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Antcin-H, a natural triterpene, is purified from a famous anticancer medicinal mushroom, Antrodia cinnamomea, in Taiwan. This
study showed that antcin-H inhibited the growth of human renal carcinoma 786-0 cells; the IC

50
value (for 48 h) was 170 𝜇M.

Besides, the migration and invasion of 786-0 cells were suppressed by antcin-H under noncytotoxic concentrations (<100 𝜇M);
these events were accompanied by inhibition of FAK and Src kinase activities, decrease of paxillin phosphorylation, impairment
of lamellipodium formation, and upregulation of TIMPs and downregulation of MMPs, especially MMP-7 expression. Luciferase
reporter assay showed that antcin-H repressed the MMP-7 promoter activity, in parallel to inhibiting c-Fos/AP-1 and C/EBP-𝛽
transactivation abilities. Moreover, antcin-H suppressed the activity of ERK1/2 and decreased the binding ability of C/EBP-𝛽 and c-
Fos on the upstream/enhancer region ofMMP-7 promoter. Overall, this study demonstrated that the anti-invasive effect of antcin-H
in human renal carcinoma 786-0 cells might be at least in part by abrogating focal adhesion complex and lamellipodium formation
through inhibiting the Src/FAK-paxillin signaling pathways and decreasing MMP-7 expression through suppressing the ERK1/2-
AP-1/c-Fos and C/EBP-𝛽 signaling axis. Our findings provide the evidence that antcin-H may be an active component existing in
A. cinnamomea with anticancer effect.

1. Introduction

Human renal cell carcinoma (RCC), the second common
but most lethal cancer of urologic origins, is relatively rare
compared to the other carcinomas, but the incidence of
RCC is increasing [1]. Although RCC is curable when it is
diagnosed in the very early stage of the disease [2], due to
its asymptomatic clinical course, by the time of diagnosis
about 25% of RCC patients present with invasion of the

tumor to the surrounding tissues and distantmetastasis [3, 4].
New treatment modalities including immunotherapies with
interferon or interleukin-2 and targeting therapies focusing
on vascular endothelial growth factor and mTOR pathway
have been developed recently for the patients with metastatic
diseases [5, 6]. Nevertheless, relatively higher costs and
unpredictable side effects limit the clinical uses of all these
potential treatment options. Nowadays, no agent can be
clinically used to prevent or treat the metastatic RCC and

Hindawi
Evidence-Based Complementary and Alternative Medicine
Volume 2017, Article ID 5052870, 15 pages
https://doi.org/10.1155/2017/5052870

https://doi.org/10.1155/2017/5052870


2 Evidence-Based Complementary and Alternative Medicine

most patients ultimately succumb tometastatic disease [7, 8].
Therefore, an effective therapeutic strategy is a critical issue
in the management of these patients.

Cancer metastasis is complex and complicated process
that involves several classes of proteins, including adhe-
sion molecules and extracellular proteases. Classical and
important metastatic proteins are matrix metalloproteinases
(MMPs); numerous reports show that MMPs are overex-
pressed in metastatic human tumors [9–12]. MMPs can
degrade extracellular matrix components and their overex-
pression correlates with metastasis and poor prognosis in
most tumor types [13, 14]. Among theMMPs,MMP-7, known
as matrilysin, has a broad spectrum of proteolytic activity
capable of cleaving various types of extracellular matrix
[15]. Strong correlations betweenMMP-7 overexpression and
invasion are observed in cancer cell lines and mouse models
across most tumor types [16, 17]. It has been demonstrated
that MMP-7 is preferentially expressed at the invasive front
of tumors [11, 18], and its overexpression associates with
metastatic disease and unfavorable outcome in RCC [11, 12].
Overall, these findingsmakeMMP-7 a strong andnovel target
for pharmacological antimetastasis therapy in RCC.

Fungi provide a huge resource and have been used
for an effective way to develop new pharmaceutical prod-
ucts. Several studies have shown the potentials of Antrodia
cinnamomea, a well-known medical mushroom in Taiwan,
on prevention and treatment of liver diseases, food and
drug intoxication, hypertension, and cancers [19]. Several
compounds have been isolated and identified from fruiting
bodies ofA. cinnamomea including benzenoids, steroids, and
triterpenoids [19, 20].Theprecise compounds and theirmode
of actions responsible for the observed biological functions
have been studied recently [21–24]. Antcins, steroid-like
compounds, exert anti-inflammatory effect and enhance
blood circulation [25]. A recent report demonstrates that
antcin K triggers intrinsic apoptotic cell death through the
mitochondrial and endoplasmic reticulum stress-induced
signaling pathways [26]. However, there is no study exploring
the effects of antcin-H, a pure compound isolated from A.
cinnamomea, on human cancer cells.This study was aimed to
examine the anticancer effect and itsmolecularmechanismof
antcin-H in human RCC cells. Our results firstly showed that
antcin-H inhibited the Src/FAK/paxillin and Src/FAK/ERK-
c-Fos-C/EBP-𝛽 signaling pathways to impair lamellipodium
formation and decrease MMP-7 expression, consequently
suppressing RCC cell migration and invasion, suggesting that
antcin-H might have the potential for treating metastatic
RCC.

2. Materials and Methods

2.1. Isolation of Antcin-H. Antcin-H used in this study was
provided by Professor Yew-Min Tzeng at Natural Products
and Bioprocess Laboratory, the Institute of Biochemical Sci-
ences and Technology, Chaoyang University of Technology,
Taiwan. In brief, the natural product antcin-H was isolated
from the cultivated fruiting bodies of A. cinnamomea YMT
1002 (GenBank KJ704843). The powdered fruiting bodies
(30 g) were extracted through a serial solvent extraction and

silica gel column chromatography operations; 65mg yellow
needle antcin-H was obtained with yield of 0.21% (W/W).
All the 1H and 13C NMR spectral data derived from antcin-
H were in complete accord with the assigned structure.
The isolation method of the natural product antcin-H was
reported by Tzeng’s laboratory previously [27]. The purity
(>95%) of antcin-H was confirmed by HPLC analysis [28].

2.2. Cell Culture and Viability Assay. Renal carcinoma 786-
0 cell line was cultured in Roswell Park Memorial Institute
1640 medium (RPMI 1640) supplemented with 10% fetal
bovine serum, 2mM L-glutamine, 1mM sodium pyruvate,
1% nonessential amino acid, and 1mM HEPES. Cells were
incubated in 95% air, 5% CO

2
humidified atmosphere at

37∘C. Cell viability was performed with trypan blue exclusion
method. Briefly, 786-0 cells plated in 12-well plate and treated
with various dosages of antcin-H (0, 20, 50, 100, 200, and
300 𝜇M) for indicated times.The viable cells were determined
by trypan blue reagent.

2.3. Wound-Healing Assay in Live Cells. The in vitro wound-
healing assay was performed by using IBIDI culture-insert
(IBIDI, Martinsried, Germany) to create a defined cell gap.
Briefly, without or with antcin-H treatment, 786-0 cells
were trypsinized and seeded in the wells of the culture-
insert containing 10% serum medium and grown until 95%
confluence. For the cell culture, a linear wound was then
created and treated without or with antcin-H in a low
serum condition; to obtain migrating live cell imaging in
wounded region, the Olympus microscope was used with a
40x objective. The image of cell migration into the wound
front was microphotographed every 10min for up to 24 h.

2.4. Migration and Invasion Assay. With or without antcin-
H treatment, 786-0 cells were trypsinized and loaded in the
upper chamber of the Transwell apparatus (pore size: 8 𝜇m;
Millipore, Billerica, MA, USA). After treatment, the upper
chamber cells were scraped off, the filters were then washed
and fixed and stained with Giemsa solution, and then the
migrated cells were counted. For invasion assay, cells were
loaded onto a matrigel (BD Biosciences, San Jose, CA, USA)
precoated Transwell at a density of 2 × 104 cells with serum-
free medium, whereas RPMI containing 10% FBS was added
to lower chamber as a chemoattractant. After incubation, the
cells that invaded across the matrigel to the lower surface of
membrane were fixed in methanol and stained with Giemsa
solution, and then the invaded cells were measured.

2.5. Western Blot Analysis. Cells were harvested by scrap-
ping with iced cold PBS and lysed directly in RIPA buffer
containing 50mM Tris-HCl (pH 7.4), 150mM NaCl, 1%
Triton X-100, 0.25% sodium deoxycholate, 5mM EDTA (pH
8.0), and 1mM EGTA and supplemented with protease and
phosphatase inhibitors at 4∘C for 20min and then centrifuged
with 12000 rpm at 4∘C for 30min and total protein content
was determined by Bradford assay. Equal amounts of total
proteins were separated by SDS-polyacrylamide gel elec-
trophoresis. Immunoblotting was performed using primary
antibodies against Src, phosphorylated-Src (p-Src), paxillin,
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and phosphorylated-paxillin (p-PXN) (Cell Signaling Tech-
nology, Beverly, MA) and ERK1/2, phosphorylated-ERK1/2
(p-ERK1/2), c-Fos, C/EBP-𝛽, phosphorylated-C/EBP-𝛽 (p-
C/EBP-𝛽), FAK, and phosphorylated-FAK (p-FAK) (Santa
Cruz, CA, USA). The image was investigated using an ECL-
Plus detection kit (PerkinElmer Life Sciences, Inc., Boston,
MA, USA).

2.6. Immunofluorescence Assay. Cells were cultured on
15mm microscope cover glasses in 12-well plate. After
antcin-H was exposed for indicated time, the cells were
fixed with 4% paraformaldehyde and permeabilized by 0.1%
Triton X-100 at room temperature. Samples were blocked
with 1% BSA for 30min and incubated with primary anti-
bodies against phosphorylated-FAK and phosphorylated-
paxillin overnight. After being washed with PBS, the cells
were incubated with Alexa-Fluor 488-conjugated secondary
antibody (Invitrogen, Carlsbad, CA, USA), and then the
actin image was investigated using Phalloidin-iFluor 647
Conjugate (AAT Bioquest�, Inc., CA) and, finally, incubated
withDAPI (Molecular Probes Inc., Eugene,Oregon,USA) for
nucleus detection.The cells were then examined using a laser
confocal microscope (FV1000, Olympus).

2.7. Quantitative-PCR and RT-PCR. 786-0 cells were exposed
to antcin-H or control solvent for indicated time and total
RNA was extracted by using TRIzol� isolated kit (Invit-
rogen, Carlsbad, CA, USA) following the manufacturer’s
instruction. One𝜇g of total RNA was reverse-transcribed
using the First-Strand cDNA Synthesis kit (Thermo Fisher
Scientific Inc.). The cDNA products of RT-PCR were then
operated with ABI PRISM 7900 Sequence Detector System to
determine the mRNA levels according to the manufacturer’s
instructions.The quantitative RT-PCR reaction mixture con-
tains cDNA, primers, and SYBR Green PCR master mix
(Applied Biosystems, Life Technologies). 𝛽-Actin was used as
an internal loading control. The used primer sequences were
listed as follows: MMP-2: forward 5󸀠-CTTCCAAGTCTG-
GAGCGATGT-3󸀠, reverse 5󸀠-TACCGTCAAAGGGGT-
ATCCAT-3󸀠; MMP-3: forward 5󸀠-GAGGCATCCACACCC-
TAGGTT-3󸀠, reverse 5󸀠-TAGCTACGTCGGTAAAGACTA-
3󸀠; MMP-7: forward 5󸀠-GGAGGAGATGCTCACTTCGAT-
3󸀠, reverse 5󸀠-AGGAATGTCCCATACCCAAAGA; MMP-
13: forward 5󸀠-AAGGAGCATGGCGACTTCT-3󸀠, reverse
5󸀠-TGGTTCAGGAAAAGC; tissue inhibitors of metallo-
proteinases 3 (TIMP-3): forward 5󸀠-CAGGACGCCTTC-
TGCAA-3󸀠, reverse 5󸀠-CCCCTCCTTTACCAGCTTCTTC-
3󸀠; TIMP-4: forward 5󸀠-CACCCTCAGCAGCACATCTG-3󸀠,
reverse 5󸀠-GGCCGGAACTACCTTCTCACT-3󸀠.

2.8. Chromatin Immunoprecipitation (ChIP) Assay. ChIP
assay was conducted as described previously [29]. Briefly,
after treatment, cells were collected and fixed with 1%
formaldehyde at 37∘C for 10min then treated with glycine
to quench the cross-links. Cells were harvested by ice PBS
containing proteinase inhibitor and lysed with SDS lysis
buffer and then sonicated with the following condition: 20%
amplitude for 10 seconds and rest for 10 seconds, repeated
5 times. Lysates were preincubated with the salmon sperm

DNA-protein A agarose (Millipore, Billerica, MA, USA) and
subjected to immunoprecipitation overnight at 4∘C with
normal IgG or antibody against C/EBP-𝛽 (Cell Signaling
Technology, Beverly, MA) or c-Fos (Santa Cruz, CA, USA).
Precipitateswerewashed and eluted.The chromatin extracted
and protein-DNA cross-links reversed by NaCl. Then DNA
was purified by DNA clean-up purification kit (Promega,
Madison, WI, USA), and the relative amount of DNA
sequence from the MMP-7 promoter region was estimated
by PCR analysis. The used primer sequences were listed
as follows: for −1.4 kb length, 5󸀠-TGAGCTACAGTGGGA-
ACAGG-3󸀠 and 5󸀠-TCATCGAAGTGAGCATCTCC-3󸀠; for
−876 to −1201 bp region, sense: 5󸀠-CTCCAGCATATTTGG-
AGTGTTTCC-3󸀠 and antisense: 5󸀠-CTTCCAATCACT-
CTGACTCTGGC-3󸀠; for −263 to −529 bp region, sense:
5󸀠-CATCTTTCCCCTGTATGGAGAAC-3󸀠 and antisense:
5󸀠-GACTGCTCTCATAGGTATCATTCAGG-3󸀠; for −138
to −288 bp region, sense: 5󸀠-CCTGAATGATACCTATGA-
GAGCAG-3󸀠 and antisense: 5󸀠-CGAGGAAGTATTACA-
TCGTTATTGG-3󸀠; for +2 to −229 bp region, sense: 5󸀠-
GGAGTCAATTTATGCAGCAGACAG-3󸀠 and antisense:
5󸀠-GGTGTTTTCTGCTAGTGACTGCAG-3󸀠.

2.9. Luciferase Reporter Assay. To generate luciferase re-
porter, the sequence of MMP-7 containing MluI and BglII
restriction site was cloned into the upstream of firefly
luciferase gene in PGL3 vector. The primers were +15 to
−1000 bp: 5󸀠-ACGCGTTCATTTTTGGTAAGAATGGTC-
ATTGG-3󸀠 (forward) and 5󸀠-AGATCTTATGGTTGATTT-
GGTGTTTTCTGCTAG-3󸀠 (reverse). After cloning, the vec-
tors were sequenced to confirm the orientation and integrity
of the inserts of each construct. For transfection, cells were
cotransfected with the vector DNA and the pRL-CMV
internal control which contained the Renilla luciferase gene
by Lipofectamine 2000 (Invitrogen,Waltham,MA,USA) and
then addedwith orwithout antrocin into eachwell. Cells were
collected and analyzed for luciferase activity with the Dual-
Luciferase Reporter Assay System kit (Promega, Madison,
WI, USA).

2.10. Statistical Analysis. The results were confirmed by
carrying out at least three independent experiments with
similar pattern. Values were expressed as means ± SD from
three separate experiments (𝑛 = 9). Statistical comparisons
were done using one-way analysis of variance (ANOVA) with
Student’s t-test, the statistical significance was set at ∗𝑝 <
0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001.

3. Results

3.1. Growth Inhibitory Effects of Antcin-H. The chemical
structure of antcin-H is shown in Figure 1(a). The effects
of antcin-H on renal cancer cell proliferation and human
renal carcinoma 786-0 cells were treated with antcin-H. As
depicted in Figure 1(b), antcin-H inhibited 786-0 cell growth
dose-dependently, and the IC

50
value was 170 𝜇M after 48 h

exposure. Incubation of 786-0 cells with lower concentrations
of antcin-H (<200𝜇M) caused a growth inhibitory effect but
did not display any signs of cytotoxicity by morphological
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Figure 1: Growth inhibitory effect of antcin-H. (a)The chemical structure of antcin-H. (b) Human RCC 786-0 cells were treated with various
concentrations (0, 20, 50, 100, 200, and 300 𝜇M) of antcin-H for 24 and 48 h. After incubation, cell morphology was investigated using phase-
contrast microscope (upper panel). Scale bar, 100𝜇m.The cell viability was determined by trypan blue dye exclusion method (lower panel).

investigation. However, administration of 300𝜇M antcin-H
resulted in rounding and detaching due to cytotoxicity.

3.2. Inhibition of Migration and Regulation of Migration-
Related Molecules by Antcin-H. Metastasis has been con-
sidered as a poor prognostic factor in RCC [30]; therefore,
developing safe and effective therapeutic agents for the
treatment ofmetastatic RCC is urgently required. To examine
the effect of antcin-H on cell migration, Transwell migration
assay was carried out. As shown in Figure 2(a), treatment of
786-0 cells with noncytotoxic concentrations of antcin-H for
24 h retarded cell migration in a concentration-dependent
manner; the number of migrated cells was markedly reduced
upon antcin-H treatment.

Previous study demonstrates that FAK/paxillin pathway
plays a key role in formation of focal adhesion contact and
concomitant cellmigration and invasion [31]. Besides, epithe-
lial mesenchymal transition (EMT) is an essential process
for cancer cell to acquire migration and invasion ability [32].
Loss of E-cadherin and increase of vimentin are surrogate
markers for cell migration and invasion in EMT process. To
explore the molecular mechanisms involved in the inhibitory
effect of antcin-H on cell migration, the expressed levels of
FAK, paxillin, E-cadherin, and vimentin were examined by
Western blot analysis. As depicted in Figure 2(b), antcin-
H induced a dose-dependent decrease in phosphorylated
FAKTyr925 and paxillinTyr118 levels, with a significant change
observed at 50 and 100 𝜇M, which is consistent with doses
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Figure 2: Inhibition of cell migration and modulation of migration-related proteins by antcin-H in vitro. (a) 786-0 cells were treated without
or with 20, 50, 100, and 200 𝜇Mantcin-H for 24 h, and then cells were seeded in the upper part of Transwell. After 16 h, cells on the bottom side
of the filter were microphotographed and counted. Data were represented as the mean ± SD of three independent experiments. Statistically
significant, ∗∗∗𝑝 < 0.001. Scale bar, 100𝜇m. (b) Regulation of FAK, paxillin, E-cadherin, and vimentin by antcin-H. 786-0 cells were
treated without or with 20, 50, and 100 𝜇M antcin-H for 24 h, and then protein lysates were isolated. The levels of phosphorylated-FAK,
phosphorylated-paxillin, E-cadherin, and vimentin were examined byWestern blot analysis. 𝛽-Actin was used as an internal loading control.
Confocal imaging of (c) phosphorylated-FAK and (d) phosphorylated-paxillin. 786-0 cells were treated without or with 100 𝜇M antcin-H
for 24 h.The cellular distribution of phosphorylated-FAK and phosphorylated-paxillin was examined by immunofluorescence staining using
phosphorylated-FAK and phosphorylated-paxillin specific antibodies.The immunoreactive imageswere investigated by confocalmicroscope.
Scale bar, 20 𝜇m.
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that are antimigration (Figure 2(a)). Moreover, the expressed
level of vimentin was significantly reduced by antcin-H.
However, the levels of total FAK and paxillinwere not affected
by antcin-H. Moreover, the expression of E-cadherin could
not be detected in both control and antcin-H-treated 786-0
cells (Figure 2(b)).These results reveal that FAK, paxillin, and
vimentin may be targeting molecules involved in antcin-H-
mediated inhibition of 786-0 cell migration.

To further examine the cellular distribution of
phosphorylated-FAK and phosphorylated-paxillin, 786-
0 cells were treated with 100 𝜇M antcin-H and subjected
to immunostaining analysis with anti-phosphor-FAK and
anti-phosphor-paxillin antibody and then counterstained
with phalloidin-rhodamine and DAPI for actin and nucleus
staining, respectively. Confocal imaging revealed that
the majority of control untreated cells showed small
dot-like structures of phosphorylated-FAK (Figure 2(c))
and phosphorylated-paxillin (Figure 2(d)) extending into
a polarized, actin-containing lamellipodia. In contrast,
antcin-H treatment decreased the phosphorylated-FAK
and phosphorylated-paxillin levels at the leading edge and
reduced lamellipodia formation in 786-0 cells (Figures 2(c)
and 2(d)).

Next, the antimigratory activity of antcin-H was eval-
uated by real-time, live cell imaging of wound-healing
assay. 786-0 cells were incubated with 100 𝜇M antcin-H
for indicated time periods. In representative time-lapse
images, antcin-H treatment significantly retarded cell migra-
tory activity (Figure 3(a)). Because both FAK and paxillin
are the important regulators of lamellipodial dynamics in
motile cells [33], the formation of lamellipodium at the
wound margin was investigated by immunostain with anti-
phosphorylated-FAK and phosphorylated-paxillin antibody.
Small dot-like structures, regarded as FAK (Figure 3(b))
and paxillin (Figure 3(c)) localized at the front edge, which
associated with lamellipodium containing bundles of F-actin
were detected in untreated 786-0 cells. Conversely, only a few
small dot-like FAK and paxillin immunoreactivity located
at front edge of wound margin, and a clear lamellipodia
could not be observed in antcin-H-treated 786-0 cells. Since
lamellipodia are shown to increase in highly motile cells,
these results indicate that antcin-H exposure may cause a
decrease of cell migratory capability in 786-0 cells.

3.3. Antcin-H Suppresses Cell Invasion and Modulates MMPs
and TIMPs Expression. To examine whether antcin-H could
suppress cell invasion in RCC 786-0 cells, Matrigel-coated
Transwell invasion assay was conducted, and invaded cells
were photographed using a microscope with a 20x objective
lens. Representative images of invaded cells were shown
in Figure 4(a), antcin-H effectively impaired the invasive
capability of 786-0 cells, and the number of invaded cells
was significantly fewer than those in untreated control. At
100 𝜇M antcin-H treatment revealed an approximately 80%
decreased invasive ability in comparison with untreated
control. Because the expression of MMP and TIMP family
members are critical for cancer invasion, to characterize the
regulation ofMMPs and TIMPs genes by antcin-H, real-time
PCR analysis was carried out. Results indicated thatMMP-2,

MMP-3, MMP-7, and MMP-13 genes were downregulated,
whereas TIMP-3 and TIMP-4 were upregulated after expo-
sure to antcin-H (Figure 4(b)). However, MMP-1, MMP-8,
MMP-9,MMP-10,MMP-11, TIMP-1, and TIMP-2 genes were
not altered by antcin-H (data not shown).

3.4. Antcin-H Inhibits the ERK Signaling Pathway. To fur-
ther characterize the possible mechanism that underlies the
inhibitory effect of antcin-H on 786-0 cells, the activation
of several kinases involving FAK pathway and contributing
to cell migration and invasion, including Src, FAK, and
ERK1/2, was examined by Western blot analysis. As shown
in Figure 5(a), the phosphorylated forms of major FAK
signaling pathways, including FAK, Src, and ERK1/2, were
drastically decreased after exposure to 100 𝜇M antcin-H for
4 h and continuously suppressed at 24 h. Consistently, the
major ERK downstream transcription factors, such as c-Fos
and phosphorylated-C/EBP-𝛽, were also time- and dose-
dependently reduced in response to antcin-H treatment
(Figures 5(a) and 5(b)). However, the amount of total FAK,
Src, and ERK1/2 did not change when incubated with antcin-
H.

3.5. Inhibition of c-Fos and C/EBP-𝛽 DNA Binding Activity
and Transactivation Ability Contributes to Antcin-H-Mediated
MMP-7 Downregulation. Growing evidence indicates that
MMP-7 is overexpressed in RCC [11] and was clinically asso-
ciated with metastasis and poor prognosis in patients with
RCC [11, 12]. The present study showed that the expression
of MMP-7 gene was unusually reduced following antcin-
H administration (Figure 4(b)); to further confirm that the
antcin-H-mediated MMP-7 downregulation is regulated at
transcriptional level, the promoter activity of MMP-7 was
evaluated by the reporter luciferase assay. As depicted in
Figure 6(a), antcin-H suppressed reporter activity in 786-0
cells in a concentration-dependent manner. These data sug-
gest that antcin-H reducedMMP-7 gene expression through
repression ofMMP-7 promoter activity.

Notably, there are two c-Fos/AP1 (c-FosRE1, −67∼−59
and c-FosRE2, −981∼−972) and four C/EBP𝛽 (C/EBP-
𝛽RE1, −55∼−50; C/EBP-𝛽RE2, −250∼−245; C/EBP-𝛽RE3,
−457∼−451; C/EBP-𝛽RE4, −997∼−985) putative binding sites
locate upstream ofMMP-7 promoter (Figure 6(b)). To deter-
mine which binding site associated with antcin-H-mediated
inhibition of MMP-7 gene expression, 786-0 cells were
incubated without or with 100𝜇M antcin-H for 16 h, and
then anti-c-Fos or anti-C/EBP-𝛽 antibody was used to carry
out chromatin immunoprecipitation (ChIP) assay. As shown
in Figure 6(c), in untreated 786-0 cells, c-Fos appeared to
be binding on two potential c-Fos/AP1 response sites, c-
FosRE1 and c-FosRE2, located upstreamofMMP-7 promoter.
The interaction of c-Fos to c-FosRE1 was stronger than
that to c-FosRE2. However, antcin-H treatment resulted in
a great decrease in c-Fos binding on both sites. Besides,
C/EBP-𝛽 appeared to bind only three putative response
regions (C/EBP-𝛽RE1, C/EBP-𝛽RE2, and C/EBP-𝛽RE4) in
untreated cells, whereas exposure to antcin-H significantly
diminished the binding of C/EBP𝛽 on these sites. However,
the interaction of C/EBP-𝛽 with C/EBP-𝛽RE3 could not
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Figure 3: Suppression of wound-healing and disruption of lamellipodium formation by antcin-H. (a) Live cell time-lapse images at wound-
healing front. 786-0 cells were cultured to 100% confluence on glass coverslips. After wound was made, fresh media without or with 100𝜇M
antcin-H were added. Cells were allowed to migrate; the time-lapse of live cell imaging was observed at 4 and 8 h. Scale bar, 20𝜇m. (b)
Immunostaining with FAK or (c) paxillin antibody. After 8 h wounding, the migrated cells were fixed, and the immunofluorescence staining
was carried out using anti-phosphorylated-FAK and anti-phosphorylated-paxillin antibodies. The immunoreactive image was recorded by
confocal microscope. Arrow, formation of lamellipodium. Scale bar, 20 𝜇m.

be observed in untreated control cells. Moreover, antcin-
H dose-dependently blocked c-Fos and C/EBP-𝛽 binding
to their response DNA sequences located at distal and
proximal MMP-7 promoter region (c-FosRE1, c-FosRE2,
C/EBP-𝛽RE1, C/EBP-𝛽RE2, and C/EBP-𝛽RE4), respectively
(Figure 6(d)). Additionally, no PCR amplified product was

seen in sample which was processed by IgG isotype control-
mediated precipitation. These results revealed that antcin-H
could decrease the recruitment of both c-Fos and C/EBP-𝛽
transcriptional factors into the upstream response elements
of MMP-7 promoter, ultimately leading to inhibiting the
expression ofMMP-7 gene in 786-0 RCC cells.
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Figure 4: ANTCIN-H prevents invasion and regulatesMMPs gene expression. (a) 768-0 cells were pretreated without or with 20, 50, 100, and
200 𝜇M antcin-H for 24 h and then seeded into Matrigel-coated Transwell apparatus for another 24 h in the absence or presence of antcin-H.
After incubation, the invaded cells were stained with Giemsa solution and counted using a microscope. Scale bar, 100 𝜇m. The data were
represented as the mean ± SD of nine replicates from three separated experiments. ∗∗∗𝑝 < 0.001 versus control. (b) Real-time PCR analysis
of MMPs and TIMPs gene expression. Cells were treated without or with 20, 50, and 100𝜇M antcin-H for 24 h. After treatment, the RNA
extracted from 786-0 cells was subjected to a real-time PCR. 𝛽-Actin was used as an internal control. Data were represented as the mean ±
SD of three independent experiments. Statistically significant, ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001.
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Figure 5: Suppression of Src, FAK, and ERK1/2 signaling pathways by antcin-H. (a) Time course-dependent experiment. 786-0 cells were
treated without or with 100𝜇M antcin-H for 4, 8, and 24 h. (b) Dose-dependent experiment. Cells were treated without or with 20, 50, and
100 𝜇M antcin-H for 24 h. After incubation, total protein lysates were isolated; the Western blotting analysis was performed to examine the
levels of phosphorylated-Src, phosphorylated-FAK, phosphorylated-ERK1/2, phosphorylated-C/EBP-𝛽, and c-Fos. 𝛽-Actin was used as an
internal loading control.

4. Discussion

RCC is an epithelial malignancy of human kidney; surgery
is the major strategy for treating patients with RCC. Unfor-
tunately, approximately 30% of patients with RCC will be
diagnosed with metastatic disease. Although target therapy
and immunotherapy for treatment of patients withmetastatic
RCC have shown some positive results, continuous treat-
ments with these drugs are associated with a high incidence
of toxic effects and resistance [7], and five-year survival
of patients with metastatic RCC is only 10% [34]. There-
fore, developing strategies for therapeutic interventions in
metastatic RCC is of utmost importance. Numerous natural
substances have been found to inhibit progression andmetas-
tasis of various types of cancer cell lines and reveal that they
might be useful for the treatment of metastatic cancer [35,
36]. The present study showed for the first time that antcin-
H, a steroid-like compound isolated from a famous anti-
cancer medicinal mushroom A. cinnamomea, inhibited Src,
FAK, and ERK1/2 signaling pathways and thereby decreased
phosphorylated-paxillin, phosphorylated-C/EBP-𝛽, and total
c-Fos levels and downregulated vimentin and MMPs expres-
sion, finally leading to impaired lamellipodium formation
and cellularmigration/invasion at nontoxic concentrations in
human RCC 786-0 cells.

The FAK-Src complex is a pivotal component of focal
adhesion contact, as a critical signaling module controls cell
motility and potentiates tumor metastasis [31, 37]. Paxillin
localizes at focal adhesion contact and acts as a scaffold
molecule providing a platform for FAK and Src, which are

involved in cell migration events associated with tumor
metastasis [38]. Activated FAK/Src complex phosphorylates
cytoskeletal adaptor paxillin which promotes cell migration
[39]. FAK-Src expression and function have been associated
with the majority of invasive and metastatic human cancers,
with poor survival [40, 41]. Therefore, inhibition of FAK-Src
function and expression is considered as a potential strategy
for cancer therapy [42]. A synthetic small molecule with
anticancer effect inhibits FAK, Src, and paxillin expression
and activation, leading to the suppression of cell migra-
tion in colon cancer cells [43]. Src inhibitors reduce the
migration of several types of human cancer cell through
blocking Src, FAK, p130CAS, and paxillin activation [44,
45]. Inhibiting FAK/paxillin signaling by a sialyltransferase
inhibitor effectively retards cancer cell migration [46]. In
agreement with these earlier reports, this study showed that
antcin-H significantly impaired cellmigration by suppression
of the FAK, Src, and paxillin signaling pathways. Besides,
FAK, paxillin, and actin filaments play the important role in
lamellipodium formation [33]. Since lamellipodium is a cell
protrusion which is critical for directional migration in vary
types of cell [47]. Here, we showed that antcin-H-mediated
inhibition of FAK-Src-paxillin signaling axis and RCC cell
migration was accompanied by decrease of lamellipodium,
indicating that disruption of the lamellipodium formation as
well as inhibition of migration and wound closure attributed
to reducing formation of focal adhesion and actin bundles
through suppressing FAK-Src-paxillin signaling pathway in
antcin-H-treated cells.
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Figure 6: Inhibition of c-Fos and C/EBP-𝛽 activities involved in antcin-H-mediated MMP-7 downregulation. (a) Reporter luciferase assay.
786-0 cells were transiently transfected with reporter vector containing MMP-7 promoter +1∼−1500 region or control vector for 24 h, and
then the cells were treated without or with 20, 50, and 100 𝜇Mantcin-H for another 24 h. After incubation, the luciferase activity wasmeasured
and the relative luciferase activity was presented as means ± SD. Statistically significant, ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001. (b) Putative
binding sites of c-Fos and C/EBP-𝛽 located at upstream of MMP-7 promoter. (c) Antcin-H prevents c-Fos and C/EBP-𝛽 binding to the
MMP-7 upstream promoter/response element region. The 786-0 cells were treated without or with 100𝜇M antcin-H for 24 h, the cells were
collected, and then ChIP assay was carried out. (d) Antcin-H dose-dependently inhibits c-Fos and C/EBP-𝛽 binding to theMMP-7 upstream
promoter/response element region.The 786-0 cells were treated without or with 20, 50, and 100𝜇Mantcin-H for 24 h, the cells were collected,
and then the activity of c-Fos and C/EBP-𝛽 binding to each response site located at MMP-7 promoter upstream was determined by ChIP
assay.

Growing evidence demonstrates that FAK/ERK-stim-
ulated signaling activates EMT [48]. EMT is an essential
step for cancer cell to acquire migration and invasion ability;
loss of E-cadherin and increase of vimentin are surrogate
markers for cell migration and invasion in EMT process [32].
E-cadherin is a normal epithelial cell adhesion molecule and
is considered as a cancer metastasis suppressor. Nevertheless,
methylation and loss of heterozygosity of E-cadherin gene

are a common event in advanced renal cell carcinoma tissues
and cell lines, including 786-0 cell line, which can lead
to inactivation of E-cadherin transcription and loss of E-
cadherin protein expression [49]. This is consistent with our
observation that E-cadherin could not be detected in 786-
0 cells. On the other hand, evidence supports that vimentin
is a crucial cytoskeletal component of motile mesenchymal
cells, including epithelium-derived metastatic tumor cells.
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Downregulation of E-cadherin or overexpression of vimentin
is strongly associated with metastasis, resulting in poor
prognosis [50–52]. In the current study, downregulation of
vimentin by antcin-H suggested that a loss of EMT and
inhibition of invasion potential might occur in antcin-H-
treated 786-0 cells.

Literatures show that the process of tumor growth, inva-
sion, and metastasis is tightly regulated by MMPs in various
types of malignant tumors, including RCC [11, 12]. Among
MMPs,matrilysin (MMP-7) ismainly expressed inmalignant
tumor cells and preferentially localized at the invasive front
of tumors suggesting that it may facilitate destruction of
surrounding extracellular matrix and basement membrane
[11, 18, 53]. Previous studies demonstrate that MMP-7 is
overexpressed in RCC, and increased MMP-7 expression
significantly correlates with the malignant behavior of RCC,
including invasion, distant metastasis, poor prognosis, and
reduced patient survival [11, 54]. These findings suggest that
MMP-7might be regarded as important targets formetastatic
RCC therapy to prevent tumor progression and improve
survival. In the current study, antcin-H slightly decreased
MMP-2, MMP-3, and MMP-13 gene expression while it did
not alter the expression of MMP-1, MMP-8, MMP-9, MMP-
10, andMMP-11 mRNA levels (data not shown). Intriguingly,
the expression ofMMP-7 gene was drastically downregulated
by antcin-H in 786-0 cells, revealing that targeted inhibition
of MMP-7 gene expression might contribute to impairment
of RCC cell invasion upon antcin-H administration. Previous
studies have shown that MMP activities modulate at the
levels of transcriptional regulation, enzymatic activation, and
TIMPs inhibition [55]. TIMPs are endogenous inhibitors
of MMPs, consisting of four members, TIMP-1, TIMP-2,
TIMP-3, and TIMP-4, and play crucial roles in several pro-
cesses, including cell proliferation, invasion and migration,
angiogenesis, and apoptosis [56]. Deregulated expression of
TIMPs has been implicated in tumor invasion andmetastasis
[56]. Overexpression of TIMPs has been reported to inhibit
invasive and progressive potentials of the tumor cells [57].
Among TIMPs, TIMP-3 is a broad inhibitor against all
MMPs [58], while TIMP-4 is MMP2 and MMP9 inhibitor
[56, 59]. Our results indicated that upregulation of TIMP-
3 and TIMP-4 expression, but not TIMP-1 and TIMP-2,
might be another potential mechanism that contributes to
inhibitingMMPs function in response to antcin-H treatment.
Besides, TIMP family members have been shown to have
proangiogenic effect. Overexpression of TIMP-1 is associated
with VEGF expression and promoting neovascularization
in breast carcinoma rats [60]. TIMP-2 inhibits angiogenesis
by directly binding to 𝛼3𝛽1 integrin [61, 62] or insulin-like
growth factor-1 receptor [63]. TIMP-4 is previously reported
as a positive regulator of angiogenesis [64, 65]. Unlike TIMP-
1 and TIMP-4, TIMP-3 inhibits angiogenesis by blocking the
binding of VEGF to VEGF receptor-2 [66] and suppressing
angiotensin II receptor activity [67]. These results suggest
the important functions of TIMPs in cancer metastasis and
angiogenesis. However, the roles of TIMP-3 and TIMP-4
induced by antcin-H in RCC progression are still poorly
understood. Further in vitro and in vivo studies are needed to

examine the effects and molecular mechanisms of antcin-H
on TIMP-3/4 regulation and angiogenesis in metastatic RCC.

Previous reports demonstrate that FAK/ERK signaling
is not only critical for cell migration and invasion, but is
also involved in the regulation of MMPs activity and gene
expression [68, 69]. ERK and its downstream transcriptional
factor AP-1 play an important role in the regulation of MMPs
gene expression [70, 71]. AP-1 is a common transcriptional
activator composed of the Jun and Fos family members
[72]. Besides, ERK can phosphorylate Elk-1 which subse-
quently upregulates c-Fos gene expression [73]. Literatures
have shown that the MMP-7 expression is controlled by
modulating the activation of AP-1 transcription factors, c-Fos
and c-Jun, through ERK1/2 signaling pathway [17, 74–76]. In
this study, we found that two putative binding sites of c-Fos
were located at the promoter region ofMMP-7 (Figure 6(b)).
In agreement with these previous studies, our observations
provided evidence that antcin-H-inhibited MMP-7 gene
expression might be through suppressing ERK/c-Fos sig-
naling axis in RCC 786-0 cells. In addition to AP-1/c-Fos,
our results indicated that antcin-H-mediated MMP-7 gene
downregulation was also via C/EBP-𝛽 transcriptional repres-
sion. Previous studies demonstrate that phosphorylated-
C/EBP-𝛽 by ERK can activate its transcriptional activity [77].
Our results demonstrated that antcin-H inhibited MMP-7
expression might be also via prevention of ERK-C/EBP-𝛽
activation. On the basis of these results, we suggest that
the anti-invasive activity of antcin-H is in part due to the
inhibition of MMP-7 expression, which plays a critical role
in cancer invasion and metastasis, through the suppression
of ERK-mediated AP-1/c-Fos and C/EBP-𝛽 activities in RCC
cells.

In fact, our results demonstrated that, except MMP-7,
antcin-H also inhibited other MMP gene expressions, such
as MMP-2, MMP-3, and MMP-13, which play critical roles
in cancer cell invasion. Similar to MMP-7, these MMPs were
also regulated predominantly at the transcriptional level. On
the basis of the composition of cis-regulatory elements in
their promoters, MMP-2, MMP-3, andMMP-13, also contain
AP-1 and C/EBP-𝛽 binding sites proximal and distal to the
transcriptional start site, and their expressions have been
shown to be regulated at the transcriptional levels via AP-
1 and C/EBP-𝛽 [78–82]. It is possible that these MMPs are
regulated similarly upon antcin-H treatment. Besides, on the
basis of present results, it is still unclear how TIMP-3 and
TIMP-4 expression is upregulated in response to antcin-
H treatment. Several transcription factors binding sites, for
example, p53, STATs, PPARs, AP-1/c-Fos, C/EBP-𝛼, and
C/EBP-𝛽, are found in the promoter region of TIMP-3 and
TIMP-4. However, which transcription factor contributes to
the upregulation of TIMP-3 and TIMP-4 by antcin-H needs
to be further examined.

5. Conclusion

Based on our observation, we propose a potential mech-
anism in antcin-H-treated RCC cells, which shows that
antcin-H suppressed FAK-related signaling pathway (Src,
FAK, paxillin, and ERK1/2), which impaired focal adhesion
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Figure 7: Schematic model of the proposed signaling pathways involved in suppressing cell migration and invasion by antcin-H in human
RCC 786-0 cells. Antcin-H inhibits Src, FAK, and ERK1/2 phosphorylated activation, in turn decreasing paxillin, c-Fos, and C/EBP-
𝛽 activities, reducing the binding of c-Fos and phosphorylated-C/EBP-𝛽 to AP-1 and C/EBP-𝛽 response elements, thereby decreasing
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expression prevents 786-0 cell motility.

turnover and lamellipodium formation, inactivated c-Fos
and C/EBP-𝛽, downregulated MMPs (especially MMP-7),
and upregulated TIMPs (TIMP-3 and TIMP-4) expression
(Figure 7). MMP-7 has been considered as a metastatic
marker and survival predictor in RCC patients; inhibition of
MMP-7 expression and function in tumor cells could be one
of the most powerful strategies in metastatic RCC therapy.
Our findings provide new insights into the antimigratory
and anti-invasive properties of antcin-H and implicate that
antcin-H might be a promising phytochemical existing in
A. cinnamomea with antimetastatic capability in treating
advanced RCC.
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