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Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria,
for example, oscillations have been proven to control many fundamental processes, ranging from gene
expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as
autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency.
In some circumstances, the oscillation period of biological functions may double, thus generating bistable
behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here
study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment.
In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which
regulates the concentration of a protein produced during a transcription process. In this elemental model,
bistability results from the coherent amplification of environmental fluctuations due to a stochastic
resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions
might result from the intrinsic interplay between nonlinearity and thermal noise.

he diversity of multicellular organisms is regulated by a system of rhythms that affect all forms of their

functionalities'>. A feature shared by many organic systems, however, is the period doubling of their

internal cycles. Appearing spontaneously or in response to external disturbances, the cycle of cellular
organisms is observed to become more complex, enriching its activity and leading the system to complete its
functionality with a period that is two times larger than initial one*''. This phenomenon is observed in a wide
range of scales and can be found, for example, in the arrhythmia of cardiac functions®, or in the firing of neurons™®,
where it has been tentatively explained on the basis of the well know bifurcation to chaos paradigm®', or in the
distribution of population growth in yeast'?, where it was ascribed to genetic regulatory circuits. Period doubling
has also been observed during cell divisions and circadian cycles, where it can manifest spontaneously'' or in
response to chemical perturbations'. Similarly, it has been shown that the genome-wide transcriptional oscil-
lation in yeast can experience period doubling in reaction to drugs'*. The ubiquity of this phenomenon challenges
the stability of the “biological oscillators”'>'¢, and still deserves a comprehensive and clear interpretation.

In this paper, we investigate the doubling process starting from an elementary genetic circuit that combines two
ubiquitous aspects of biosystems: inhibitory mechanisms and noise. The active role of noise in genetic and
biochemical circuits has already been emphasized'’>* and its amplification has been recently found at the basis
of novel and important physical phenomena®. On the other hand, the importance of inhibitory functions has
already been recognized in neurobiology, where they originate nonlinear networks that are at the basis of a
diversity of brain functionalities***. We demonstrate that our elemental genetic circuit can be mapped on an
electric RLCD series, made by a resistor, an inductance, a capacitor and a diode, which represent a general model
of resonant wave interactions in the presence of a strongly nonlinear response. In this elementary model,
nonlinearity arises from the inhibitory function of the diode, which regulates its voltage (i.e., the protein con-
centration in the genetic counterpart). We show that the two aspects of the genetic dynamics, namely nonlinearity
and noise, do not produce any interesting evolution if considered alone. On the contrary, when noise and
nonlinearity are combined together, period doubling appears. Analytic theory demonstrates that such phenom-
enon is sustained from nonlinear parametric resonance, which strongly amplifies noise in a narrow band that
resonates with the coherent part of environmental fluctuations. This suggest that period doubling commonly
observed in biological activity can be ascribed to the interplay between nonlinearity and noise.
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Results

From genetic models to nonlinear electric circuits. We consider a
simple protein transcription process described by the functional
autorepressor”’ sketched in Fig. la, with its associated dynamics
for the protein p(f) and mRNA m(t) concentrations, respectively”***:

{ m=o,ng(p) — Bum+Su(t),

p=opm—PBp—Sy(p). @
In Egs. (1), o; and f; stand for the reaction and degradation rates,
respectively, while g(p) is the promoter-inhibitor activity function.
The latter models the mechanism where the gene product represses
its own transcription. The function gis an upper bounded decreasing
function of p*°, which can be expanded in series:

ar ,
g(p)= Zﬁf w(P—po)",

with p, a constant parameter. We begin our discussion by
considering the simplest case given by a first order function
g(p)=(po — p), and then discuss the effects of high order terms
(see the Discussion Section). Reaction/degration rates are com-
plemented by the presence of an environment at nonzero
temperature, modeled by the time dependent terms S,[p(t)] and
S,.(t). The function SP, in particular, accounts for an additional
protein concentration depletion due to its consumption in the
different cell compartments, while S,,,(f) models the action of the
environment on the mRNA transcription rate®. In order to pursue
a general theory, we decompose S,,, into two main contributions S,,,(f)
= a(t) + n(t). The term o(t) represents the coherent (periodic)
contribution originating from cyclic mechanisms (such as e.g.
circadian rhythms and/or cell divisions), while #(f) models the
incoherent (noise) part arising from random fluctuations. The
fluctuations arising from S,,,, due to the coupling between m and p,
provide a statistical noise source also for the protein concentration p.
We finally model the term S, by a nonlinear p dependent degradation
function, which we express in the simple form:

(2)

Vi
p=er—1, (3)
being y,, the nonlinear degradation rate of the protein concentration.
The nonlinear response described by Eq. (3) is illustrated in Fig. 1c
(solid line) and models in a simple fashion the mechanism of
cooperative stability, which is widely observed in many ex-
periments®>** and leads to an enhanced degradation rate at low
protein concentration and a lower depletion at higher concentration®.
Equation (3) has the dynamics of a “biological” diode, which leads to an

interesting equivalent electric circuit representation. In order to illustrate
the circuit analogy within the simplest theoretical framework, we model
the exponential response in Eq. (3) by a piecewise linear model (Fig. 1c
dashed line). This type of approximation is largely employed in
electronic circuits to provide a simple yet accurate representation of
nonlinear components such as diodes and transistors (see e.g,
chapter 3 of**). The piecewise linear model is characterized as

follows:
o,, p>0
spz{ P> P

4
0. p=0’ (4)

with a constant J,, estimated from (3): 3, =, log(p+ 1), being p the
characteristic scale for the protein concentration in the autoregressor
dynamics. For the situation illustrated in Fig. 1c with y, = 0.2, if we
assume a characteristic concentration p~100 we obtain J, = 0.9.
Equations (4) generate the following equations of motion when the
protein concentration reaches p = 0 (OFF state):

{ rhzocmpo—ﬂmm—l—sm(t),
p=0;p=0.

where only the mRNA m(%) is allowed to evolve while the protein p
concentration stays in its minimum (zero) value. The duration of
this state depends on the value of the time derivative p in Eq. (1).
When the latter is negative, and therefore showing a tendency of the
system to decrease the protein concentration below the minimum,
the dynamics is maintained in the OFF condition. When p becomes
positive, conversely, the system gets back to the ON state and the
concentration p increases again. From the second of Egs. (1), we
immediately observe that the threshold for a positive protein
production, when p=0, is represented by ocpm(t) = SP (i.e., when
apm(t) = S, we have p(t) >0). It is worthwhile emphasizing that
such ON-OFF states provide a piecewise linear representation for Eq.
(3) and do not generate any discontinuity in the bio-physical system,
which follows the continuous dynamics described by Egs. (1) - (3) at
every instant. To map Egs. (1) - (5) into a simple nonlinear electric
circuit, we introduce the following linear change of variables (p, m)
— (x, ), being (x, y) charge and current, respectively, of the RLCD
circuit of Fig. 1b with:

OFF (5)

x:VOP_C|Vf

V=" (%m_ﬁpp_(sp)s ©

with Vyand C the forward bias and the junction capacity of the diode,
respectively. The circuit constants (R, L, C, Vp V(f)) and the

(a)

QQ9Q

V() 1

—O—

(b) (c)

:

C 0.2 — piecewise linear |
—Eq. (3)
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Figure 1 | Functional autorepressor scheme. (a) Genetic and (b) equivalent RLD circuit. Panel (c) shows the nonlinear protein degradation function
(solid line) and its piecewise linear approximation in the case of y, = 0.2 (dashed line).
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dimensionality scaling constant 7y, are related to the autorepressor
parameters by:

% —Ocpam"‘ﬂpﬁma % ﬁpﬁm: (7)
Y= }Vf| V(t)
- m’ T Yo0pSm(t). (8)

Under the coordinates change (6) - (7), the functional autorepres-
sor (1) - (5) is mapped into the equivalent electric dynamics:

x=y,
, ON
Ly+Ry+ tx=V(t), o)
9
x=0;x=CVy,
_ OFF
Ly+Ry+Vy=V(1).
. o x(t)
with V4(t) = Vywhen the diode is in the OFF state and V,(t) = <

when the diode is conducting (ON state). Switching conditions are
promptly interpreted from (6) as the conduction/not conduction
states of the diode, and read OFF—ON when y > 0 and
ON—OFF when x=CV}. These are equivalent to the conditions
apm > 6, and p=0 of the genetic circuit (1) - (5). To account for
the full nonlinear form of the protein depletion function in Eq. (3),
we need to consider the exponential nonlinear response of the diode
in the circuit of Fig. 1c, thus obtaining:

x=y—ys(x),
10
Lj/—l—Ry—i-%:V(t), (10)
with:
X
ys(x) =eCVr —1, (11)

being y; the current flowing into the diode and Vr its equivalent
thermal voltage. The latter can be estimated by inverting Eq. (11),
obtaining V=V /log(7,+1), with y, the characteristic current
flowing into the diode. For a typical current y, = 1mA and a
potential Vy = |x|/C =~ 0.6 V, we have Vi = 600 V. The protein
nonlinear depletion rate y, characterizes the equivalent thermal
voltage Vr of the diode through Egs. (7) that, in turn, define the
diode potential V.. Equations (10) - (11) constitute the equivalent
electric circuit of Egs. (1) and (3), with Eq. (11) being the electric
counterpart of (3). Equations (5) and (9), conversely, represent the
corresponding piecewise linear models. Given a set of “genetic”
parameters o, f3;, S; the equivalent electric system possesses two
free constants: L and Vi While the diode bias V; defines the
current amplitude scale, the inductance L provides an arbitrary

scale for the resonant frequency wo =1 / V LC and quality factor Q

= woL/R of the circuit when the diode is conducting. Besides the
present context where the RLCD circuit has been derived, we
observe that Eqs. (10) - (11) yield a general model of resonant
wave interactions in the presence of a strongly nonlinear response
[ie, Eq. (10)] and a generic excitation V(t) constituted by both
periodic and random terms. This model can be interesting in
many different contexts and in particular in nonlinear optics,
where oscillators similar to (10) — (11) are at the base of the study
of various types of light-matter interactions*>*. This aspect will be
systematically investigated in future work. In order to highlight
the simple nature of the coordinates transform (6) - (7), we cast
Egs. (1) and (9) in the form j=Z-y=2%, with y = (m, p) and:

[11

. O‘mPOJFSM(t) . B —Om
2= 50 ) _<o<p —ﬁp> 12

for the biological case, and y = (x, y) with:

EZ(V(()o)

for the electric case. In absence of external sources [i.e., for
Sm(®)=0 or V()=0], Egs. (12) - (13) possess an equilibrium
point, which we indicate by (, p) or (X, ¥). Such a fixed point
is promptly calculated from 7 =0 and reads

(13)

[11

|
/-~
Lo
‘ —

o|E
~_—

Ol (Sp +P0ﬁp) PoOmty —SpPB,
%Ol + BB~ %+ ByB

7=[0,0],

The simplicity of the coordinate transformation (6) - (7) is now
clear by comparing the two expressions in Eqs. (14), which show
that the RLCD system offers a simple representation where the
fixed point lies in the origin of the coordinates. The scaling con-
stant yo can be recast in the form y0=C|Vf| / D, thus indicating
that the divergence of 7y, for a vanishing denominator is
approached when p—0 from above, ie. when the equilibrium
point is at the limit of the field of existence of p.

1= , genetic circuit,

(14)

electric circuit.

Numerical results with sinusoidal inputs. We studied the RLCD
system via numerical integration of their respective equations of
motion. Figure 2 summarizes our results in the case of a fluctuating
sinusoidal periodic source V(£)=Vqsin(w,t) + 1(), being 1 a gaussian
noise term with zero average (7)=0 and time uncorrelated (white)
variance (17(£)n(0))=2 T L 6(¢). The noise variance is measured by the
“temperature” T, which represents the total spectral power of the
fluctuations. In our simulations, we investigated the effect of
incoherent (Fig. 2a-c) and coherent (Fig. 2d-f) contributions
separately, as well as their combination (Fig. 2g-i). In order to
simulate a realistic set of electric parameters, we considered L =
001 H, C = 310" F, R=2 Q, V; = —0.6 V and |V;] = 600 V.
This choice gives a resonant frequency @, = 0.58 MHz and a
quality factor Q = 2887. In the example reported here, the source
is characterized by Vo = 1.6 V, w, = 1.4wg, and T = 1077 W.
Figure 2a—-c displays the system dynamics when only incoherent
noise 7(t) is present, with temperature 7= 1077 W. At this temper-
ature, random fluctuations have small amplitudes, and are not strong
enough to generate any current in the diode. The circuit therefore
behaves as a simple RLC series, with bare frequency ®, and damping
o/ Q, and its main effect is to produces a “colored” noise (Fig. 2b-c).
In the genetic counterpart, this implies that the system maintain a
simple oscillating protein concentration p(f). When only a coherent
periodic signal V, sin(wt) is considered (Fig. 2d-f), with the present
parameter choice the source intensity is sufficiently large to induce
current in the diode. In this regime, circuits similar to that depicted in
Fig. (5) have been investigated in the past, both experimentally*”~*
and numerically*"**. It has been found that when the diode is char-
acterized by a fixed junction capacity C and when there is no delay in
the diode switching —as in the case studied here— the system dis-
plays a simple resonant behavior, without bistability, bifurcation or
chaos. This behavior is confirmed in the present study: as shown in
Fig. 2f, the power density spectrum P(w) = |7(w)|* (here y(w) is the
Fourier transform of y(t)) is particularly simple, it only shows a
strong peak at the input frequency @ = ), and a rectified component
at w = 0, which originates from the rectifying action of the diode.
The very interesting dynamics is observed in Fig. 2g-i, when both
coherent and incoherent sources are simultaneously present. In this
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Figure 2 | Summary of numerical results for random sinusoidal sources. (a—c) Simulations with incoherent noise V(#) = 5(t), (d—f) dynamics with
coherent input V(t) = Vj sin w,tand (g-i) results from the combination of coherent and incoherent signals V(t) = V, sin w,t + 5(#). Panels (a,d,g) show

the time evolution of the input source V(#), panels (d,e,f) display the time

density spectrum P(w) = [j(w)|*. In the simulation we set Vo = 1.6 V, T =

case, a strong harmonic component at a new frequency, w = /2,
appears, which represents a subharmonic of the input frequency w,,
and period doubling is observed in the dynamics (Fig. 2h-i). Quite
remarkably, the strong noise resonance at & = @, (Fig. 2c) disap-
peared from the dynamics. By comparing the spectra in Fig. 2i and
Fig. 2f, we observe that the current power densities P(w) at w = w,
(i.e., the input pump frequency) and @ = 0 (i.e., the rectified com-
ponent) are approximatively the same. The strong subharmonic peak
at w,/2 is therefore the result of the amplification of the noise fluc-
tuating in the background. Stochastic contributions, in particular, are
coherently amplified and constructively interact with the input signal
thereby sustaining a period doubling (Fig. 2h). To further investigate
this process, we calculated the intensity of the peak at w = w,/2 for
different input frequencies ), and input amplitudes V%, as reported
in Fig. 3. The subharmonic peak at «,/2 has a resonant-like intensity
as a function of the pump frequency, having its maximum when w,
=~ 3w,/2 for low value of V,, and red-shifting at higher pump intens-
ity. On increasing V;, the subharmonic peak maximum increases,
disappearing for V;, below a w,-dependent threshold. From Fig. 3, we
observe that the efficiency of the subharmonic generation process
strongly increases in the region where w, = .

Period doubling in the presence of short pulses. Periodic rhythms
of biosystems are often observed as sequences of spikes, with each
spike characterized by a short-living pulse. Is therefore important to

dynamics of the current y(#) and panels (c,f,i) illustrate the current power
1077 W and w,/mg = 1.4.

investigate the occurrence of period doubling in this specific case.
Figure 4a—c summarizes our results by considering square pulses of
time duration 6¢/T = 1/6, with frequency w, = 27/T and amplitude
Vo = 2.2 V. The noise temperature is set to T = 5 * 1077 W. Despite
the different time evolution of the source, period doubling is
qualitatively identical to the one observed for sinusoidal inputs,
thus witnessing the robustness and ubiquity of the phenomenon.
From a quantitative perspective, the only appreciable difference is
observed in the spectrum (Fig. 4c), where we report a larger
bandwidth of the peak at w = w,/2 with respect to the sinusoidal
case (Fig. 2i). We conclude our numerical campaign by investigating
the period doubling dynamics versus the noise temperature. To this
extent, we calculated the current y for different temperatures T, and
we extracted the current minima y,, = y(nn/w,), which are obtained
by sampling the current at half of the input period n/w,. For each
temperature T, we averaged over 40 realization of noise and collected
many sequences of y,,, in order to obtain a significantly large statistic,
which we reported in Fig. 4d. The figure shows that the “stochastic”
period doubling observed in Fig. 2-4 does not belong to the classical
bifurcation scenario of chaotic systems: no abrupt change in the
period takes place, and the development of the doubling is a gentle
process without any clear threshold in the control parameter (the
temperature T). As seen from Fig. 4d, the distance between the
current minima increases nonlinearly with the temperature,
witnessing the strongly nonlinear nature of the process.
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T=107 W

Figure 3 | Pseudocolor plot showing the behavior of the current spectral
density J, at @ = @,/2 for different input frequency @, and various
voltages V;. In the simulations we set the temperature to T = 1077 W.

Discussion

In order to understand the role of the non linearity and, in particular,
the physics of the period doubling observed in Fig. 2-4, we consider
the piecewise linear model (9) and refer to Fig. 5, which displays the
orbit of the system in the (x, y) plane for sinusoidal sources (blue line)
and short pulses (green line) with and without noise. In absence of
random fluctuations (Fig. 5a), the nonlinearity of the dynamical
evolution is clearly seen as a discontinuity in the orbit tangent, taking
place at points A, E (the point of the ON—OFF shift) and B
(OFF—ON shift). When the orbit reaches points A or E the charge
x is kept equal to CVyuntil the current y become newly positive in B.
Following the diode in the ON state, for a sinusoidal source the orbit
moves first along the semicircle (B-D), and then along the quarter of
circle (C-A), which completes the cycle. In the case of square pulses,
the dynamics is the same with the only difference of a smaller cycle B-
D-E-B. The presence of noise does not change qualitatively the pic-
ture, but spreads out the orbits in a random fashion in both cases
(Fig. 5b). Is worthwhile observing that part of the plane x < CV, even
for y > 0, is never visited (at point A or E, in fact, the charge variation
x is always positive). This observation allow us to write Egs. (9) in a

(@)

>
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0 10 20 30
time (mo)
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=, 0
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10 0 0.5 1 15 2
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-0.1
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Figure 5 | System cycle in the (x, y) plane for a sinusoidal source (blue
line) and square pulses of duration Jt/T = 1/6 (green line). Panel (a)
shows the case without noise, panel (b) displays the dynamics and with
noise at T= 1077 W. In the simulations we set V;, = 1.6 V. The arrows in
Panel (a) indicate the direction of motion along the cycles A—-B - C - A
and B-D-E-B.

more convenient form, where the switching ON-OFF conditions
involve only the variable x:

x=yh(x),

Ly+Ry+ éf(x)= (15)

V().

having introduced the two auxiliary functions f(x)=(x — x,)0(x — x,) +
%, and h(x)=20(x — x,) — 1, with x, = CVyand 0(x) the Heavside step
function. We can now study Egs. (15) to investigate the origin of period
doubling. To this aim, we employed a perturbation analysis from the
solution of the nonlinear system in the absence of noise, ie., for T = =
0. Due to the smallness of the subharmonic peak with respect to the input
frequency at w,, (Fig. 2i, 4c), we apply first order perturbation theory. In
particular, we indicate with [£(f), {(#)] the nonlinear, noise-free solution
of Egs. (15) for (t) = 0. Although we cannot write this solution in closed
form, we know that this is strongly oscillating at @ = w,, in time, and lies
in the curve A-B-C-A (or B-D-E-B) of Fig. 5a. In the presence of nonzero
noise, we set x(£)=¢(£) + A(f) and y(1)={(¢) + A(#). By substituting the
latter expressions into Eq. (15), and retaining only the first order terms in
A(t) and A,(#), we obtain the following dynamics:

0.1 ®)

y (mA)

-0.1

-0.2
0 10

20
time (w )

30

~0.1[d

g -0.15 '|||II||- " “
>

- ":l':'lt t
02 il

107 10° 10®° 107 10°°

temperature T

Figure 4 | Period doubling in the presence of short pulses with time duration 6t/ T = 1/6. (a—c) show the case for a fixed noise T =5 * 107 W, while (d)

plot the behavior of the minima of the current y, =y <n u)i)
0

versus temperature 7.
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A, :h(é)Ay + C(t)hl(é)Am

A Wo 2z 16
b= Daopon 10,0
where:
716 = L0 ) (5 500 .
W (x)= d’;(;) =20(x—x,),

being J(x) the Dirac-d function.

During an orbit in the (x, y) plane, during the ON state we can
distinguish between two different regions for the noise-free solution
E(t). The first region is characterized by & + A, > x,, which is
represented by the segment B-C-A (or B-D-E) in Fig. 5a, with points
B, A (or B, E) and a small interval around them excluded. In this case
0 = 1and f= x, whichyieldsh’ = 0and f' = 1. Equations (16) can be
trivially solved in the frequency domain w and the solution for the

1~ .
current A, = EA},e"‘" +c.c. (c.c. stands for complex conjugate) is a

damped harmonic oscillator, with maximum amplitude at w=wyq
)
and bandwidth —':

_ L
&= R—o? iR
0 Q

being 7 the Fourier transform of (). The second region of the ON
state, which is the most critical, is in the vicinity of point A and is
represented by & —x, =¢, with e<CA,. In this situation, the term A,
leads the dynamics to continuously oscillate between the A-B (or E-
B) segment (ON state) in Fig. 5a and the rest of the cycle B-C-A (or
B-D-E) (OFF state). When the system switches between these two
segments, the charge A, experiences a discontinuous dynamics ori-
ginated from the term h'(€) =20(¢), with € rapidly changing from
zero to a small but finite value due to the noise fluctuations. The
current A,, conversely, evolves smoothly thanks to f'(¢) = 1. In this
condition, equations of motion (16) become:

A=A, +25(e)((1)A,

(18)

. 2 7 19)
o Wy n (
Ay=——A)+—A+-.
4 Q 4 + 2 + L

The term ((t) appearing in the RHS of the first equation oscillates
with frequency w,, and this imposes a resonance condition with the
oscillation frequency of A,(¢). In the Fourier domain, in fact, the only
frequency admissible is the one where the term ((t)A,=

1/~ . -
1 (Axe"‘” + c.c.) (C et + c.c.) oscillates at the same frequency with

A, and A,. This condition imposes phase-matching w, = o = o,
which is equivalent to @ = w,/2. The only oscillation that can be
observed in the evolution of A, A, is therefore at w = ,/2, cause all
the frequencies that do not satisfy phase-matching are not allowed in
the second region and ruled out from the dynamics. Equations (19)
allow to qualitatively assess the generality of our findings with respect
to the particular shape of the promoter activity function g(p). In the
most general situation, the function g(p) can be expanded in Taylor
series following Eq. (2). Linear terms o p°and o p give rise, in the
electric circuit representation, to linear dissipative electric compo-
nents RLC. High order nonlinear terms o p” with n = 2, conversely,
originate nonlinear dissipative terms that do not qualitatively affect
the existence of the parametric resonance at w,/2. The latter, in fact,
originates from the nonlinear response of the diode that, as shown in
Egs. (6) - (7), is sustained by the mechanism of cooperative stability

and the linear first order terms in the expansion of g(p). In order to

solve for the current A},, we represent d(x) = H - rect(Hx), being
rect(x) = O(x + 1 — 2) — O(x — 1/2). After taking the limit for H —
%, we obtain the following solution:

A= W, g’

17 Q

(20)

+ 2

The spectral power ], = ’Ay (cop / 2) ‘2 of the current at w = w,/2 can

be then obtained by combining in time the two expressions for Ay
appearing in Egs. (20) and (18) for w = ,/2 with weights 1 — o and
o respectively. The latter indicates the time spent in the different
region of the cycle and critically depends on the dynamics of the
noise free solution (¢, {). When we combine in time different spectra
with different time duration, the bandwidth and the Q-factor of the
single spectra change as well, as we are convolving the spectrum
arising from an infinite signal with the Fourier transform of a box
function of a finite length. We can therefore define an effective Q-
factor Q, which here must be consider as a fitting parameter as it
depends on the time spent by ¢ and # in the different regions of the
cycle. After some straightforward algebra, we obtain the following
expression for the current power density:

2 1+ (10
(1+@0) [1+@ (1-07?)]

_ |
|

(21)

being Q = w,/2wo, |1,/R|* the current noise spectral power at the
peak frequency w,/2. Equation (21) has a nonlinear stochastic res-
onance at Q = 0.5, which predicts a strong noise amplification of the
subharmonic w,/2 when w, = @,. In order to verify our theory, we
calculated the behavior of ], versus Q by a series of simulations with a
sinusoidal input with a varying frequency w,. For each w,, we aver-
aged over 40 realization to calculate mean value and standard devi-
ation of J,. We then compared numerical simulations versus Eq. (21),
with parameters o = 0.51 and Q=3.4 given by a nonlinear least
square fit (Fig. 6a). We observed an excellent agreement between
Eq. (21) and the results from numerical simulations, confirming
the strongly resonant nature of the process. Equation (20) allows also
to interpret the quantitative differences between the power density
spectra in Fig. 2i and Fig. 4c. According to the phase matching
condition imposed by Eq. (20), in fact, the bandwidth of the amp-
lified noise is expect to match the bandwidth of coherent part the
input source near w,, where each component resonate with its sub-
harmonics and get amplified through parametric resonance. This
process is highlighted in Fig.6b, where we superimpose different part
of the current power density spectrum (Fig. 6b) obtained from a
numerical simulation with V, = 1.6 V, T = 107° W and w,/wy =
1.4. As seen in the figure, the power density of the amplified noise
near w,/2 (Fig. 6b solid green line) matches very well the spectrum of
the input signal near w, (Fig. 6b solid red line). In the case of short
pulses, parametric resonance is triggered by a larger spectrum near
oy, due to the larger harmonic content of a short pulse with respect to
a purely sinusoidal source, and therefore results into a larger amp-
lified band near w,/2.

Beyond gene expression

The “stochastic” parametric amplification reported in this work pro-
vides a new panorama in nonlinear dynamics, whose importance
goes also beyond the biological circuits introduced in this paper. A
deep discussion on this subject goes clearly beyond the scope of this
article, however a few interesting points can be highlighted. The
nonlinear dynamics of a single non-chaotic oscillator possessing a
resonant frequency at @y, is normally observed as the generation of
different higher harmonics 2y, 3, 4@y, ...**. In this situation the
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Figure 6 | Comparison between theory and numerical simulations. Panel (a) compares the normalized subharmonic current power density

= |A}, (w =w, / 2) | (circle markers) versus analytic theory (solid line) for different normalized frequencies = w,/2w. In the numerical simulations
we choose V, =2V, T'= 1077 W and change the input frequency in the range w, € [wo/2, 2w,]. For each w, we averaged over 40 simulations to
guarantee convergence of the mean value and standard deviation. Panel (b) shows the behavior of the normalized power density spectrum in the
surroundings of the input frequency @), (solid red line) and near the subharmonic peak at w,/2 (solid green line). Spectra are calculated for a single

numerical simulation with Vo =2V, T=10"7 W and w,/wo = 1.4.

generation of /2, or equivalently period doubling, is impossible as
it does not follow from any integer combination of higher harmonics.
Period doubling is typically observed, in fact, in chaotic resonators
and is a well-known mechanism for routing the dynamics to chaos*.
Our works open a new interesting scenario, where period doubling
can be triggered by the noise interacting with a single non-chaotic
oscillator. This opens the possibility to develop applications where
noise acts as an active pathway for nonlinear dynamics, enabling
functionalities that would otherwise be impossible to achieve for
the system. Among the possible systems that might benefit from
this process, we here mention the important case provided by mid-
infrared energy harvesting, where light-matter interactions are
modeled by the same circuit of Fig. 1b*.

Conclusions. In conclusion, we have investigated the dynamics of a
elemental genetic circuit characterized by the interplay between
nonlinearity and noise arising from environmental fluctuations.
We showed that the circuit can be mapped into an electric
analogue represented by a RLC series with a diode D. In this
elementary system, nonlinearity arises naturally from the diode,
which acts as a inhibitory feedback that maintains the dynamics in
equilibrium. When noise and nonlinearity are considered
independently in the system, we do not observe any interesting
evolution, while when they exist together we observe period
doubling triggered by parametric amplification of thermal noise.
Parametric resonance, in particular, amplifies noise in a specific
band that resonates with the coherent part of the fluctuations of
the environment. This result may explain the ubiquitous period
doubling phenomenon reported in different cases in biological
matter, and suggests that it may be traced back to the interaction
between nonlinearity and environmental fluctuations. This works
also highlights the active role of noise in inhibitory processes and
suggests that its modeling is key to understand the complexity of
biological functions, ranging from brain activity to gene expressions.
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