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Spontaneous MeG activity of the 
cerebral cortex during eyes closed 
and open discriminates Alzheimer’s 
disease from cognitively normal 
older adults
Yoshihisa ikeda1, Mitsuru Kikuchi2, Moeko noguchi-Shinohara1,3, Kazuo iwasa1, 
Masafumi Kameya2, tetsu Hirosawa2, Mitsuhiro Yoshita1,4, Kenjiro ono1,  
Miharu Samuraki-Yokohama1 & Masahito Yamada1 ✉

this study aimed to examine whether magnetoencephalography (MeG) is useful to detect early stage 
Alzheimer’s disease (AD). We analyzed MeG data from the early stage AD group (n = 20; 6 with mild 
cognitive impairment due to AD and 14 with AD dementia) and cognitively normal control group (NC, 
n = 27). MEG was recorded during resting eyes closed (EC) and eyes open (EO), and the following 6 values 
for each of 5 bands (θ1: 4-6, θ2: 6-8, α1: 8-10, α2: 10-13, β: 13-20 Hz) in the cerebral 68 regions were 
compared between the groups: (1) absolute power during EC and (2) EO, (3) whole cerebral normalization 
(WCN) power during EC and (4) EO, (5) difference of the absolute powers between the EC and EO 
conditions (the EC-EO difference), and (6) WCN value of the EC-EO difference. We found significant 
differences between the groups in the WCN powers during the EO condition, and the EC-EO differences. 
Using a Support Vector Machine classifier, a discrimination accuracy of 83% was obtained and an AUC 
in an ROC analysis was 0.91. This study demonstrates that MEG during resting EC and EO is useful in 
discriminating between early stage AD and nc.

The most significant risk factor for Alzheimer’s disease (AD) is increasing age1. The method used to diagnose 
AD especially in its early stage needs to be quick and easy such that it can be conducted on many people who 
have reached a certain age. The measurement of spontaneous brain activity at rest using magnetoencephalography 
(MEG) could be one of the effective diagnostic procedures for AD, requiring minimum effort from elderly persons.

MEG is a device capable of measuring brain activity easily, non-invasively, and directly. Of several devices 
that can measure brain function, MEG has the highest temporal resolution using the millisecond time scale. This 
makes it possible to measure and quantify periodic neuronal activity for each frequency. Compared to electroen-
cephalography (EEG), MEG is not distorted by the resistive properties of the cerebral fluid, skull, and skin, which 
is an advantage for source-level analysis. While sensor-level analysis applies MEG signals on sensors directly in 
a statistical or connectivity analysis, source-level analysis estimates the original signal source activities of MEG 
using a whole-brain model from a magnetic resonance imaging (MRI). Therefore, source-level analysis enables the 
statistical analysis of each precise brain region2.

Human brain networks dynamically switch between eyes closed (EC) and eyes open (EO) resting condi-
tions3. Therefore, the resting state choice, either EC or EO, is an essential factor to be carefully considered in brain 
research4,5.

In this study, for early stage AD and cognitively normal control (NC) subjects, we calculated absolute MEG 
power values during the EC and EO resting conditions for each frequency band in the whole cerebrum and in 
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regions in the Desikan-Killiany atlas6 at the source-level on the individual head model using Tikhonov-regularized 
minimum-norm estimates7 from MEG/MRI co-registration data. Additionally, in order to overcome the 
inter-individual variability in the absolute spectral power, we adopted a whole cerebral normalization algorithm 
for the estimated regional absolute power values by normalizing them to the whole cerebral power, termed ‘WCN 
power’. We also examined the absolute power difference between the EC and EO conditions, termed ‘the EC-EO 
difference’. Finally, we calculated WCN value for the EC-EO difference. These 6 values for 5 frequency bands (θ1: 
4–6, θ2: 6–8, α1: 8–10, α2: 10–13, β: 13–20 Hz) in the 68 cerebral regions were compared between the AD and NC 
groups using a Support Vector Machine (SVM) classifier. MEG analysis using our method would provide suitable 
clinical indices to differentiate between relatively early stage AD and NC.

Results
characteristics of the AD patients and nc subjects. Twenty AD patients participated in this study. This 
included 6 with mild cognitive impairment (MCI) due to AD and 14 with probable AD dementia; 27 NC subjects 
participated in this study. Subject characteristics of the AD and NC groups are shown in Table 1. The AD and NC 
groups were not significantly different in terms of age, gender, or education level. Mini-Mental State Examination 
(MMSE)8 scores were significantly lower in the AD group than in the NC group. Of the 6 patients with MCI due 
to AD, 3 were diagnosed with a high likelihood and 3 with an intermediate likelihood9. Of the 14 patients with 
probable AD dementia, 3 were diagnosed with high evidence of the AD pathophysiological process and 11 with 
intermediate evidence10. All of the MCI patients except one were converted to AD dementia within 36 months 
from MEG recording at MCI stage. The clinical data of each subject in the AD group for the diagnosis including 
Wechsler Memory Scale-Revised (WMS-R)11 index scores and other examination findings are summarized in the 
Supplemental Table.

comparison of the absolute power between the AD and nc groups. During the EC condition, the 
absolute powers for the α1 band in the right supramarginal region (SMR) (Fig. 1(a)), the α2 band in the right post-
central area (PoCA) and the right SMR (Fig. 1(b)) were significantly higher in the AD group than the NC group. 
No significant difference between the AD and NC groups was found for any other bands in any other regions 
during the EC condition. During the EO condition, we could not detect any significant differences in the absolute 
powers between the AD and NC groups.

comparison of the Wcn power between the AD and nc groups. The WCN powers in the AD group 
during the EC condition were higher than those in the NC group for the θ2 and α1 bands in the right banks of the 
superior temporal sulcus (BSTS), the right SMR and the right inferior parietal regions (IPR) (Fig. 2(a)), and for the 
α2 band in the right SMR and IPR (Fig. 2(b)). We could not find any significant difference between the AD and 
NC groups for any other bands in any other regions. During the EO condition, the WCN powers in the AD group 
were higher than those in the NC group for the following bands: the θ1 band in the right BSTS (Fig. 2(c)), θ2 band 
in the bilateral BSTSs and the right SMR (Fig. 2(d)), α1 band in the bilateral BSTSs and the right SMR (Fig. 2(e)), 
α2 band in the right SMR and IPR (Fig. 2(f)). Conversely, the WCN powers in the AD group were lower than those 
in the NC group for the α1 and α2 bands in the bilateral medial orbitofrontal regions (MOFRs) (Fig. 2(e,f)). We 
could not find any significant differences between the AD and NC groups for any other bands in any other regions.

Comparison of the EC-EO difference between the AD and NC groups.  The absolute power was 
generally higher during the EC condition than the EO condition in both the AD and NC groups. The EC-EO 
differences were higher in the AD group than those in the NC group for the θ1 band in the left posterior cingulate 
gyrus (PCG), the bilateral paracentral areas (PaCA) (Fig. 3(a)), the α2 band in the bilateral superior frontal cor-
tices (SFCs) (Fig. 3(b)), the β band in the bilateral SFCs, the left PCG, the bilateral caudal anterior cingulate gyri 
(CACGs) and the right caudal middle frontal cortex (CMFC) (Fig. 3(c)). There were no significant variations seen 
in the EC-EO differences between the AD and NC groups for any other bands in any other regions.

Comparison of the WCN value for EC-EO difference between the AD and NC groups.  We could 
not find any significant difference between the AD and NC groups for the WCN value for the EC-EO difference for 
any bands in any regions.

Discrimination accuracy between the AD and nc groups. By the datasets of the 2,040 parameters 
(=6 values × 5 frequency bands × 68 regions) per person mentioned above, a discrimination accuracy of 83% 

Group NC AD P-values

Number 27 20

Male/female 10/17 11/9 0.25a

Age (years) 73.2 (63–84) 71.6 (53–81) 0.46b

Education (years) 10.5 (4–16) 11.0 (8–16) 0.46b

MMSE score 28.7 (23–30) 23.2 (15–30) <0.0001b

Table 1. Demographic characteristics of the subject groups. Abbreviations: NC, Cognitively Normal Control; 
AD, Alzheimer’s Disease. MMSE, Mini-Mental State Examination score. Except for the first two rows, values are 
given as mean (range). aFisher’s exact test. bANOVA.
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(sensitivity 70% and specificity 93%) was obtained and an AUC in an ROC analysis was 0.91 (Fig. 4) using a SVM 
classifier.

Discussion
The majority of the previous studies for patients with AD using EEG or sensor-level MEG were reported under 
the EC resting condition. Many of these studies asserted that, in the occipital, temporal, and parietal areas, α and β 
activities are lower and θ and δ activities are higher in patients with AD than in NC5,14–17. Under the EO condition, 
some studies on EEG in patients with AD have also described a decrease in α power and increase in θ power18–20. 
In the MEG analysis under the EC condition, we revealed that the AD group had higher absolute α band powers in 
the SMR and the PoCA as compared to the NC group. Also, during the EC and EO conditions, the AD group had 
higher WCN powers for the θ2 − α band in the BSTS and the SMR as compared to the NC group. Similar findings 
in source-level MEG studies have shown that AD patients had predominant θ − α band sources in the temporal 
regions as compared to NC subjects12,13. Previous EEG reports have shown that α activity is inversely related to 
cortical activity21,22. The pathological changes of AD in the brain generally start in the posterior-temporal regions23. 
A fluoro-2-deoxy-D-glucose positron emission tomography imaging study revealed that glucose metabolic reduc-
tions in the parieto-temporal cortices are a key sign of early stage AD24. The BSTS and SMR are quite close to 
the posterior-temporal and parieto-temporal regions. These regions may help to indicate the region of cortical 
hypo-activity in early stage AD. MEG could assist in detecting the hypo-activity lesions in AD patients.

In the AD group, the WCN power values for the α band in the bilateral FPs and the MOFRs were lower than in 
the NC group. A study using EEG and functional MRI has reported a strong negative correlation of frontal cortical 
activity with α band power22. These findings might suggest that patients with AD have cortical hyperactivity in 
the frontal areas of the brain. Functional MRI study has shown greater activations in AD patients relative to NC 
subjects, particularly in the frontal cortex25. A study using Tc-99m hexamethylpropyleneamine oxime also demon-
strated that patients with progressive MCI showed higher regional cerebral blood flow in the prefrontal cortex as 
compared to NC subjects26. The WCN power values for the α band of MEG might detect characteristics of cerebral 
frontal cortical activity in patients with AD.

A few previous EEG studies comparing EC and EO resting conditions have demonstrated reduced reactivity of 
α band power in patients with AD compared with the NC14,27,28. Using sensor-level frequency analysis, previous 
MEG studies have reported that the difference in α band powers between the EC and EO conditions in posterior 
areas were smaller in AD than in NC subjects29,30. However, in this study using source-level analysis, the EC-EO 
differences were significantly larger in the AD patients than in the NC subjects for the θ1 band in the bilateral 
PaCAs, for the α2 and β bands in the bilateral SFCs, and for the β band in the bilateral cingulate gyri. Consistent 
with our results, previous studies that have used source-level frequency analysis have reported that the power ratio 
of the EC to EO condition in the 8–15 Hz band in the dorsal frontal regions in patients with AD was significantly 
larger than that in NC31,32. Intriguingly, the topological organization of the human brain networks was thought to 
dynamically switch corresponding to the information processing modes of the EO or EC conditions3. Therefore, 
this study suggests that the dorsal frontal, paracentral, and cingulate regions might be involved in visual dynamic 
nodal properties of networks and that these networks might be impaired in AD. A disturbed brain network is a 
distinctive feature of AD33,34. This might contribute to larger power differences in those regions between the EC and 
EO conditions in patients with AD as compared to NC subjects.

Figure 1. Comparison of the absolute power between the AD and NC groups using two-tailed statistical tests. 
Regions in the Desikan-Killiany atlas filled with red indicate that the power values in the AD group were higher 
than those in the NC group. The significance level threshold was 0.000147 (0.05/68 regions/5 frequency bands). 
(a) EC condition, α1 band. (b) EC condition, α2 band. PoCA: postcentral area; SMR: supramarginal region. 
EC: eyes closed. AD: Alzheimer’s disease; NC: cognitively normal control. The figure was drawn using the 
Brainstorm app (https://neuroimage.usc.edu/brainstorm/Introduction).
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Previous EEG studies explored the abilities of several classification algorithms including SVM, feature selection 
and others to discriminate AD patients from healthy controls35,36. In this study, we attempted the classification with 
the cerebral regional MEG activities through the source-level analysis and presumed to have achieved a certain 
predictive performance for early stage AD as mentioned above.

This study has some limitations. Firstly, the number of subjects was small. Secondly, we did not obtain histo-
pathologic verification of the AD diagnosis for any patient. Thirdly, further studies with various types of dementia 
are necessary to conclude whether the MEG findings in this study are specific for AD.

In conclusion, our results suggest that MEG recording during EC and EO conditions at rest using individual 
head model to detect cortical activities that express the brain networks of visual information would be useful in 
evaluating cortical functional aspects of early stage AD. It will also be useful in discriminating between AD and 
NC.

Figure 2. Comparison of the WCN power values between the AD and NC groups using two-tailed statistical 
tests. Regions in the Desikan-Killiany atlas filled with red indicate that the power values in the AD group were 
higher than those in the NC group. The significance level threshold was 0.000147 (0.05/68 regions/5 frequency 
bands). Regions with blue indicate that the power values in the NC group were higher than those in the AD 
group. (a) EC condition, θ2, and α1 bands. (b) EC condition, α2 band. (c) EO condition, θ1 band. (d) EO 
condition, θ2 band. (e) EO condition, α1 band. (f) EO condition, α2 band. BSTS: banks of superior temporal 
sulcus; FP: frontal pole; IPR: inferior parietal region; MOFR: medial orbitofrontal region; PO: pars orbitalis; 
SMR: supramarginal region. EC: eyes closed; EO: eyes open. AD: Alzheimer’s disease; NC: cognitively normal 
control. The figure was drawn using the Brainstorm app (https://neuroimage.usc.edu/brainstorm/Introduction).
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Methods
Subjects. We recruited patients diagnosed as having probable AD dementia with an intermediate or high 
evidence of the pathophysiological processes of AD or MCI with an intermediate or high likelihood of AD, 
according to the diagnostic guidelines for Alzheimer’s disease from the National Institute on Aging-Alzheimer’s 

Figure 3. Comparison of the EC-EO differences between the AD and NC groups using two-tailed statistical 
tests. Regions in the Desikan-Killiany atlas filled with red indicate that the differences in the AD group were 
higher than those in the NC group. The significance level threshold was 0.000147 (0.05/68 regions/5 frequency 
bands). (a) θ1 band. (b) α2 band. (c) β band. CACG: caudal anterior cingulate gyrus; CMFC: caudal middle 
frontal cortex; PaCA: paracentral area; PCG: posterior cingulate gyrus; SFC: superior frontal cortex. EC: eyes 
closed; EO: eyes open. AD: Alzheimer's disease; NC: cognitively normal control. The figure was drawn using the 
Brainstorm app (https://neuroimage.usc.edu/brainstorm/Introduction).

Figure 4. ROC analysis of the datasets by a support vector machine classifier.
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Association9,10. All patients were examined by neurologists, and we excluded patients receiving medications acting 
upon the central nervous system (i.e. cholinesterase inhibitors, N-Methyl-d-aspartate receptor antagonists, antip-
sychotics, anticholinergics, antidepressants, anticonvulsants, benzodiazepines, cerebral metabolic activators, or 
cerebral vasodilators). Blood tests and an MRI of the brain were performed to eliminate any other potential medical 
conditions. NC volunteers were recruited from participants in the Nakajima study. This is a population-based lon-
gitudinal cohort study that investigated cognitive decline in residents aged 60 years or older in Nakajima, Ishikawa 
Prefecture, Japan37. The NC group had no history of psychiatric or neurological diseases and were receiving no 
medications acting upon the central nervous system. All were assessed as cognitively normal. Cognitive profiles 
were evaluated using the MMSE, and the Japanese translation of WMS-R. This study was conducted according 
to the guidelines of the Declaration of Helsinki and all procedures involving human subjects were approved by 
the Kanazawa University Medical Ethics Review Board (approval number 699). Written informed consent was 
obtained from all subjects or their legal representatives.

MeG recordings and MRi scans. MEG measurements were performed using a MEG system (PQA160C, 
Yokogawa Electric Corporation, Kanazawa, Japan). The system consisted of a 160-channel whole-head coaxial gra-
diometer. MEG signals were processed through an on-line bandpass filter of 0.25–500 Hz with a digital sampling 
rate of 1,000 Hz. In a magnetically shielded room, the position of the head within the helmet was determined by 
measuring the magnetic fields after passing currents through coils that were attached at 5 locations on the surface 
of the head as fiduciary points to the landmarks (nasion and pre-auricular points). Two minutes of spontaneous 
MEG activity were recorded with subjects relaxed in the supine position on a bed under the EC and EO conditions. 
In the EO condition, the subjects were asked to look at a small point projected on a screen about 30 cm above their 
faces. Their faces and upper bodies were tracked using a camera, and their live MEG waves were monitored to show 
their wakefulness. Using the Sigma Excite HD 1.5 T system (GE Yokogawa), all subjects underwent T1-weighted 
MRI studies. To superimpose the coordinate system of MEG on the MRI images38, T1-weighted MRI was per-
formed with spherical lipid markers placed at the five MEG fiduciary points. These MRI images consisted of 158 
sequential horizontal slices of 1.2 mm thickness, with a resolution of 512 × 512 points in a field of view of 261 × 
261 mm.

Data processing. The MEG waves contaminated by large-amplitude noise exceeding 10 pT were removed 
using the analysis software MEG Laboratory (Yokogawa Electric Corporation, Kanazawa, Japan). This was attached 
to the MEG device to obtain data files of 112–120 seconds. Using the analysis software FieldTrip, coarse artifacts 
were removed through a principal component analysis and heartbeat component as well as ophthalmic and pal-
pebral electromyograms were removed through an independent component analysis39. Source reconstruction was 
performed using Brainstorm2, which was available online for downloading using the GNU general public license. 
We applied the band definition of a study which analyzed spontaneous MEG activity16. An overview of MEG power 
spectral in higher frequency than 20 Hz (i.e., β2 and γ bands) seemed to show not much difference between the 
AD and NC groups. Besides, our MEG recordings had much artifacts in 1–4 Hz (i.e., δ band) that were difficult to 
be removed separately. Hence, we decided 4–20 Hz (i.e., θ, α, β1 bands) as the analysis object. Finally, we divided θ 
and α bands into sub-bands expecting improvement of discrimination accuracy between the groups, and defined 
them as θ1 (4–6 Hz), θ2 (6–8 Hz), α1 (8–10 Hz), α2 (10–13 Hz), and β (13–20 Hz) bands. The data files were divided 
into 55–59 segments of 2 seconds and were separated into 5 bands through a bandpass filter. To estimate the brain 
source, an anatomically constrained MEG approach was used that places an anatomical constraint on the estimated 
source by assuming that an individual’s recorded brain activity lies in the cortical mantle40. Landmark information 
and digitized head surface points for MEG/MRI co-registration were used. Sensors were registered for each indi-
vidual with a fiducial landmark using FASTRAK (Polhemus, VT, USA). The digitized head shape and the scalp sur-
face of each individual were then used to reduce the minimum distance error between them in an iterative process. 
Cortical surfaces were created for each individual by automatically segmenting the T1-weighted MRIs into gray 
and white matter. The border between the gray and white matter was then defined as the cortical surface. Cortical 
reconstruction of the MRI data and volumetric segmentation were performed in FreeSurfer41. The lead field was 
then computed using the overlapping spheres algorithm42 with a cortical surface tessellated with 15,000 vertices. 
The inverse solution was calculated for each individual using Tikhonov-regularized minimum-norm estimates7. 
Therefore, a weighted minimum-norm estimation with source orientation constraints was chosen to compute the 
source activity for all of the 2-second segments. The absolute values of the source activities at all-time points (55–59 
segments × 2 seconds × 1000 Hz sampling rate) were averaged on each vertex and in each frequency band, using 
the ‘average files’ and the ‘average time’ process. Finally, current estimates as ‘absolute powers’ of regions provided 
in Brainstorm, which contain many vertices in the atlases, could be obtained using the ‘scouts time-series’ process. 
We used the Desikan-Killiany atlas6 equipped in Brainstorm, which divided the cerebral cortex into 68 regions 
symmetrically. In addition, we proposed a whole cerebral normalization algorithm for the estimated source or 
cortex level power values to overcome the inter-individual variability in absolute spectral power43. This was done by 
normalizing the power in a reference region to the whole cerebral power. In this study, we have termed this normal-
ization as whole cerebral normalization (WCN). WCN power in region a was calculated as the z-score using the 
following formula: [(absolute power in region a) − (whole cerebral mean absolute power)]/(standard deviation of 
absolute powers in all regions). We also calculated the power difference by subtracting the source localized absolute 
power during the EO condition from that during the EC condition. We have termed this ‘the EC-EO difference’. 
Finally, we calculated WCN value for the EC-EO difference.

Statistical analysis. The following values were compared between the groups for the 5 frequency bands in 
the 68 regions: (1) the absolute power during EC and (2) EO, (3) the WCN power during EC and (4) EO, (5) the 
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EC-EO difference, and (6) WCN value for the EC-EO difference. The p-value was based on a two-tailed statistical 
test with a significance level threshold of 0.000147 calculated as: 0.05 / 68 regions in the Desikan-Killiany atlas 
/ 5 frequency bands. We trained a support vector machine (SVM) to classify the data described above as NC or 
AD, and computed the accuracy scores using the observations in the six validation folds and reported the average 
cross-validation error. It also made predictions on the observations in these validation folds and computes the 
confusion matrix and ROC curve based on these predictions.

Support vector machines. SVM is a supervised learning algorithm that can be used for binary classifica-
tion or regression. A support vector machine constructs an optimal hyperplane as a decision surface such that 
the margin of separation between the two classes in the data is maximized. Support vectors refer to a small subset 
of the training observations that are used as support for the optimal location of the decision surface. Hence, it is 
inherently applicable for smaller data sets44. Firstly, we separated randomly the data into training (n = 1700) and 
test sets (n = 340). Each set contains the class label (i.e., NC or AD) and features (i.e., theta power at each brain 
region). Then, the SVM was trained on the training set so that it was able to predict the class label of the test sets 
based on the features of those. Training for a SVM has two phases: (1) transform predictors (input data) to a 
high-dimensional feature space. It is sufficient to just specify the Kernel for this step and the data is never explicitly 
transformed to the feature space (i.e., Kernel trick). Here, we used second-order polynomials as Kernel functions 
as it well performed on the datasets. Then, (2) solve a quadratic optimization problem to fit an optimal hyperplane 
to classify the transformed features into two classes. The number of transformed features is determined by the 
number of support vectors. Only the support vectors chosen from the training data are required to construct the 
decision surface. Once trained, the rest of the training data are irrelevant. We repeated this procedure six times to 
assess how accurately the obtained SVMs will perform on the test sets (cross-validation). The purpose of this step 
was to test the SVM’s ability to predict new data that was not used in estimating it, in order to overcome problems 
like overfitting or selection bias and to give an insight on how the model will generalize to an independent dataset. 
For further details and validity of SVM algorithms can be found elsewhere45–48. The procedure was done with 
MATLAB and the Classification Learner app.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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