
R E S E A R C H A R T I C L E

Pathophysiology of Hypoperfusion of the Precuneus in Early
Alzheimer’s Disease
J. Scott Miners; Jennifer C. Palmer; Seth Love

Dementia Research Group, School of Clinical Sciences, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK.

Keywords

Alzheimer’s disease, amyloid-b, blood flow,

endothelin-1, oxygenation, precuneus.

Corresponding author:

Seth Love, School of Clinical Sciences,

University of Bristol, Learning & Research

level 2, Southmead Hospital, Bristol BS10

5NB, UK (E -mail: seth.love@bris.ac.uk)

Received 9 September 2015

Accepted 5 October 2015

Published Online Article Accepted

9 October 2015

doi:10.1111/bpa.12331

Abstract

The earliest decline in cerebral perfusion in Alzheimer’s disease (AD) is in the medial
parietal cortex (precuneus). We have analyzed precuneus in post-mortem tissue from 70 AD
and 37 control brains to explore the pathophysiology of the hypoperfusion: the contribution
of arteriolosclerotic small vessel disease (SVD) and cerebral amyloid angiopathy (CAA), and
of the vasoconstrictors endothelin-1 (EDN1) and angiotensin II (Ang II), and the association
with Ab. The myelin-associated glycoprotein:proteolipid protein-1 ratio (MAG:PLP1) was
used as an indicator of oxygenation of the precuneus prior to death. MAG:PLP1 was reduced
�50% in early AD (Braak stage III–IV). Although MAG:PLP1 remained low in advanced
AD (stage V–VI), the reduction was less pronounced, possibly reflecting falling oxygen
demand. Reduction in cortical MAG:PLP1 correlated with elevation in vascular endothelial
growth factor (VEGF), another marker of hypoperfusion. Cortical MAG:PLP1 declined
nonsignificantly with increasing SVD and CAA, but significantly with the concentration of
EDN1, which was elevated approximately 75% in AD. In contrast, with reduction in cortical
MAG:PLP1, Ang II level and angiotensin-converting enzyme (ACE) activity declined,
showing a normal physiological response to hypoperfusion. MAG:PLP1 was reduced in the
parietal white matter (WM) in AD but here the decline correlated positively (ie,
physiologically) with WM EDN1. However, the decline of MAG:PLP1 in the WM was
associated with increasing cortical EDN1 and perhaps reflected vasoconstriction of
perforating arterioles, which traverse the cortex to perfuse the WM. EDN1 in the cortex
correlated highly significantly with both soluble and insoluble Ab42, shown previously to
upregulate neuronal endothelin-converting enzyme-2 (ECE2), but not with Ab40. Our
findings demonstrate reduced oxygenation of the precuneus in early AD and suggest that
elevated EDN1, resulting from Ab42-mediated upregulation of ECE2, is a contributor.

INTRODUCTION

Blood flow and glucose utilization decline in the precuneus at a
very early stage of Alzheimer’s disease (AD) (2, 6, 7, 13, 28, 30,
53). Reduction in cerebral blood flow precedes the development of
dementia in AD (52) and occurs well before any behavioral or
pathological abnormalities in animal models of the disease (24,
39). We still have only a limited understanding of the pathogenesis.

Cerebrovascular abnormalities are common in AD (26), up to
60% of patients having ischaemic WM damage (9, 10, 17, 26) and
over 90% having cerebral amyloid angiopathy (CAA) (16, 18, 29).
Brain ischaemia is the defining pathological process in vascular
dementia but there is evidence that ischaemia has the potential to
contribute to the development of AD pathology. Ischaemia in ani-
mal models, or its simulation by deprivation of oxygen and glucose
in vitro, is associated with increased production of Ab (reviewed in
(12)). Transient global cerebral ischaemia due to cardiac arrest in
man was shown to cause a significant rise in serum Ab42, lasting
several days (61). Serum Ab42 also rose in people who had sus-

tained diffuse traumatic brain injury (37), in which there is invaria-
bly brain swelling and reduced perfusion; the rise in serum Ab42
was accompanied by a decline in Ab42 in the cerebrospinal fluid,
arguing against nonspecific “leakage” of Ab42 from damaged
brain tissue. There is also strong evidence from observational and
experimental studies that CAA and arteriolosclerotic small vessel
disease (SVD) impede the clearance of interstitial solutes (including
Ab) from the brain (20–22, 59, 60). Hughes et al (23) found that
arterial stiffness in elderly nondemented people correlated with the
amount of cerebral Ab, as demonstrated by Ab-positron emission
tomography. Kester et al (27) showed that the level of Ab42 in the
CSF in nondemented elderly people was lower in those with
ischaemic WM abnormalities on magnetic resonance imaging
(reduction in Ab42 in the CSF being associated with increased AD
pathology).

Conversely, there is strong evidence that Ab peptides cause
reduction in cerebral blood flow—not only through the develop-
ment of CAA but also by inducing vasoconstriction. In animal
studies, Ab peptides reduced cerebral blood flow, interfered with

Brain Pathology 26 (2016) 533–541

VC 2015 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.

533

Brain Pathology ISSN 1015–6305



cerebral autoregulation and impeded functional hyperaemia
(39–41). We previously demonstrated an increase in the level of
the vasoconstrictor peptide endothelin-1 (EDN1) in the cerebral
cortex in AD (46). We showed that Ab40 upregulated endothelin-
converting enzyme-1 (ECE1)-mediated production of EDN1 by
cerebrovascular endothelial cells (48), and that Ab42 upregulated
endothelin-converting enzyme-2 (ECE2)-mediated production of
EDN1 by neurons (45). Another vasoconstrictor with the potential
to exacerbate cerebral hypoperfusion in AD is angiotensin II (Ang
II), cleaved from angiotensin I by the action of angiotensin-
converting enzyme (ACE), the level of which was found to be ele-
vated in the frontal cortex in AD (31, 35). ECE1, ECE2 and ACE
are all capable of cleaving Ab, and their upregulation in AD is
probably a response to the accumulation of Ab substrate (33).

We recently developed a novel method to quantify ischaemic
damage in post-mortem brain tissue, by comparison of the levels of
two myelin proteins: myelin-associated glycoprotein (MAG),
which is highly susceptible to reduced tissue oxygenation, and pro-
teolipid protein-1 (PLP-1), which is relatively resistant (3, 4, 56).
In frontal cortex from patients with AD, we found the MAG:PLP1
ratio to be significantly reduced, indicating a pathological reduction
in perfusion (ie, reduction exceeding the decline in metabolic
demand) (56). Although MAG:PLP1 tended to be lower in cortex
from patients with severe SVD or CAA, the only significant nega-
tive correlation was with the concentration of EDN1.

In this study, we have used similar methods to identify contribu-
tors to cerebral hypoperfusion in very early AD, by examining the
precuneus, a region that is amongst the first affected by hypoperfu-
sion, and by analyzing the findings in relation to the progression of
AD, as indicated by the Braak tangle stage (8). We have found evi-
dence of pathological hypoperfusion of the precuneus at an early
stage of AD, associated with elevation of EDN1 and correlating
closely with the level of Ab42. Our findings suggest a key role for
Ab42-mediated upregulation of ECE2 in the reduction of cerebral
perfusion and oxygenation in early AD.

MATERIALS AND METHODS

Case selection

From the South West Dementia Brain Bank, University of Bristol,
we obtained tissue from 70 cases of AD (ages 57–99 years, mean
79.8 years, SD 8.3 years) with post-mortem delays of 4–72 h
(mean 31.4 h, SD 19.3 h). All of the brains had been subjected to
detailed neuropathological assessment, and according to the NIA-
AA guidelines (38) AD pathology was a sufficient explanation for
the dementia in these cases. We also obtained tissue from 37 con-
trol brains that had also been extensively assessed neuropathologi-
cally, from people who had no history of dementia, few or absent
neuritic plaques, a Braak tangle stage of III or less and no other
neuropathological abnormalities apart from scattered diffuse pla-
ques in most cases. Their ages ranged from 58 to 94 y (mean 79.8
years, SD 8.7 years) and the post-mortem delays from 3 to 67 h
(mean 35.0 h, SD 15.4 h). The cohorts overlapped those in a previ-
ous study of deep parietal WM (4). For analysis of the effect of
stage of AD on MAG:PLP1 in the precuneus, the AD and control
cohorts were pooled and cases were subdivided according to Braak
tangle stage (0–II, III–IV and V–VI) irrespective of the presence or

absence of a history of dementia. The demographic data, neuro-
pathological findings, and MRC identifier numbers in this cohort
are summarized in Supporting Information Tables S1 and S2. The
study had local research ethics committee approval.

Brain tissue

The brains had been obtained within 72 h of death. The right cere-
bral cortex had been fixed in 10% formalin for three weeks before
the tissue was processed and paraffin blocks were taken for patho-
logical assessment. SVD had been scored as previously described
(4), on a four-point semiquantitative scale according to the extent
of thickening of the arteriolar walls and associated narrowing of the
vessel lumina: 0 5 normal vessel wall thickness, 1 5 slightly
increased thickness, 2 5 moderately increased thickness and
3 5 markedly increased thickness such that for many arterioles the
diameter of the lumen was<50% of the outer diameter of the blood
vessel. CAA for all cases had also been previously graded semi-
quantitatively on a four-point scale by a method adapted from that
of Olichney et al (11, 42), ranging from “0” for vessels devoid of
amyloid to “3” for extensive deposition. The left cerebral hemi-
sphere had been sliced and frozen at 2808C until used for bio-
chemical assessment. Tissue was dissected from the medial parietal
cortex (Brodmann area 7) and separate samples were dissected
from the underlying parietal WM. Biochemical analyses were per-
formed on 200 mg samples of the dissected tissue that were
homogenized in 1% sodium dodecyl sulfate lysis buffer in a Pre-
cellys homogenizer (Stretton Scientific, Derbyshire, UK) and then
aliquoted and stored at 2808C until required. All measurements
were made in duplicate and the mean determined.

Measurement of MAG by direct ELISA

MAG level was measured by direct ELISA, as previously described
(3, 4, 36, 56). Brain tissue homogenates in PBS (1:10) and PBS
blanks were left for 2 h at room temperature with constant shaking
in 96-well microplates. The plate was washed and blocked in 1%
bovine serum albumin/PBS for 2 h at room temperature and, after
further washes, incubated for 2 h at room temperature with mouse
monoclonal anti-MAG antibody (Abcam, Cambridge, UK) diluted
1:1000 in PBS. The plate was washed, incubated with biotin-
conjugated anti-mouse secondary antibody (Vector Labs, Peterbor-
ough, UK) diluted 1:500 in PBS for 20 minutes, followed by
another wash step and incubation with streptavidin-horseradish per-
oxidase (R&D systems, Oxford, UK), 1:500 in PBS, for 20 minutes
in the dark. The plate was washed and incubated for 10 minutes in
the dark with 100 lL/well of chromogenic substrate (TMBS sub-
strate, R&D systems, Oxford, UK). The absorbance was read at
450 nM in a FLUOstar Optima plate reader(BMG Labtech, Ayles-
bury, UK) after the addition of 50 lL of 2 N sulfuric acid. MAG
level was determined for each case by interpolation against a stand-
ard curve generated by serial dilution (400–6.25 ng/mL) of
recombinant human MAG (Abnova, Taipei City, Taiwan). We pre-
viously demonstrated that MAG is stable under conditions
of simulated post-mortem delay for up to 72 h at 48C or room tem-
perature (4).
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Measurement of PLP1 by sandwich ELISA

PLP1 level was measured in brain tissue homogenates by use of a
commercially available sandwich ELISA (cat no SEA417Hu,
USCN, Wuhan, China) as described previously (56). Brain tissue
homogenates were diluted 1:10 in PBS. Absolute PLP1 level was
interpolated from a standard curve generated by serial dilution of
recombinant human PLP1 (10–0.156 ng/mL). We previously dem-
onstrated that PLP1 is stable under conditions of simulated post-
mortem delay for up to 72 h at 48C or room temperature (4).

Measurement of EDN1 by sandwich ELISA

EDN1 level was measured in brain tissue homogenates, diluted to
1 mg/mL, by use of the QuantiGlo Chemiluminescent ELISA kit
for human EDN1 (R&D Systems, Oxford, UK) as previously
described (3, 36, 46, 48, 56). Relative luminescence was measured
using a in a FLUOstar Optima plate reader. Absolute EDN1 level
was interpolated from a standard curve generated by assaying serial
dilutions of recombinant human EDN1 (250–0.340 pg/mL). We
previously demonstrated that EDN1 is stable under conditions of
simulated post-mortem delay for up to 72 h at 48C or room temper-
ature (48).

Measurement of angiotensin II by sandwich
ELISA

Human angiotensin II ELISA kit (Abcam, Cambridge, UK) was
used to measure Ang II level in brain tissue homogenates according
to the manufacturer’s guidelines. Ang II was measured in 50 lL ali-
quots of brain tissue homogenate, adjusted for total protein, and the
concentration determined by interpolation against a standard curve
generated by serial dilution of recombinant human Ang II (1000–
63 pg/mL). Absorbance was read at 450 nM in a FLUOstar Optima
plate reader.

Measurement of VEGF by sandwich ELISA

Vascular endothelial growth factor (VEGF) level was measured in
10 lL of brain tissue homogenate plus 90 lL PBS by use of
Human VEGF Quantikine ELISA kit (R&D Systems, Oxford,
UK), as previously described (36, 56). The ELISA used a mono-
clonal mouse VEGF antibody as a capture antibody and a polyclo-
nal biotinylated VEGF detection antibody. Absorbance was
measured at 450 nm in a FLUOstar Optima plate reader after the
addition of 50 lL of 2N sulfuric acid. Absolute VEGF level was
interpolated from a serial dilution of recombinant human VEGF
(2000–31.25 pg/mL).

Measurement of Ab40 and Ab42 sandwich
ELISA

We prepared soluble and insoluble (guanidine-extractable) fractions
of the homogenates for Ab measurement as reported in previous
studies (1, 5, 32, 55–58).

For measurement of Ab40 we used mouse anti-human Ab

(clone 6E10, raised against amino acids 1–16; Covance, 2 mg/mL)
as the capture antibody and mouse anti-human Ab40 (11A50-B10,
Covance, 1 mg/mL) as the detection antibody, after biotinylating
the Ab40 antibody by use of Lightning-LinkVR Biotinylation Kit
(Innova Biosciences, Cambridge, UK). The soluble and insoluble

fractions of brain homogenate (diluted 1:3 and 1:49, respectively),
and serial dilutions of recombinant human Ab40 (Sigma Aldrich,
Dorset, UK) in PBS containing 1% 1,10 phenanthroline (Sigma
Aldrich) to prevent degradation of Ab (51), were incubated for 2 h
at room temperature on a rocking platform. Absorbance was read at
450 nm in a FLUOstar plate reader.

For measurement of Ab42 we used mouse anti-human Ab42
(Covance 12F4, 1 mg/mL) (Cambridge Biosciences, Cambrideg,
UK) as the capture antibody and biotinylated anti-human Ab

(10H3, 0.1 lg/mL) (Thermo Fisher Scientific, Loughborough,
UKas the detection antibody. The soluble and insoluble fractions,
diluted as above, and serial dilutions of human recombinant Ab42
(16 000 to 1.024 nM) in PBS containing 1% 1,10 phenanthroline
were incubated for 2 h at room temperature on a rocking platform.
Ab42 concentration in brain tissue was determined by interpolation
against a standard curve generated by serial dilution of recombinant
human Ab42 (Sigma Aldrich, Dorset, UK). Each sample was
assayed in duplicate. The Ab40 ELISA did not show any cross-
reactivity with recombinant Ab42, nor did the Ab42 ELISA with
recombinant Ab40.

Measurement of ACE-1 activity

ACE-1 activity in brain homogenates was measured by
immunocapture-based fluorogenic assay, as previously described
(1, 3, 25, 36, 56). ACE/CD143 antibody (5 ng/mL in PBS) (R&D
systems, Oxford, UK) was coated on a black Fluoronunc plate
overnight then blocked in 1% BSA/PBS for 2 h at room tempera-
ture before addition of 10 lL tissue homogenate plus 90 lL PBS,
or serial dilutions of recombinant human ACE, and incubation for
2 h at room temperature with constant shaking. Fluorogenic peptide
substrate (ES005, R&D systems, Oxford, UK) diluted in activity
assay buffer (100 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM
ZnCl2) was added and the plate incubated for 3 h at 378C in the
dark. Fluorescence was measured at 405 nm with excitation at
320 nm. To determine ACE-specific enzyme activity we subtracted
the fluorescent signal from that after inhibition by captopril (Enzo
Life Sciences, Exeter, UK). ACE activity was interpolated from a
standard curve produced by serial dilution of recombinant human
ACE (2500–39 pg/mL) (R&D systems, Oxford, UK).

Statistical analysis

Unpaired two-tailed t tests or ANOVA with Dunnett’s post hoc
analysis was used for comparisons between groups, and Pearson’s
or Spearman’s test to assess linear or rank order correlation, as
appropriate, with the help of SPSS version 16 (SPSS, Chicago)
and GraphPad Prism version 6 (GraphPad Software, La Jolla, CA).
P-values< 0.05 were considered statistically significant.

RESULTS

Oxygenation of the precuneus is decreased
in early Alzheimer’s disease

MAG:PLP1 in the precuneus was lower in the AD than the control
cohort but not significantly so (P 5 0.14) (Figure 1A). However,
MAG:PLP1 varied significantly according to Braak tangle stage
(Figure 1B) (P 5 0.027). The highest values were in the Braak
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stage 0–II group and the lowest (by about 50%) in the Braak stage
III–IV group. Post hoc analysis revealed that the difference
between the Braak stage 0–II and III–IV groups was statistically
significant (P 5 0.021, Dunnett’s test) whereas the difference
between the Braak stage 0–II and V–VI groups did not reach signif-
icance (P 5 0.092).

Our previous studies showed that VEGF level increases in hypo-
perfused brain tissue, is elevated in AD frontal cortex and correlates
inversely with MAG:PLP1 (3, 4, 56). In the precuneus too, VEGF
was elevated in AD (Figure 1C), rose with Braak tangle stage (Sup-
porting Information Figure S1A) and correlated inversely with
MAG:PLP1 (r 5 20.40 P< 0.001) (Figure 1D). VEGF level cor-
related with insoluble Ab42 (r 5 0.41 P< 0.01) (Supporting Infor-

mation Figure S1B) but not insoluble Ab40 (Supporting
Information Figure S1C).

Oxygenation of precuneus in AD is not
significantly affected by small vessel
disease or cerebral amyloid angiopathy

We next examined whether the changes in MAG:PLP1 in the
precuneus in AD were attributable to SVD or CAA. MAG:PLP1
declined as SVD (Figure 2A) and CAA (Figure 2B)
increased in severity. However, the relationship between
MAG:PLP1 and the SVD or CAA severity score was not statisti-
cally significant.

Endothelin-1 is increased in the precuneus in
AD in association with reduced tissue
oxygenation

We previously reported that the concentration of EDN1 is increased
in AD in the temporal (46) and frontal cortex (56). EDN1 was
also elevated in the precuneus in AD compared to age-matched
controls (P< 0.0001) (Figure 3A) and rose significantly with Braak
tangle stage (P 5 0.0003). The level correlated negatively with
MAG:PLP1 (r 5 20.31, P< 0.05) (Figure 3C) and positively with
VEGF (r 5 0.29, P< 0.05) (Figure 3D).

ACE-1 activity and Ang II level declined with
reduced oxygenation of the precuneus

In previous post-mortem studies, ACE-1 activity was elevated in
midfrontal cortex in AD (31, 34, 35). In contrast, both ACE activ-
ity (Figure 4A) and the level of its cleavage product Ang II (Figure
4B) were reduced in the precuneus in AD, although only the differ-
ence in Ang II concentration was significant (P 5 0.004). ACE
activity varied with Braak tangle stage although not significantly,
in a pattern resembling the variation in MAG:PLP1 (Supporting
Information Figure S1D). ACE and Ang II level correlated closely

Figure 2. MAG:PLP1 tended to decline in relation to severity of SVD

and CAA in the precuneus in AD. Bar charts show lower MAG:PLP1

in precuneus from AD patients with higher severity scores for SVD

(A) and CAA (B), although the differences were not statistically

significant.

Figure 1. Oxygenation of the precuneus was reduced in early

Alzheimer’s disease. A. Bar chart showing a reduction in the ratio of

myelin glycoprotein (MAG) to proteolipid-1 protein (PLP-1)

(MAG:PLP1) in the precuneus in AD. The bars indicate the mean and

SEM. B. Bar chart showing marked variation in MAG:PLP1

(P 5 0.027) with disease stage. For this analysis, control and AD cases

were combined and grouped according to Braak tangle stage (0–II,

III–IV and V–VI). Post hoc analysis revealed that MAG:PLP1 was sig-

nificantly reduced in early AD (Braak stage III–IV) compared to con-

trols (P 5 0.027). C. Bar chart showing elevated VEGF, an

independent marker of cerebral perfusion, in AD. D. Scatterplot show-

ing the highly significant negative correlation between MAG:PLP1 and

VEGF concentration in the precuneus (r 5 20.40, P 5 0.0007). The

best-fit linear regression line and 95% confidence interval are super-

imposed. **P< 0.001, ***P< 0.0001.
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with cortical MAG:PLP1 (Figures 4C and D), as would be
expected physiologically: Ang II production declining under condi-
tions of reduced oxygenation, to minimize the risk of ischaemic
damage.

White matter oxygenation and EDN1

We had previously measured MAG:PLP1 in the parietal WM (3)
and now measured EDN1 concentration in the same homogenates.
In contrast to the elevated EDN1 in the cortex in AD, EDN1 con-
centration in the WM was significantly reduced (Figure 5A), the
concentration correlating with MAG:PLP1 in the WM (Figure 5B)
in keeping with a physiological response to inadequate perfusion.

In contrast, WM MAG:PLP1 correlated negatively with EDN1
in the cortex (r 5 20.23, P 5 0.053), suggesting that the ratio was
affected by EDN1-mediated vasoconstriction of the perforating
arterioles that transverse the cortex to perfuse the WM.

EDN1 level was related to Ab42 accumulation
in the precuneus

EDN1 level within the precuneus correlated positively with insolu-
ble Ab42 (r 5 0.34, P< 0.01) (Figure 6A) and soluble Ab42
(r 5 0.37, P< 0.01) (Figure 6B) but not with soluble or insoluble
Ab40 (Figure 6C, D). EDN1 level in the underlying WM did not
correlate with insoluble or soluble Ab42 or Ab40 in either region.

DISCUSSION

Our previous studies on post-mortem samples of frontal lobe
revealed pathological hypoperfusion of midfrontal cerebral cortex
in AD (3, 4, 56), associated with an increase in cortical EDN1.
The present findings indicate that these changes are not simply late-
stage manifestations of AD but are demonstrable even in early AD
(ie, in Braak stage III–IV disease) in the precuneus, a region that is
amongst the first affected by hypoperfusion (2, 6, 7, 13, 28, 30,
53). Indeed, the MAG:PLP1 ratio, an indicator of the adequacy of
ante-mortem tissue oxygenation, was lower in early than late AD
(Braak stage V–VI) when the reduction was less pronounced,

Figure 4. ACE activity and angiotensin II (Ang II) levels declined in

association with reduced oxygenation of the PC. A. Bar charts

showing a nonsignificant reduction in ACE activity and (B) significantly

reduced Ang II in the precuneus in AD. Scatterplots show that (C)

ACE activity (r 5 0.494) and (D) Ang II (r 5 0.53) correlated positively

with MAG:PLP1. ***P<0.001, ****P<0.0001.

Figure 3. Reduced oxygenation of the precuneus in AD was

associated with elevated EDN1. A. Bar chart showing significantly

increased EDN1 in AD within the precuneus. B. Bar chart showing

increased EDN1 levels in relation to disease severity when control

and AD cases were subdivided according to Braak tangle stage (0–II,

III–IV and V–VI) irrespective of the presence or absence of a history

of dementia. Scatterplots showing the inverse correlation between

EDN1 concentration and MAG:PLP1 ratio (r 5 20.31) (C) and the

positive correlation between EDN1 and VEGF (r 5 0.29) (D).

*P< 0.05, ***P< 0.001, ****P< 0.0001.
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possibly reflecting falling oxygen demand, for example, as a result
of reduced synaptic activity. As in the frontal cortex, the reduction
in MAG:PLP1 in the precuneus correlated with the concentration
of EDN1 and the level of Ab42, likely to be one of the drivers of
EDN1 production within the brain. Finally, our measurements on
the parietal WM suggest that elevated cortical EDN1 in AD may
reduce subcortical WM perfusion as well.

In previous studies, we explored the potential contribution of
several structural vascular abnormalities to reduced oxygenation of
the cerebral cortex and WM in AD (3, 4, 56). SVD and CAA prob-
ably contribute to the reduction in blood flow in some patients. In
the present study MAG:PLP1 tended to decline with SVD and
CAA scores but not significantly. The variability in severity of
SVD and CAA across the cohort as a whole may have obscured
the contribution that these structural diseases of small vessels make
to hypoperfusion of cerebral cortex and WM in a small proportion
of cases. The present study did not examine microvessel density,
another potential influence on cerebral perfusion (eg, in dementia
with Lewy bodies (DLB) (36)). However, we did not previously
find a significant decline in microvessel density in the cerebral cor-
tex in AD (56).

Of the various potential contributors to reduced oxygenation of
the precuneus in AD, the strongest candidate in the present study
was EDN1, which doubled in concentration in early AD, and corre-
lated negatively with MAG:PLP1 and positively with the concen-
tration of VEGF. In contrast, the activity of ACE, which catalyses
the production of another vasoconstrictor angiotensin-II, correlated
positively with MAG:PLP1, in keeping with a protective vasodila-
tory response to reduced oxygenation. These findings extend our
previous observations on factors influencing oxygenation of the
cortex in AD (56). The elevation of EDN1 in the cerebral cortex in
AD is not simply a nonspecific consequence of neurodegenerative
disease. In DLB, EDN1 level was reduced rather than increased in
the occipital cortex (36), a region that is hypoperfused in patients
with the disease. Even in the current AD cohort, in which EDN1
was increased in the cortex, it was reduced in the underlying WM,
as would be expected physiologically in response to reduced perfu-
sion. Our studies clearly show that the pathophysiology of reduced
cerebral perfusion differs not only between dementia subtypes but
also between different parts of the brain.

The production of EDN1 is catalyzed by the ECEs. In temporal
cortex we found evidence of upregulation of both ECE1 and ECE2
in AD (45, 47). ECE2 is primarily localized to pyramidal cells
within the human brain. Our previous studies on human neuroblas-
toma cells suggest that upregulation of ECE2 in AD and is likely to
be a response to the accumulation of Ab42, as evidenced by the
induction of ECE2 on exposure of neuroblastoma cells to human
recombinant monomeric or oligomeric Ab42 but not Ab40 (45).
In contrast, in human cerebral endothelial cells Ab40 upregulated
ECE1 and stimulated EDN1 release whereas Ab42 had no effect

Figure 5. EDN1 level was reduced in the

WM in AD, the reduction correlating with

the fall in oxygenation. A. Bar chart

showing reduced EDN1 in the parietal WM

(P 5 0.006). Scatterplots show the positive

correlation between WM MAG:PLP and

WM EDN1 (r 5 0.35, P 5 0.021) (C) and the

negative correlation between WM MAG:PLP

and PC EDN1 in (r 5 20.23, P 5 0.053) (D).

*P< 0.05, **P< 0.01.

Figure 6. EDN1 level correlated with Ab42 in the precuneus (PC). PC

EDN1 correlated with the level of insoluble (r 5 0.34) (A) and soluble

Ab42 (r 5 0.37) (B) but not the level of insoluble (C) or soluble (D)

Ab40. **P< 0.01.
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(47). In the present study, EDN1 level within the precuneus corre-
lated strongly with the concentration of Ab42 but not Ab40.

The production of EDN1 by neurons, which is mediated by
ECE2 and driven by Ab42, may cause sustained pathological
hypoperfusion of cerebral cortex in AD, particularly in early dis-
ease (Figure 7). ECE2 is predominantly localized within the endo-
lysosomal pathway and is responsible for the cleavage of Ab

destined for lysosomal degradation (43). The elevated production
of EDN1 may be an unfortunate side effect of over-activation of
this pathway by excessive Ab42. In contrast, endothelial produc-
tion of EDN1, mediated by ECE1 and driven by Ab40, is more
likely to contribute to episodic, free radical-dependent dysfunction
of vascular regulation in AD (48) (Figure 7), including abnormal-
ities of autoregulation and functional hyperaemia demonstrated ini-
tially in mouse models of cerebral Ab accumulation (24, 39) and
CAA (49, 54), and more recently in patients with AD (14) and
probable CAA (50). It should be noted, in addition, that EDN1 is
very unlikely to be the sole nonstructural mediator of hypoperfu-
sion of the precuneus in early AD. Other potential contributors
include reduced cholinergic vasodilatation, increased production of
nitric oxide (19) and, of course reduced synaptic activity/metabolic
demand.

Despite progress in our understanding of the pathogenesis of AD
there are still only a limited number of available treatment options

for patients. There is increasing awareness that, to be effective,
most therapies will need to be started at an early stage of disease,
before the onset of significant neuropathological changes. We have
now shown that the Ab-dependent upregulation of the ECE2-ET-1
axis in AD occurs at an early stage in the disease and contributes to
chronic hypoperfusion of the cerebral cortex, and to a lesser extent
the underlying WM. Our findings raise the possibility of benefit
from EDN1 receptor antagonists in reducing the deleterious effects
of long-term cerebral hypoperfusion mediated by the activation of
EDN1A receptors on vascular smooth muscle cells. Bosentan, a
dual EDN1A/B receptor antagonist, preserved aortic and carotid
endothelial function in Tg2576 mice, which overexpress APP
(15), and EDN1A receptor antagonists have been shown to have
therapeutic benefit in several peripheral diseases associated with
abnormal activation of the endothelin system: pulmonary hyperten-
sion, some forms of renal disease, systemic arterial hypertension,
heart failure, allograft rejection and diabetes/insulin resistance
(reviewed in (44)). Whilst EDN1A receptor antagonists would not
address the presumed underlying cause of AD, the present data sug-
gest that these drugs have the potential to ameliorate some of the
damaging neurobiological manifestations of the disease from an
early stage.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Figure S1. (A) Bar chart showing elevated VEGF in relation to
disease severity in the precuneus. Control and AD cases were
grouped according to Braak tangle stage, irrespective of dementia
status. Post hoc analysis showed that VEGF level was significantly
higher in the V–VI than the 0–II group. Scatterplot showing positive
correlation between VEGF and insoluble Ab42 (r 5 0.41) (B) but
not Ab40 (C) in the precuneus. (D) Bar chart showing lower ACE
activity in early AD (Braak stage III–IV) than in late stage disease
(Braak stage V–VI). **P< 0.01.
Tables S1 and S2. The demographic data, neuropathological
findings, and MRC identifier numbers in this cohort are
summarized.
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