the principles of green chemistry proposed by Anastas and Warner [47], natural
sources of DESs have attracted great attention as replacements of synthetic compounds [48] giving
rise to a new class of DESs, namely Natural Deep Eutectic Solvents (NADESs). As is the case of DESs,
NADESs are mixtures of compounds that have a much lower melting point than that of any of their
individual components [49]. HBA and HBD most commonly used in the preparation of DESs and
NADESs are presented in Figure 3.
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Besides all the advantages of DESs, NADESs are considered as environmentally friendly and
‘readily biodegradable’ due to the natural origin of their components [45,49], and consequently the
obtained extracts can be safely used in the food, pharmaceutical and cosmetics industries [50]. These
new green solvents were firstly introduced by Choi and coworkers who defined them as the third
liquid phase naturally occurring in all living organisms and cells [51]. According to Choi [51], this
third liquid is capable of dissolving a number of natural molecules that are poorly soluble in water
and lipids such as taxol and rutin as well as proteins, explaining thus many biological phenomena
such as the biosynthesis of molecules that are soluble in neither water nor lipids [51]. The compounds
found to form this liquid phase are primary metabolites like organic acids (lactic, malic, citric acids,
etc.), sugars (glucose, fructose, sucrose, etc.); amino acids, choline chloride, etc. [44,52]. These natural
compounds play key roles in biological processes such as drought resistance, cryoprotection and
defense against external attacks [53,54]. Noteworthy, according to the nature of their components,
NADESs can be classified into four groups: (1) derivatives of organic acids, (2) derivatives of choline
chloride, (3) mixtures of sugars and (4) other combinations [55].

Table 2 summarizes the main properties of ILs and DESs including NADESs. It can be seen that
the main difference between ILs and DESs (including NADESs) is the intermolecular force which is
based on ionic bonding in the case of ILs and on hydrogen bonding in the case of DESs and NADESs.
The other key point is that, contrarily to ILs, DESs and NADESs are non-toxic.
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Table 2. Comparative properties of ILs and DESs including NADESs.

Properties ILs DESs Including NADESs

Intermolecular force Ionic bonding Hydrogen bonding

Melting point Below 100 ◦C

Vapor pressure Low

Viscosity High viscosity, Positive linear correlation with temperature

Dissolving ability A broad range of polar and nonpolar molecules

Cytotoxicity Positive for many Hard to detect

ILs were first observed by Walden in 1914 in the case of ethyl ammonium nitrate [EtNH3][NO3],
which was obtained through the neutralization of ethylamine with concentrated nitric acid [56]. Firstly,
they were mainly used for organic synthesis. It was only later that they were explored as extraction
solvents. Owing to their high dissolving power and their physicochemical properties tunability, ILs
were used as new media in a wide variety of applications. In the last two decades, the literature
has revealed several applications of ILs in the extraction of natural products such as plant-based
products of high interest for food, nutraceutical and pharmaceutical industries. Throughout the
literature, at a laboratory scale, ILs were shown to be more efficient than COS, leading to higher yields
of targeted compounds.

Table 3 provides some examples of recent applications of ILs for extraction processes. ILs were
applied to extract a large variety of natural products such as phenolic compounds, anthraquinones,
tannin, alcohols and essential oils from different plant matrices. Moreover, those alternative solvents
were successfully combined with green extraction processes such as UAE and MAE.

Table 3. Recent applications of ILs in extraction procedures.

Material Method Analyte ILs Composition Ref.

Ficus carica L. UAE Phenolic
compounds

[C4MIM][PF6](water) [57]

Eucalyptus leaves MAE [HO3S(CH2)4MIM]HSO4 (water) [58]

Lonicerae Japonicae Flos UAE [C4MIM]Br (water) [59]

Polygonum cuspidatum LLE Polyphenols and
anthraquinones

C6H5Na3O2 (water); (NH4)2SO4;
NaHCO3

[60]

Catechu and myrobolan SPME Tannin DIMCARB [61]

Suaeda glauca Bge. Leaves UAE Gallic acid [C6MIM]Cl (ethanol) [62]

Lotus leaves MAE nornuciferine [HMIM][Br] [63]

Palmarosa leaves UAE Geraniol DIL-2 [64]

Farfarae Flos Distillation Essential oils [C4MIM] [CH3COO] (water) [65]

Spirulina platensis UAE Phycobiliproteins 2-HEAA; [BMIM][Cl] [66]

Rehmannia root MAE Verbascoside [BMIM]Cl [67]

UAE: Ultrasound-Assisted Extraction; MAE: Microwave-Assisted Extraction; LLE: Liquid-Liquid Extraction; SPME: Solid
phase microextrcation; [C4MIM][PF6]: 1-butyl-3-methylimidazolium hexafluorophosphate; [HO3S(CH2)4MIM]HSO4:
3-methyl-1-(4-sulfonylbutyl)imidazolium hydrogen-sulfate; [C4MIM]Br: 1-butyl-3-methylimidazolium bromide;
DIMCARB: N,N-dimethylammonium N’,N’-dimethylcarbamate; [C6MIM]Cl: 1-hexyl-3-methylimidazolium chloride;
HMIM][Br]: 1-Butyl-3-methylimidazolium bromide; DIL-2: N,N,N,N’,N’,N’-hexaethylpropane-1,3-diammonium
dibromide; [C4MIM][CH3COO]: 1-butyl-3-methylimidazolium acetate; 2-HEAA: 2-hydroxyethyl-ammonium acetate;
2-HEAF: 2-hydroxyethylammonium formate; [BMIM][Cl]: 1-butyl-3-methyl-imidazolium chloride.
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A new family of deep eutectic designer solvents were synthesized and formed by crown ether (CE)
complexes as HBA and polyethylene glycol (PEG) as HBD. The designer solvents unlock the potential
for numerous application in chemistry and material science especially the ultra-deep extraction of
non-basic N-compounds from fuel oils. The efficacy of p-toluenesulfonic acid-based DES for the
extraction of bioactive compounds from Lycium barbarum L. was reported. A 1:2 molar ratio mixture
of choline chloride and p-toluenesulfonic acid proved to be the best solvent system for bioactive
constituents’ recovery under ultrasound-assisted extraction conditions. The authors attributed the
higher extraction efficacy to the solvent systems higher polarity and lower viscosity potential when
compared to other DES considered for extraction. Furthermore, DES as a novel extraction media
for phenolic compounds from model (safflower) oil using ultrasound wave-assisted liquid-phase
microextraction (LPME) method was described. The application of ultrasound aided in extraction time
reduction than in the conventional LPME technique.

Despite the high dissolving power of ILs, their toxicity represents a limiting factor of their
valorization for both pharmaceutical and food industries, which are subject to strict regulation. Indeed,
their toxicological profile was highly questioned in the last decade promoting thus the use of DESs as
greener alternatives with great promises in the extraction field. These solvents were firstly observed by
Abbott and coworkers in 2003 [68] in the case of choline chloride and urea (ChCl:U) mixture at a molar
ratio of (1:2).

Recent studies further proved DESs efficiency in the extraction of natural products and the
valorization of food industry by-products, as presented in Table 4. Phenolic acids, flavonoids, volatile
compounds as well as primary metabolites (sugars, proteins, etc.) were successfully extracted using
DESs. These solvents were proved to provide extracts with higher yields of these compounds of
interest in a shorter amount of time, compared to COS. Besides their high viscosity, the synthetic origin
of DESs constitutes a major drawback limiting their field of applications.

This is the reason that NADESs are presently getting great attention due to their natural
composition [45,49]. Aside from their naturalness, NADESs high stabilization and solubilization
abilities make them excellent candidates to replace COS [69]. These natural solvents have been
shown to be more efficient than organic solvents in the extraction of plants metabolites and food
products and by-products of different polarities while ensuring inexpensive costs and easy preparation
methods [43,52]. Moreover, NADESs are less volatile than COS, which guarantees more safety for
manipulators [70]. Today, the spectrum of NADESs applications is very broad as shown in Table 4.
Flavonoids, phenolic acids, alkaloids, natural pigments, sugars, peptides and volatile compounds are
some examples of bioactive compounds that have been successfully extracted from natural matrices
using NADESs mixtures. Here, it is worth mentioning that, as the definition of NADESs is recent, some
mixtures were reported in scientific publications as DESs while they perfectly fulfill the definition
of NADESs.
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Table 4. Recent applications of DESs and NADESs in extraction procedures.

Material Method Analyte DESs/NADESs Composition Ref.

Grape skin UAE, MAE

Phenolic Compounds

ChCl:OA, water 25% [71]

Onion, olive, pear UAE LA:Glu; CA:Glu; Fru:CA [72]

Olive pomace MAE; UAE ChCl:CA; ChCl:LA; ChCl:Gly [73]

Spent coffee UAE 1,6-HD:ChCl (7:1) [74]

Orange peel waste SLE ChCl:EG (1:4), water 10% [75]

Ginkgo biloba Stirring
Flavonoids

ChCl:La, water 40% (w/w) [76]

PollenTyphae UAE ChCl:1,2-PD (1:4), water 30% [77]

Radix scutellariae UAE Pro:Gly(1:4) [78]

Allium cepa L. SLE Quercetin ChCl:U [79]

Jinqi Jiangtang Preparations UAE Phenolic acids and alkaloids ChCl:La (1:2); ChCl:Gly (1:2);
ChCl:Glu (1:1); Pro:MA (1:1) [80]

Chamaecyparis HS-SME Terpenoids ChCl:EG [81]

Artemisia annua UAE Artemisinin MTA-Ch:B (1:4) [82]

Shrimp by-products UAE Astaxanthin ChCl:EG; ChCl:Gly; ChCl:1,2-BD;
ChCl:1,3-BD; ChCl:1,4-BD [83]

Catharanthus roseus Heating and
stirring Anthocyanins

ChCl:1,2-PD; LA:Glu; Pro:MA;
ChCl:MA; ChCl:Glu; Glu:Fru:Suc [84]

Wine lees UAE ChCl:MA [85]

Vanilla pods SLE Vanillin 14 NADESs/MA:Glu:water (1:1:6);
MA:Fru:Glu:water (1:1:1:9) [52]

Nicotiana tabacum L. MAE Volatile compounds ChCl:Gly; ChCl:U; Cap:U [86]

Caulis sinomenii, Coptis
chinensis, Stephania

tetrandra, Sophora flavescens
UAE

Morphinane, protoberberine,
bisbenzylisoquinoline and

indole alkaloids

75 types of binary or ternary
DESs/ChCl-LA 1:2, 30% water [87]

Banana puree MAE Soluble sugars MA:BA:water (1:1:3) [88]

Averrhoa bilimbi Agitation Pectin ChCl:CA (1:1) [89]

Crude palm oil LLE Tocols ChCl:MalA [90]

Cod skins Heating and
stirring Collagen peptides ChCl:U; ChCl:EG; ChCl:Gly;

ChCl:LA; ChCl:AA; ChCl:OA [91]

UAE: Ultrasound-Assisted Extraction; MAE: Microwave-Assisted Extraction; HAE: Homogenate-Assisted Extraction;
HHPAE: High hydrostatic Pressure Assisted Extraction; SLE: Solid-Liquid Extraction; LLE: Liquid-Liquid Extraction;
ChCl: Choline chloride; OA: Oxalic Acid; LA: Lactic Acid; Glu: Glucose; Fru: Fructose; CA: Citric Acid; 1,6-HD:
1,6-Hexanediol; EG: Ethylene Glycol; La: Laevulinic Acid; 1,2-PD: 1,2-Propanediol; Gly: Glycerol; Pro: Proline;
U: Urea; MTA-Ch: Methyl trioctylammonium chloride; B: Butanol; 1,3-BD: 1,3-Butanediol; 1,4-BD: 1,4-Butanediol;
2,3-BD: 2,3-Butanediol; Suc: Sucrose; Cap: Caprolactam; BA: β-Alanine; MalA: Malonic Acid; AA: Acetic Acid.

Owing to their environmental and economic advantages, NADESs appear to be the most promising
alternative solvents compared to DESs and ILs. This is the reason that they are presently attracting
more attention from industrials. In recent years, an increasing number of companies start to use
this natural alternative. Naturex (Avignon, France) is a company specialized in natural ingredients.
In 2016, inspired by nature, Naturex patented a new extraction process [92] for the extraction of
plant-based active compounds. This is based on the phenomenon of “eutectigenesis” which mimics the
intracellular environment. Different mixtures of pure molecules were explored such as (betaine:citric
acid) (2:3), (betaine:glycerol) (2:3) and (betaine:lactic acid) (2:3), each containing 25% of water (w/w) to
develop a new range of cosmetic products named “Eutectys™”. These new products were proved to
have superior phytochemical profiles and higher biological activities (antioxidant, anti-inflammatory,
protection against photo-ageing, etc.) compared to the corresponding conventional hydro-glycerin
extracts [92]. Considered as 100% natural, Eutectys™ extracts are easily biodegradable. Moreover,
Eutectys® extracts are completely safe as evidenced by their toxicological profiles established according
to European regulation (EC n◦1223/2009). BASF beauty care solutions, which is a subsidiary of the
German company BASF, is based in Lyon, France. This company is specialized in cosmetic ingredients.
In 2018, BASF patented the use of coconut water as a solvent for the extraction of natural ingredients
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especially plant-based compounds. This natural solvent was proved to extract efficiently a wide large
of active compounds such as terpenes, flavones, flavonoids, amino acids, lipids, etc. [93].

5. Biobased-Solvents

Bio-based solvents, as the name signifies, are produced from agricultural biomass. Based on the
agricultural origin of the biomass utilized for the production of these solvents they can be predominantly
classified into four categories: (a) lignocellulosic; (b) sugar and starch; (c) protein & oil based and (d)
other forestry and food wastes. The solvents obtained from these categories can be further classified
based on their functional groups (esters, ethers, terpenes, and alcohols) or based on the petroleum-based
solvent they were intended to replace (Figure 4). In order to be identified as a green solvent, the
solvent should ideally fulfil the twelve criteria proposed in the principles of green chemistry. There are
certain parameters and pre-requisites that a typical characteristic solvent should possess to qualify as
a green solvent. To name a few, the solvent should be from renewable feedstocks, recyclable using
eco-efficient treatments, exhibit similar properties as common solvents, high boiling point and low
vapour pressure and enhanced biodegradability under normal environmental conditions, etc. [94,95].
Production or synthesis of bio-based solvents or green solvents it in itself should not have a negative
environmental impact.
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The agricultural biomass that is used for solvent production has a rigid, fibrous structure as they
undergo post-harvest treatments and are secondary intermediates meant for feed purposes or manure.
Hence, strong thermo-chemical processes assisted by pretreatments enable the efficient processing
of the biomass for suitable solvent production applications. For example, the industrial production
of 2-methyltetrahydrofuran (2-MeTHF) involves three steps: (1) an acid treatment of lignocellulosic
material to release pentose and hexose sugar units; (2) a biorefining process for the conversion of
sugars into furfural and levulinic acid; (3) hydrogenation of levulinic acid with excess hydrogen [96].
Similarly, cyclopentyl methyl ether (CPME) a greener alternative to tert-butyl methyl ether (TBME) is
synthesized by two methods, firstly a nucleophilic substitution mediated by dimethyl sulfate, where
the methylation of cyclopentanol occurs and in the second one where an addition reaction of methanol
to cyclopentane is executed (Table 5) [97].
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Terpenes (also known as isoprenoids or terpenoids) are mainly acyclic, bicyclic or monocyclic
hydrocarbons biosynthetically derived from isoprene units (C5H8). They exhibit relatively different
physical properties and are principally recovered from conifers and fruit pomaces. For instance,
limonene is obtained from byproducts of citrus fruit juice production by means of steam distillation
and condensation. Microbial production of limonene has immense potential and is of great significance
as the bio-conversion of glucose is facilitated by E. coli or S. cerevisiae and this process avoids the
dependency on citrus fruits, and the raw material glucose for fermentation can preferably be sourced
from any waste biomass [98].

Table 5. Bio-based solvents as an extraction solvent for various analytes.

Analyte Material Bio-Based Solvent Method Ref.

Oil Yarrowia lipolytica CPME Hot reflux [99]

Oil Pistacia Lentiscus L. MeTHF Soxhlet [100]

Oil Anabaena
planctonica D-limonene Pressurized liquid

extraction [101]

Oil Jatropha curcas L. DMC Maceration [102]

Peroxidase enzyme Momordica charantia DMC Three-phase
partitioning [103]

Triterpenoids Betula pendula Roth. Ethyl acetate Reflux [104]

Oil Hura crepitans Ethyl acetate Microwave [105]

Curcuminoids Curcuma longa L. Ethyl lactate Maceration [106]

Caffeine Camellia sinesis Ethyl lactate Pressurized liquid
extraction [107]

Fatty acids Arachis Hypogaea α-pinene Soxhlet [108]

MeTHF—2-methyl tetrahydrofuran; CPME—Cyclopentyl methyl ether; DMC—Dimethyl carbonate.

Ethers like 2-MeTHF and CPME were used as alternative solvents for the extraction of microbial
oils, in particular from yeast Yarrowia lipolytica, and the oil had similar properties when compared with
that of the oil extracted with n-hexane [99]. Similarly, the theoretical and experimental solubility of oil
obtained from Pistacia lentiscus L in various bio-based solvents was elucidated recently, and the in vitro
anti-inflammatory activities of the lipid profile was documented [100].

As success stories of the application of bio-based solvents for extraction, an optimized process
for lipid extraction with limonene and ethanol as solvent from Spirulina microalgae and others using
pressurized liquid extraction (PLE) at 200 ◦C for 15 min was proposed. The extraction procedure had the
highest yield for Spirulina and the highest amount ofω-3 fatty acids for Stigeoclonium [101]. Biodiesel
production with dimethyl carbonate (DMC) as a simultaneous extraction solvent and transesterification
reagent were explored. Higher yields of fatty acid methyl esters and ethyl esters were reported and
a protocol to bypass solvent extraction and oil clean-up using short-chained dialkyl carbonates as a
promising method for bio-diesel production was articulated [102]. Three-phase partitioning for the
extraction of peroxidase enzyme from a bitter gourd sample by replacing t-butanol in the organic phase
with DMC is an interesting approach for protein extraction and purification of natural moieties with
minimal denaturation [103].

The efficacy of ethyl acetate for the extraction of triterpenoids and polar impurities from birch
bark was evaluated, and a higher content of botulin and lower content of polar impurities was obtained
when ethyl acetate was employed as extraction solvent. The study also demonstrated the efficient
recovery of residual ethyl acetate by hydrodistillation [104]. A microwave-assisted solvent extraction
(MASE) system was probed for the extraction optimization of sandbox seed oil. Performance evaluation
of three solvent types (acetone, ethyl acetate, and hexane) was compared as a function of oil yield
and ethyl acetate proved to be a better solvent with oil yield 1.28 times higher than n-hexane under
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optimized conditions [105]. The stability of curcuminoids, mainly curcumin, demethoxycurcumin,
and bisdemethoxycurcumin when ethyl lactate was used in synergy with water (70:30, v/v) as the
extraction system resulted in better stable curcuminoid compounds and its derivatives. Addition of
ethyl lactate to the water-based solvent system inhibited the alkaline hydrolysis of the investigated
chemical constituents [106]. The potential of PLE with pure ethyl lactate for the removal of caffeine
from natural matter, especially green tea leaves with minimized co-extraction of bioactive compounds
like catechin, was verified [107]. Such solute-specific elution by ethyl acetate and water solvent systems
displays the versatility of bio-based solvents and presents pragmatic solutions for academia and
industries alike. Fatty acids were extracted from oilseeds such as soybean, peanuts and sunflower with
α-pinene as an alternative to n-hexane and the study shed light on the recycling capacity of α-pinene
which was closer to 90%, whereas it was a mere 50% for f n-hexane, and it was also demonstrated
that there was no major degradation in the recycled α-pinene [108]. The suitability of α-pinene as an
alternative for the effective replacement of toluene in the moisture determination of food products
using Dean-Stark distillation was validated and serves as an example for the incorporation of bio-based
solvent for green analytical chemistry [109].

6. Liquefied Gases: From Supercritical Fluid to Liquefied Gas Extraction

Supercritical fluids (SCF) are a well-established alternative to traditional organic solvent extraction
methods [110]. A fluid reaches its critical state when two phenomena occur simultaneously: (1) when
it is heated above its critical temperature (Tc) and (2) when it is pressurized above its critical pressure
(Pc). The physicochemical properties of SFE can be manipulated; to obtain specificity in SCF the
temperature and pressure can be increased well beyond their critical values. The liquid-like density
exhibited by SCF induces a solvating power close to liquids. Their gas-like viscosity results in high mass
transfer. Carbon dioxide (CO2) is the most widely used supercritical fluid because it is inert, non-toxic,
non-inflammable, low cost, abundant, easily removable from the product and possesses moderate
critical properties (Tc = 31.1 ◦C, Pc = 7.38 MPa). As a function of pressure and temperature, changes in
density can permit variable solvating power, allowing for selective extractions. The versatility of CO2

as SCF is well documented, due to its volatility at atmospheric pressure the extracts are solvent-free
post depressurization. Considering the fact that supercritical CO2 is a non-polar solvent, its solvent
power is said to lay between those of pentane and toluene [111]. Usually, a polar co-solvent like
methanol or ethanol can be added to enhance the solubilization of polar substances. Carbon dioxide is
a generally recognized as safe (GRAS) solvent so products containing extracts obtained with “food
grade” carbon dioxide are safe with respect to human health. Many studies have been performed on
natural product extraction using supercritical CO2, but the high working pressure (Pc = 7.38 MPa) has
limited the industrial applications

In the last decades, the search for new solvents has revived interest in the use of liquefied gases
as extraction solvents. Several liquefied gases at a lower pressure (200–1000 kPa), have been used in
extraction processes such as n-propane, n-butane and dimethyl ether. These gases require relatively a
very low pressure (<1 MPa) to remain in a liquid state and also they can be easily evaporated at lower
temperatures by altering the pressure. Liquified Gas Extraction (LGE) is generally carried out room
temperatures with minimal energy consumption and negligible residual solvent in the extracts, thereby
preserving the quality of both raw materials and extract. Moreover, existing toxic solvents can be
replaced as the chemical structure of LGE makes it suitable for the extraction of lipophilic compounds
hence establishing itself as a potential alternative technology within the principles of green extraction
of natural products.

For supercritical CO2 as an alternative solvent, the extraction process occurs in four stages; the
diffusion of the supercritical fluid into the porous sample matrix, the separation of the solute-solute
interaction within the matrix, the diffusion of the solutes out of the matrix, and the recovery of the
analytes from the sample during decompression.
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Autoclaves are used in supercritical fluid extraction (SFE), and comprise four main components:
(i) a pump, to ensure volumetric flow of the fluid; optionally it can be preceded by a cooler for
transportation of gaseous components in liquid state, (ii) a heat exchanger, (iii) an extractor, where
static and dynamic extractions take place by modulating the pressure regulated by a valve, and (iv) a
separator (Figure 5).Molecules 2019, 24, x FOR PEER REVIEW 15 of 26 
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Figure 5. Simplified schematic representation of lab- and pilot-scale unit for extractions using liquefied
gases or CO2 as a solvent. (a) Process diagram of a unit designed for extractions using CO2 (a1) or
liquefied gases (a2) as a solvent. (b) Example of supercritical CO2 lab scale equipment. (c) Example of
supercritical CO2 industrial scale equipment. (d) Nectacel 1-L liquefied gas extraction unit manufactured
by Celsius Sarl (Villette de Vienne, France). (e) 500-L NECTACEL be consistent with names liquefied
gas extraction unit manufactured by Celsius Sarl.
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Extraction and separation of solute from the solvent are the two main steps involved in SFE.
The integral part to perform SFE is to bring the fluid to its supercritical state, this is achieved by
sequentially pressurizing and heating the fluid before it enters the extractor. At optimal pressure and
temperature, the fluid percolates in the extractor generating ascending or descending flux. Thus, the
fluid extracts the solutes present in the matrix. Separation of solute is observed in the separator, where
the supercritical fluid returns to its gaseous state and the solutes are separated by gravity. Extracts
are collected at the bottom of the separator. The exhaust gas can be recycled by reinjecting it into the
system or released into the atmosphere depending on the equipment and processing conditions.

SFE has several key advantages when compared to conventional extraction, chiefly the absence or
limited solvent consumption (in case of co-solvent) to produce solvent-free extracts. The number of
unit operations is reduced as there is no separation or purification step necessary and the final extract is
obtained in the depressurization step. SFE is well suited for heat-sensitive, thermolabile biomolecules
as the operating conditions are typically set at lower temperatures.

LGE can be carried out using two mains ways: batch mode or semi-continuous mode. In the
beginning, LGE was performed with the conventional way of doing solid-extraction—soaking a matrix
in a volume of solvent—but the scientific community quickly realized that semi-continuous modes
were more adaptable to those easy-to-evaporate solvents. In the semi-continuous extraction processes,
the solvent is continuously evaporated and recycled. In theory, a limited amount of solvent can be used
indefinitely until the plant material is exhausted. As semi-continuous processes are not equilibrium
limited, even solvents with relatively poor partitioning coefficients but high selectivity can be used
with high efficiency. According to the way the solvent flows, semi-extraction processes can be divided
into two modes: isobaric and non-isobaric (pressure driven) (Figure 5).

• Non-isobaric: In non-isobaric conditions, the liquefied gas is flowed through the raw material
using a circulating pump, then evaporated by expansion and finally liquefied by a compressor.
This way of doing is very similar to the working principle of cooling units. Such equipment
allows precise control of the flow rate and working pressure. In addition, the solvent can be
driven “up-flow” to ensure a maximum solid/liquid contact. However, pumps and compressors
are expensive equipment that requires frequent maintenance operations, especially with liquefied
gases. Moreover, the size of compressors is typically a limiting factor for large industrial
applications, especially in the case of flammable gases.

• Isobaric: Recirculation of solvent can also be achieved without a pump or compressor by using
isobaric conditions. In this case, the system always stays at liquid/vapor equilibrium, the operating
pressure is equal to the vapor pressure of the solvent. In that case, the liquefied solvent is
transferred from a vessel to another by the only help of gravity. The liquefied gas is then
evaporated in the boiler under the same pressure (isobaric mode) and the vapors naturally
rise to the condenser for solvent regeneration. The absence of mechanical equipment leads to
lower energy consumption and maintenance cost. However, the flow-rate only depends on the
performance of the boiler and condenser that require careful design and monitoring.

A list of several applications carried out with SFE-CO2and LGE such as propane, n-butane or DME is
presented in Table 6. Extraction by SFE with CO2 (SFE-CO2) is a well-known technique in both academic
institutions and industrial-scale operations and therefore is the subject of numerous research articles
and publications. Large scale SFE has been widely used since the late 1970s for the decaffeination
of coffee and tea. Applications of SFE-CO2 for extraction of natural substances such as oils and fats,
flavor and fragrances and pigments from various plants, microorganisms or by-products will continue
to be an important research area. SFE-CO2 extraction of natural substances is described in several
reviews [112–117].

Essential oils (EOs) were traditionally extracted from seeds, roots, flowers and leaves using
hydrodistillation. Thermal degradation, hydrolysis and solubility of some chemical constituents in
water may alter the flavour of the compounds, so SFE-CO2 technique can avoid these problems [118–121].
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The optimum operating conditions for extraction of EOs by SFE-CO2 method are pressure in the range
of 90–250 bar and temperature ranges from 40–50 ◦C.

For example, Conde-Hernandez and al. [122] published SFE-CO2 technique for the isolation of
EO from rosemary. Two temperatures (40 and 50 ◦C) and two pressures (10.34 and 17.24 MPa) were
tested and the maximum of EO recovery was between 1.41 and 2.53 g essential oil (EO) 100 g−1 of dry
rosemary (% w/w).

Vági et al. [123] compared the extracts produced from the extraction of marjoram (Origanum
maorana L.) using supercritical CO2 (50 ◦C and 45 MPa) and ethanol Soxhlet extraction. Extraction
yields were 3.8 and 9.1%, respectively. Nevertheless, the supercritical extract comprised 21% of essential
oil, while the alcoholic extract contained only 9% of the volatile oil substances.

Oil extraction is generally accomplished using hexane which is toxic. It is produced from fossil
sources and n-hexane, which is one of the main constituents of industrial hexanes, is suspected to
be reprotoxic which makes its use at industrial scale questionable. Since the early 1980s, the use of
SFE-CO2 in the extraction of fats and oils from various plant or animal sources has been studied
extensively [124]. For example, Salgin et al. employed a SFE process for the extraction of jojoba oil and
investigated the effect of process parameters such as pressure, temperature and particle size of jojoba
seeds, the flow rate of CO2 on the efficiency of extraction [125].

Because carotenoids are oxidized easily and are sensitive to light and heat, SFE-CO2 is a promising
method to recover them from plants instead of organic solvents and hot water [126]. In this way,
Lima and al. described the extraction of carotenoids from carrot peels by SFE-CO2 utilizing ethanol as
co-solvent. According to the validated model, the optimal conditions for maximum mass yield (5.31%)
were found at 58.5 ◦C, 306 bar and 14.3% of ethanol, and at 59.0 ◦C, 349 bar and 15.5% ethanol for
carotenoid recovery (86.1%) [127].

Many experimental studies have been carried out in order to evaluate the potential of LGE.
In particular, propane, n-butane or DME have been extensively investigated for the extraction of fats
and oil, antioxidants and aromas [128–138]. As an example, Zanqui et al. [139] experimented with
n-propane as a solvent for the extraction of chia (Salvia hispanica L.) oil, resulting in good extraction
yield (28.16%), similar to the Soxhlet method and SC CO2, in only 1 h. Moreover, the oil extracted
using n-propane showed the best oxidative stability as well as the highest contents in polyunsaturated
fatty acids (829 mg/g oil), in particular, omega 3 (628 mg/g oil) and omega 6 (201 mg/g oil). Therefore,
liquefied gas extraction using n-propane was found to be the most efficient method for the extraction
of chia oil.

As a solution, Goto et al. [140] proposed an extraction process using dimethyl ether (DME) directly
from wet microalgae. They showed that lipids extraction using DME was just as effective as the
Bligh-Dyer method (yield = 40.1%), used as reference. Moreover, because of its unique physicochemical
properties, DME can extract lipids from microalgae without any preliminary drying and cell disruption
steps. As a result, the number of steps and the energy consumption of the overall process could be
considerably reduced.

Bier et al. [136] extracted terpenes from agro-industrial waste using a liquid petroleum gas (LPG),
composed of a mixture of isomers of propane and butane. This technique was compared to extractions
using the Soxhlet method, with n-hexane. In particular, they observed that LPG in batch mode at 35 ◦C
resulted in higher yields (5.36% vs. 3.88% using Soxhlet) and high-quality essential oils, composed
mainly of limonene (95.3%), α-pinene (0.4%) and β-pinene (0.2%).

Similarly, Nenov et al. [137] described the extraction of essential oil from Ceylon cinnamon tree
(Cinnamomum verum) using 1,1,1,2-tetrafluoroethane. The extract was composed mainly of cinnamal
(77.3%) and coumarin (4.3%), with physicochemical properties comparable to essential oils described
in the literature, obtained using either classical extraction methods or SC CO2.
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Table 6. Extraction applications with SFE-CO2 and LGE as a green solvent.

Material Analyte Solvent T (◦C)/P (MPa) Ref.

Rosmarinus officinalis EO SFE-CO2
40 ◦C/10.34 MPa;
50 ◦C/17.24 MPa; [122]

Origanum majorana EO SFE-CO2 50 ◦C/45 MPa [123]

Jojoba seeds oil SFE-CO2 25–45 ◦C/67–90 MPa [125]

Carapa guianensis Fatty acids + phenolic n-butane 25 ◦C, 0.7 MP [128]

Carrot peel carotenoids SFE-CO2 -Ethanol 58,5 ◦C/30.6 MPa (with
14.3% of ethanol) [129]

Helianthus annuus L. Fatty acids n-butane 40 ◦C, 0.4 MPa [129]

Perilla frutescens Lipids n-propane 40 ◦C, 0.8 MPa [131]

Sesamum indicum seeds oil SFE-CO2 19–25 ◦C/40–60 MPa [132]

Sesamum indicum seeds Fatty acids +
antioxidants + proteins n-propane 60 ◦C, 12 MPa [132]

Euglena gracilis Lipids DME 20 ◦C, 0.7 MPa [133]

Botryococcus braunii Hydrocarbons DME 20 ◦C, 0.7 MPa [134]

Arthrospira platensis lipids DME 20 ◦C, 0.5 MPa [135]

Citrus leaves Essential oil DME 35 ◦C, 0.78 MPa [135]

Orange Waste Terpenoids LPG 35 ◦C, 0.45 MPa [136]

Salvia hispanica L. Fatty acids +
antioxidants n-propane 45 ◦C, 10 MPa [139]

Microalgae Lipids DME 30 ◦C, 0.7 MPa [140]

7. Intensification as a Key for Industrial Success Stories of Green Solvents

In solid-liquid solvent extraction, the equilibrium between solute concentration within the solid
and solvent fraction is a function of temperature, solvent type and compounds characteristics. Transfer
modes, such as mass, momentum and heat, are involved in this equilibrium and are usually limiting
steps. While most studies focus on chemical aspects, such as solvation, it is important to also consider
transfer modes. In fact, solubilization in mainly impacted by the conditions under which the solid-liquid
extraction was carried out. Conventional extraction processes are not effective in terms of selectivity,
performance, energy, yield and environmental impact. Due to new technologies, intensification
presents a solution to overcome these obstacles and to enhance one or more transfer modes. There
are several technical tools to intensify existing processes such as pulsed electric fields, microwave,
and ultrasounds [141–145]. Recently, Arkopharma Laboratories have studied and developed a new
process for the extraction of medicinal plants using ultrasonic cavitation. Their study has shown that
ultrasound can have a detexturation effect on the plant matrix thus allowing extraction intensification
of mass transfer. Results showed a 73% increase in yield concentration coupled with 25% and 33%
decreases in energetic consumption and environmental impact, respectively [146].

Ultrasound as intensification technique has been also used for extraction of food products using
vegetable oils as solvents for their aromatization. Veillet et al. [147] proposed an original procedure for
the direct aromatization of olive oil with basil leaves using ultrasonic cavitation technique. Another
approach was adopted by Li et al. [148] to produce sunflower oil enriched with carotenoids with a
reduced number of unit operations compared to the conventional procedure. Yara-Varon et al. [146]
present industrial applications of oleo-extracts using vegetable oils as alternative solvents for extraction,
purification and formulation (Figure 6).
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8. Future Trends

Alternative solvents for green extraction of natural products became an innovative research area
between industry and academia not only research but also education. It is a new area of innovations
that will not end. We will present some future trends which will become industrial success stories in
the near future:

• Towards natural ILs

ILs’ applications in the food, nutraceutical and pharmaceutical fields are still limited due to their
toxicological profiles. Here, natural sources come into the picture as starting materials for the synthesis
of these designer solvents aiming at limiting their toxicity and thus extending their field of applications.
Attention has directed towards natural compounds such as lipid compounds [147], amino acids [148]
and acids [149,150]. Some anions and cations obtained from natural sources are presented in Table 7.

Table 7. Anions and cations obtained from natural sources for synthesis of ionic liquids.

Ions Group Source Precursor Structure Example of IL Ref.

Anions

Carboxylic
acids

Vegetable
oils Oleic acid
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deep eutectic solvents (THEDESs), defined as bioactive eutectic systems, have been introduced for
this purpose. These eutectic mixtures contain an active pharmaceutical ingredient (API) as one of
their constituents [157]. THEDESs can be used to enhance the solubility of drugs as well as their
permeability, leading to improved pharmaceutical formulations. Only a few researchers have explored
these new solvents and proved their positive impacts and their high potential in drugs solubility and
permeability [158–162]. Today, THEDESs applications are still limited; but they certainly represent
very promising candidates with increasing valorization in the pharmaceutical industry in the near
future [163–168].
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