
GSK-3β = glycogen synthase kinase-3β; ILK = integrin-linked kinase; LOH = loss of heterozygosity; MMTV = mouse mammary tumor virus; 
mTOR = mammalian target of rapamycin; PI3K = phosphatidylinositol 3′-kinase; PKB = protein kinase B; TCF/LEF = T cell transcription factor; 
TG = transgenic.
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Introduction
Cancer is a multi-step process involving the mutation of
genes regulating cell proliferation, differentiation, and sur-
vival, leading to escape from normal tissue boundaries and
sustained angiogenesis [2]. Given the plethora of genetic
alterations observed in primary breast cancers, it has been
difficult to establish which are involved in initiation, pro-
gression and metastasis. Despite often significant difficul-
ties in the interpretation of their relevance to human
disease, mouse models have provided experimental tools
to investigate genetic pathways altered in breast cancer.
Furthermore, the interbreeding of different TG or gene-
deficient mouse models can reveal the potential for co-
operation between different signaling pathways.

MMTV-Wnt-1 TG mice develop mammary
tumors
Mammary tumors induced following mouse mammary
tumor virus (MMTV) infection have revealed oncogenes
involved in murine mammary tumorigenesis. Random
insertion of proviral MMTV DNA into mouse mammary
epithelial cells results in insertional mutagenesis and
oncogenic activation of various genes, including those of
the Wnt, Fgf, and notch families, and eIF-3p48. The first
proto-oncogene to be cloned from MMTV-induced
mammary cancers was Wnt-1 [3], a member of a family of
secreted cysteine-rich glycoproteins, which controls cell
fate/patterning through stabilization of β-catenin and acti-
vation of the downstream transcription factor T cell factor
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(TCF/LEF). MMTV-Wnt-1 TG mice develop mammary
tumors histopathologically similar to human breast
cancers. These mice develop extensive mammary hyper-
plasia, and tumors progress to adenocarcinomas in a
temporally predictable manner [4]. Although overexpres-
sion of Wnt-1 has not been observed in human breast
cancers, several downstream components of the Wnt
signaling pathway are deregulated in human cancers,
including adenomatous polyposis coli, β-catenin, c-Myc,
and cyclin D1 [5]. Moreover, overexpression of a stable
transcriptionally active β-catenin in a mouse mammary
model induced multiple aggressive mammary adenocarci-
nomas [6]. By breeding MMTV-Wnt-1 TG mice with mice
carrying alterations in genes implicated in breast cancer,
potential synergies between pathways involved in breast
oncogenesis can be defined. Li et al. employed this strat-
egy, crossing mice heterozygous for PTEN with a MMTV-
Wnt-1 TG model, to assay the relevance of PTEN
deficiency to murine mammary tumorigenesis in an in vivo
model [1].

PTEN and cancer
Early cytogenic analysis revealed frequent abnormalities
within chromosome 10 involving the 10q23 region in
many cancers (reviewed in [7]). The PTEN gene, located
at chromosome 10q23, was identified as a candidate
tumor suppressor gene frequently deleted at chromosome
10q23 in primary cancers, including brain, prostate and
breast cancer [8,9]. The tumor suppressor role for PTEN
was further supported by the discovery that the autosomal
dominant multineoplasia syndrome, Cowden disease, is
associated with germ-line PTEN mutations [10]. Family
members with Cowden disease, both male and female,
have an increased incidence of breast cancer [11–13].
Moreover, somatic PTEN mutations are found frequently in
endometrial carcinomas, malignant gliomas, and
melanomas [14–16].

The PTEN gene product is a lipid phosphatase [8] that
preferentially dephosphorylates phosphoinositides at the
D3 position of the inositol ring [17]. It opposes the effects
of phosphatidylinositol 3-kinase (PI3K) by dephosphorylat-
ing its lipid products. The products of PI3K activity are
required for activation of protein kinase B (PKB), also
known as Akt, a serine/threonine kinase involved in cell
growth and survival (review in [18]), whose constitutive
activation has transforming potential [19]. PTEN may thus
inhibit carcinogenesis through its inhibitory effect on
PKB/Akt. One of the known substrates of PKB is glyco-
gen synthase kinase-3β (GSK-3β). GSK-3β is phosphory-
lated and inactivated by PKB/Akt [18].

Increasing data have implicated PTEN loss in breast car-
cinogenesis. While loss of heterozygosity (LOH) of the
PTEN locus is frequent in sporadic breast carcinoma [20],
particularly in late stage disease [21], the very low rate of

somatic intragenic PTEN mutations led some investigators
to suggest that PTEN is not involved in breast tumor pro-
gression [22–26]. More recently, however, immunohisto-
chemical analysis revealed frequent loss or reduction of
PTEN protein in primary breast cancers [27]. Furthermore,
while three different groups showed an embryonic lethal
phenotype in PTEN knockout mice, Pten+/– mice develop
breast cancers with relatively long latencies and different
frequencies depending on the genetic strain used
[28–30]. In one study, one-half of the Pten+/– mice devel-
oped breast tumors [31]. Despite the differing incidence
of mammary cancers in the different genetic backgrounds
of these PTEN-deficient strains, the evidence from the
knockouts, coupled with the data of Li et al. [1], support a
role for this tumor suppressor in mammary oncogenesis.

Lessons from Wnt-1 TG, Pten+/– mice
By crossing PTEN heterozygotes with MMTV-Wnt-1 TG
mice, Li et al. [1] demonstrated a synergy between these
two pathways and identified a role for PTEN in murine
breast tumor promotion or progression. Infiltrating ductal
cancers developed earlier in Wnt-1 TG, Pten+/– mice
compared with Pten+/– mice or MMTV-Wnt-1 TG
animals. The majority of tumors tested from Wnt-1 TG,
Pten+/– animals showed loss of the remaining wild-type
allele. Moreover, nontumorous mammary glands in Wnt-1
TG, Pten+/– mice showed frequent multifocal intraductal
carcinoma both adjacent to and distant from the invasive
tumors, while MMTV-Wnt-1 TG mice showed only ductal
hyperplasia in grossly unaffected glands. In addition, the
invasive cancers in Wnt-1 TG, Pten+/– mice had a less
differentiated histopathology suggestive of a more aggres-
sive phenotype.

PKB activation, as demonstrated by immunostaining of
tumors for phospho-PKB, was seen only in a patchy distri-
bution in tumors from Wnt-1 TG, Pten+/– mice. Moreover,
PKB activation as assayed by this method was not
observed in tumors from Wnt-1 TG animals.  The authors
reported reductions in PTEN protein by immunohisto-
chemical analysis in tumors from Wnt-1 TG, Pten+/– mice
whether or not they showed  PTEN LOH. It is thus a little
surprising that focal areas of PKB/Akt activation were
seen only in tumors from Wnt-1 TG, Pten+/– animals
showing PTEN LOH. The accuracy of assaying PKB acti-
vation by immunohistochemical analysis using antibody
against the phosphorylated active form of PKB has not
been definitively established.

The relevance of Wnt-1 TG, Pten+/– murine tumorigene-
sis to spontaneous breast cancer formation in humans is
not entirely clear. It is possible that the enhanced tumor
formation in the Wnt-1 TG, Pten+/– animals merely
reflects synthetic synergy between two susceptible strains
of mice. While there may be a synergy between the Wnt-1
and PTEN pathways in the Wnt-1 TG, Pten+/– tumors,
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there was no clear evidence for involvement of the
PTEN/PKB pathway in MMTV-Wnt-1-mediated tumorigen-
esis. Li et al. found no increase in PKB activation in Wnt-1
TG tumors, and none of these tumors showed reduction
to hemizygosity at the PTEN locus.

One intriguing possibility is that Wnt-1 overexpression
and PTEN loss may interact by each contributing to inhi-
bition of GSK-3β [32]. Following insulin or receptor tyro-
sine kinase stimulation, PKB phosphorylates and inhibits
GSK-3β. Wnt signaling causes a conformational inhibi-
tion of GSK-3β within a complex with axin, the adenoma-
tous polyposis coli protein and β-catenin. Whereas in
normal cells cross-talk between Wnt and receptor tyro-
sine kinase signaling does not usually occur, there is
some evidence that the phosphorylation state of GSK-3β
can influence Wnt signaling ([32] and references
therein). GSK-3β inhibition would lead to increased cyclin
D1 stability [33], and stabilization of β-catenin with
increased mitogenic transcriptional activity via the β-
catenin–TCF/LEF complex [34]. PKB may not be an
obligate target of PTEN loss since only ‘patchy’ activation
of PKB was seen in Wnt-1 TG, Pten+/– mammary
tumors, as assessed by immunohistochemical analysis.
Recent reports suggest that the integrin-linked kinase
(ILK) can mediate PI3K-dependent inactivation of GSK-
3β [35–37]. Although ILK can phosphorylate and activate
PKB [38], it may also inhibit GSK-3β directly, indepen-
dent of PKB in some cells. In oncogenesis, ILK-depen-
dent GSK-3β inhibition could potentially contribute to
Wnt-1 signaling and β-catenin-dependent transcriptional
effects. In Wnt-1 TG, Pten+/– tumors, where PKB activa-
tion is ‘patchy’, activation of ILK via PTEN loss may lead
directly to GSK-3β inactivation. PTEN loss may synergise
with Wnt-1 through activation of ILK, with or without PKB
activation, leading to GSK-3β inhibition. While this mecha-
nistic model for cooperation between PTEN loss and Wnt-
1 activation may be provocative, evidence for cross-talk
between these pathways in human mammary tumorigene-
sis has yet to be established.

Since PKB, a key PI3K effector downstream of PTEN, has
been shown to inhibit apoptosis and promote cell cycle
progression, the authors compared proliferation rates (by
Ki67 staining) and assayed apoptosis in tumors from
Wnt-1 TG, Pten+/– mice and in tumors from MMTV-
Wnt-1 TG animals. Surprisingly, no differences in either
were found. Activated PKB/Akt has been shown to
enhance survival signals in breast epithelial cells [39].
Other methods to assay apoptosis would have strength-
ened the conclusions drawn by Li et al. Since the tumors
in these two models both have very high proliferation
rates, a subtle difference may have been missed by Ki67
staining. Flow cytometric analysis might have been useful,
but the high content of stromal cells observed in the Wnt-
1 TG, Pten+/– tumors would have precluded accurate

analysis without tumor microdissection. Since PTEN
inhibits S phase entry by increasing levels of the cdk
inhibitor, p27, in certain cell types [40,41], and since acti-
vated PKB/Akt can stabilize cyclin D1 through its
inhibitory action on GSK-3β [33], an increased rate of cel-
lular proliferation might have been expected in Wnt-1 TG,
Pten+/– tumors.

An additional possibility is that PTEN loss may influence
tumorigenesis and the rapidity of tumor growth in vivo by
increasing tumor cell invasiveness. It was recently shown
that HER2/ErbB2 activation of PI3K-dependent signaling
increases mammary epithelial cell invasive potential in vitro
[42]. Moreover, PTEN dephosphorylates focal adhesion
kinase and inhibits integrin-mediated cell spreading and
cell migration [43]; thus, reduced PTEN expression could
favor a metastatic phenotype. It is unfortunate that the
small number of animals assayed for metastatic tumors
precluded a definitive conclusion regarding the role of
PTEN in metastasis in Li et al.’s study [1].

Given that increased PI3K and PKB/Akt signaling have
also been shown to mediate angiogenesis through
increased expression of vascular endothelial growth factor
[44], loss of PTEN may promote tumor growth in vivo by
an angiogenic mechanism. While reconstitution of PTEN
expression in U87MG glioma cells failed to inhibit prolifer-
ation in culture, it caused a dramatic reduction in tumor
growth in vivo in a murine orthotopic brain tumor model
[45]. The PTEN-mediated inhibition of tumor growth seen
in this brain tumor model may reflect a reduction in tumor
angiogenesis. It would be interesting to compare the
extent of angiogenesis in mammary cancers arising in
MMTV-Wnt-1 mice, in Wnt-1 TG, Pten+/– mice, and in
Pten+/– mice. These models may be useful to assay the
potential role of PTEN in regulating breast cancer growth
through an effect on tumor vasculature.

Conclusion
Li et al. provide compelling evidence for synergy between
Wnt activation and loss of the PTEN tumor suppressor in
promoting mammary carcinoma development and growth
in vivo in mice. These data support further investigation of
how downstream Wnt targets and PTEN inactivation may
cooperate in mammary tumorigenesis. While the under-
standing of mechanisms of disease is in itself a laudable
goal, an added utility of murine models lies in the preclini-
cal testing of novel therapeutic agents. Since breast
tumors form with predictable rapid kinetics in this model,
Wnt-1 TG, Pten+/– mice may allow the testing of molecu-
lar-based therapies of potential utility in human tumors
showing PTEN loss/mutation. One such candidate, the
rapamycin analog CC1779, which inhibits the potential
PKB/Akt target mTOR, is under investigation by several
groups [46]. Novel drugs that inhibit other cell cycle
players may also prove to have therapeutic efficacy.
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