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Abstract: Background: There is still an unmet need for therapeutic drugs for patients with an
abdominal aortic aneurysm (AAA), especially for candidates unsuitable for surgical or interventional
repair. Therefore, the purpose of this in silico study is to identify significant genes and regulatory
mechanisms in AAA patients to predicate the potential therapeutic compounds for significant genes.
Methods: The GSE57691 dataset was obtained from Gene Expression Omnibus (GEO) and used
to identify the differentially expressed genes (DEGs) and weighted correlation network analysis
(WGCNA). The biological function of DEGs was determined using gene ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG). AAA-related genes were obtained from the
Comparative Toxicogenomics Database (CTD) using the keywords: aortic aneurysm and abdominal.
The hub genes in AAA were obtained by overlapping DEGs, WGCNA-based hub genes, and CTD-
based genes. The diagnostic values of hub genes were determined using ROC curve analysis. Hereby,
a TF-miRNA-hub gene network was constructed based on the miRnet database. Using these data,
potential therapeutic compounds for the therapy of AAA were predicted based on the Drug Gene
Interaction Database (DGIdb). Results: A total of 218 DEGs (17 upregulated and 201 downregulated)
and their biological function were explored; 4093 AAA-related genes were derived by text mining.
Three hub modules and 144 hub genes were identified by WGCNA. asparagine synthetase (ASNS),
axin-related protein 2 (AXIN2), melanoma cell adhesion molecule (MCAM), and the testis-specific
Y-encoded-like protein 1 (TSPYL1) were obtained as intersecting hub genes and the diagnostic values
were confirmed with ROC curves. As potential compounds targeting the hub genes, asparaginase
was identified as the target compound for ASNS. Prednisolone and abiraterone were identified as
compounds targeting TSPYL1. For MCAM and TSPYL1, no potential therapeutic compound could
be predicted. Conclusion: Using WGCNA analysis and text mining, pre-existing gene expression
data were used to provide novel insight into potential AAA-related protein targets. For two of these
targets, compounds could be predicted.

Keywords: AAA; WGCNA; CTD

1. Introduction

Abdominal aortic aneurysm (AAA) is a common and potentially life-threatening dis-
ease that leads to more than 150,000 global deaths yearly [1–5]. While there is conclusive
data on the role of environmental factors in the development of AAA in patients, there
are also distinct genetic factors that have been found to play an important role in AAA
progression [6]. These large dataset-based RNA-seq and microarrays datasets include dif-
ferentially expressed single genes (for example, H19, BRG1-associated factor 60A (BAF60a),
Kruppel-like factor 5 (Klf5), and thyroid receptor-interacting protein 13 (TRIP13)) [7–9],
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single nucleotide polymorphism (SNP) of genes such as the matrix metalloproteinase
(MMP) family, transforming growth factor-beta (TGFBR2), and sortilin (SORT1) [10], or
gene families such as the MMP family.

MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate target gene
expression by region binding to the 3’ UTR of target mRNA and regulation of many
bioprocesses to silence and activate the target gene expression at the transcriptional and
post-transcriptional level [11–13]. These oligonucleotides have also been associated with
the development of AAA [14]. Interestingly, a large number of miRNAs have been shown
to be associated with the regulation of key gene expression during the pathophysiology of
AAA. One example of these is miRNA-21 (miR-21). Overexpression of miR-21 can inhibit
the viability of vascular smooth muscle cells (VSMCs) and stabilize the aortic wall in animal
models of AAA by downregulating the expression of phosphatase and tensin homolog
(PTEN) [15].

MiRNAs may also interact with other key players for the development of AAA:
transcription factors (TFs). By interacting with miRNAs, TFs act as master regulators
of several genes at once by constituting transcriptional complexes. Identifying miRNAs
and their respective TFs from co-expressed genes can thus provide important insights
into the regulatory mechanism affecting vascular disorders such as AAA [14,16]. During
AAA progression, miRNAs have been shown to regulate the extracellular matrix (ECM)
turnover, the matrix metalloproteinase (MMP) family, different inflammatory components,
and VSMCs by forming TF–miRNA network networks [17].

Based on the public dataset and bioinformatic analysis, multiple studies have been
conducted to explore the regulatory mechanism of AAA at the genetic level [18–21]. Public
datasets for further analysis are still scarce. In our study, we combined the GEO dataset
with the Comparative Toxicogenomics Database (CTD) dataset to identify differential genes
and reveal potential TF–miRNA-hub gene regulatory networks related to AAA.

2. Materials and Methods
2.1. Data Download and Processing

Microarray data of the GSE57691 dataset, which includes 49 AAA samples (20 patients
with small AAA (≤55 mm), 29 patients with large AAA (>55 mm)), and 10 normal con-
trol full-thickness aortic wall biopsies and corresponding clinical data were downloaded
from gene expression omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, 23 August
2021) [22]. The expression data were generated by Illumina HumanHT-12 V4.0 expression
bead chips [22]. In the present study, the normalized data were downloaded and used for
subsequent analyses. Figure 1 displays the flow chart of the data analysis.

Figure 1. Flowchart of the data analysis.

https://www.ncbi.nlm.nih.gov/geo/
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2.2. AAA-Related Genes Obtained from Comparative Toxicogenomics Database (CTD)

The Comparative Toxicogenomics Database (CTD: http://ctdbase.org, 23 August
2021) is a public database that contains a wide spectrum of information on chemicals, genes,
phenotypes, diseases, and exposures to advance the understanding of human health [11,18].
A total of 21,684 AAA-related genes were obtained from CTD using the keywords aortic
aneurysm and abdominal and 4093 AAA-related genes were found according to previous
studies (Table S5) [19,20].

2.3. Identification of the Differentially Expressed Genes (DEGs) in AAA and Normal Tissues

The DEGs between AAA and normal tissues were screened by the Limma R 3.46.0
package [22] with cutoff values of |log2 (fold change, FC) | > 1 and p-value < 0.05. All
results were visualized by the ggplot2 R 3.3.3 package [22].

2.4. Gene Ontology (GO) Annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis

Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis, GO annotation including biological process (BP),
cellular component (CC), molecular function (MF), and KEGG pathway enrichment analy-
ses were performed by the cluster profile R 3.14.3 package [23] with false discovery rate
(FDR) < 0.05 and the analyses were visualized by the ggplot2 R 3.3.3 package.

2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

The transcripts and samples from the GSE57691 dataset were analyzed by the WGCNA
R 1.70-3 package [22]. All samples were clustered according to Pearson’s correlation analysis
and the outliers were removed. The community dissimilarity was speculated according
to the similarity. Afterward, the adjacency matrix was transformed into a topological
overlap matrix (TOM). Genes were assigned to different gene modules according to the
TOM-related dissimilarity measure and the soft-thresholding setting. The numbers of gene
modules were obtained according to the dissimilarity and the criterion of dynamic tree
cutting with a minimal module size of 30 genes. The modules that correlated the most
with the clinical traits were identified as AAA-related modules in this study. All biological
functions of the hub genes with gene significance (GS) > 0.2 and module membership (MM)
> 0.8 were analyzed by GO enrichment.

2.6. Identification of the Hub Genes in AAA Based on Receiver Operating Characteristic (ROC)
Curve Analysis

Two-hundred and eighteen DEGs between AAA and normal tissues, 4093 AAA-
related genes from CTD, and 144 hub genes from WGCNA were overlapped to identify the
intersection genes in AAA. The diagnostic values of four intersection genes for AAA were
detected by ROC curve analysis and the area under the ROC curve (AUC) using the pROC
R 1.17.0.1 package [24].

2.7. Construction of the Transcription Factor (TF)-miRNA-Hub Gene Network

MiRNAs and TFs related to four hub genes were screened out based on the miRNet2/0
online database (https://www.mirnet.ca, 23 August 2021) [18]. Nine TFs and 290 miRN0As
related to four hub genes were identified and constructed in the network using Cytoscape
(San Diego, CA, USA) [24].

2.8. Screening the Potential Therapeutic Compounds for AAA in Drug-Gene Interaction Database (DGIdb)

DGIdb (https://www.dgidb.org, 23 August 2021) was used as a drug–gene interaction
database to supply the drug–gene interactions and gene–drug ability information from
papers, databases, and web resources [24]. In the present study, the target therapeutic
compounds for four hub genes were identified based on the DGIdb.

http://ctdbase.org
https://www.mirnet.ca
https://www.dgidb.org
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3. Results
3.1. Identification of the DEGs and Analysis of Their Function in AAA

A total of 218 DEGs, including 17 upregulated and 201 downregulated DEGs, were
identified from the GSE57691 dataset using the Limma R package [22–24] with the thresh-
olds |log2 (FC) | > 1 and p-value < 0.05 (Figure 2A and Table S1). The biological function
of these genes was explored by GO and KEGG enrichment analyses with FDR < 0.05. The
most significant BP terms included establishment of protein localization to endoplasmic
reticulum, signal recognition particle (SRP)-dependent co-translational protein targeting to
membrane, detoxification, cellular response to cadmium ion, and co-translational protein
targeting to membrane (Figure 2B and Table S2). The significant CC terms included I
band, cytosolic ribosome, contractile fiber, sarcomere, and cytosolic large ribosomal subunit.
The significant MF terms included haptoglobin binding, oxygen carrier activity, struc-
tural constituent of ribosome, cytochrome-c oxidase activity, and heme-copper terminal
oxidase activity. Several genes were also significantly associated with several degenera-
tive disease-related pathways and others, such as ribosome, cardiac muscle contraction,
oxidative phosphorylation, fatty acid degradation, pyruvate metabolism, and diabetic
cardiomyopathy based on KEGG (Figure 2C and Table S3).

3.2. Identification of the Hub Modules and Genes by WGCNA

A total of 17,784 genes were derived from the 49 samples from the GSE57691 dataset.
These genes were used to construct the co-expression network. The results of the clus-
ter analysis of the samples are shown in Figures 3 and 4A,B. All outliers, including
GSM1386795, GSM1386831, and GSM1386798 were removed and the remaining 46 samples
were used for subsequent analysis (Figure 3A,B). Because the scale-free topology fit index
(signed R2) was less than 0.85 (Figure 4A), a soft-setting of threshold power was achieved
according to the criterion with samples > 40 (Figure 3A). When the soft-threshold power
was set as 12 and 13, modules could be identified with a minimal module size of 30 genes
(Figure 4B).

To correlate the modules with sample information, we analyzed the data according
to the heatmap of module–clinical trait correlations. Hereby, we correlated data for the
clinical traits. Hereby, red, green, and pink modules were identified as the most correlated
with clinical traits (Figure 4C). The red and green ones, which were identified as the hub
modules associated with clinical traits, were used to deeply explore the correlation between
module membership (MM) and gene significance (GS) to identify the hub genes in AAA.
In the results demonstrated in Figure 4D–F and Table S4, 47, 60, and 37 hub genes were
respectively identified from red, green, and pink modules with the MM > 0.8 and GS > 0.2.
Furthermore, the biological function of the hub genes from three modules was analyzed by
GO analysis with FDR < 0.05. The results revealed that the hub genes of the red module are
mostly enriched in tissue homeostasis, bone resorption, disaccharide metabolic process,
monosaccharide metabolic process, mononuclear cell migration, anatomical structure
homeostasis, lymphocyte migration, and hexose metabolic process. All genes are associated
with GTPase activator activity (Figure 4G). The hub genes of the green module significantly
correlated with mitochondrial matrix (Figure 4H). The hub genes of the pink module are
enriched in ribosome biogenesis, rRNA processing, rRNA metabolism process, ncRNA
processing, ncRNA metabolism processing, and ribonucleoprotein complex biogenesis.
The CC terms included organellar, large ribosomal subunit, mitochondrial large ribosomal
subunit, ribosome, large ribosome subunit, organellar ribosome, mitochondrial ribosome,
mitochondrial protein-containing complex, and mitochondrial inner membrane (Figure 4I).

3.3. Identification and Validation of AAA-Related Hub Genes

Based on CTD (search keywords: aortic aneurysm and abdominal), a total of 21,684
AAA-related genes were obtained. Moreover, 4093 AAA-related genes included genes
with more than 4 references (Table S2). By overlapping the AAA-related 218 DEGs, the
144 WGCNA-based hub genes, and the 4093 CTD-based genes, 4 AAA-related genes were
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obtained (Figure 5A). Then, the diagnostic values of four genes for AAA were confirmed
by ROC curve analysis and the AUC value. As shown in Figure 5B, the AUC values of
ASNS, AXIN2, MCAM, and TSPYL1 were shown to be of prognostic power in AAA with
0.8612, 0.9276, 0.9082, 0.8745, respectively.

Figure 2. Identification of DEGs and analysis of their function in AAA. (A) Volcano plot of DEGs
with cutoff value |log2 (FC)| > 1 and p-values < 0.05. (B) Bar charts of the GO analysis with FDR >
0.05, including BP, CC, and MF terms. (C) Bar charts of the KEGG pathway enrichment analysis with
FDR > 0.05.
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Figure 3. Soft-setting of threshold power. (A,B) GSM1386795, GSM1386831, and GSM1386798 were
excluded as outliers. (C) The minimum number of genes per module was set to 30 according to the
criteria of the dynamic tree-cutting algorithm. Thirteen modules were generated. Genes are grouped
into modules by hierarchical clustering, with different colors representing different modules, where
the grey default is for genes that cannot be grouped into any module.
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Figure 4. Cont.
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Figure 4. Identification of the hub modules and genes by WGCNA. (A) The soft-threshold power
selecting processes included the scale-free fit index (left) and the mean connectivity (right) analysis.
(B) Eigengene adjacency heatmap of correlation between the modules. (C) Heatmap of the correlation
between module eigengenes and clinical traits of AAA. (D–F) Scatter plots of the correlation between
MM and GS of red, green, and pink modules, respectively. (G–I) Bar charts of the GO analysis of
genes from red, green, and pink modules, respectively.
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Figure 5. Identification and validation of the AAA-related hub genes. (A) Venn plots of intersection
genes among the AAA-related 218 DEGs, 144 WGCNA-based hub genes, and 4093 CTD-based
genes. (B) ROC curves and AUC values of the ASNS, AXIN2, MCAM, and TSPYL1. x-axis indicates
specificity; y-axis indicates sensitivity.

3.4. Construction of the TF-miRNA-Hub Gene Network in AAA

We further investigated the regulatory mechanism of these four genes in AAA. The
target miRNAs and TFs of four genes were identified and then the TF–miRNA-hub gene
network was constructed based on miRnet. Finally, a TF–miRNA-hub gene network, which
included 4 genes, 9 TFs, and 290 miRNAs, was constructed with 347 edges (Figure 6).
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Figure 6. Construction of the TF–miRNA-hub gene network in AAA based on miRnet. Red triangle
indicates 4 hub genes (ASNS, AXIN2, MCAM, TSPYL1), pink circles display miRNAs, and green
squares show TFs.

3.5. Identification of the Potential Therapeutic Compounds for AAA

In the search for common potential therapeutic compounds for the four hub genes,
DGIdb was used (Table 1). Asparaginase has been identified as the target compound of
ASNS; prednisolone and abiraterone were found as the target compounds of TSPYL1. For
the other two genes, no drug compound could be identified.

Table 1. The potential compounds of two genes were identified using DGIdb.

Gene Drug Interaction Type Sources PMIDs

ASNS ASPARAGINASE NASE NCI, CIViC,
PharmGKB

28069604, 24268318,
11556848

TSPYL1 PREDNISOLONE LONE PharmGKB
TSPYL1 ABIRATERONE ONE PharmGKB

4. Discussion

To date, several druggable molecules have been described to play roles in AAA
development, progression, and rupture, such as the matrix metalloproteinase (MMP) family,
transforming growth factor beta receptor 2 (TGFBR2), and sortilin 1 (SORT1) [10]. However,
not only single protein-expressing genes may be involved but also whole pathway networks
may be deregulated, such as the Wnt/β-catenin pathway and TGF beta/SMAD pathway.
This may be mediated by miRNAs. MiRNAs have been studied to be associated with
the pathophysiological process of many diseases [11]. Various studies have reported that
miRNAs are involved in the occurrence and development of AAA [12]. Especially, it is
important to construct TF–miRNA-hub gene networks for miRNAs as they may regulate
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several pathways. These networks may help to find novel therapeutic compounds for
significant genes.

Here, we built an in silico approach TF–miRNA-hub gene network depending on the
shared dataset and published literature. Unlike our previous study which only focused on
WCGNA to mine key genes of mouse AAA progression [21], we here applied text mining
and WCGNA. Hereby, four hub genes (ASNS, AXIN2, MCAM, TSPYL1) were obtained.
These four hub genes are all reported to be associated with the function of vascular cells,
but no study has so far studied the connection between these four hub genes and the
pathophysiology of AAA [23,24].

Asparagine synthetase (ASNS) is associated with asparaginase therapy in acute lym-
phoblastic leukemia [25]. ASNS is also reported to be essential for endothelial cell growth
and angiogenesis [26]. Interestingly, the proliferation of fibroblasts is impaired under
conditions of asparagine deprivation which may be the potential link connecting ASNS
and AAA pathogenesis [26].

Testis-specific protein, Y-encoded-like 1 (TSPYL1) is a member of the TSPYL protein
family which exerts its regulatory effects on vascular cells and promotes endothelial cell
proliferation, migration, and neoangiogenesis [27]. AXIN2, a scaffold protein involved in
the degradation of β-catenin, plays a vital role in the Wnt/β-catenin pathway and its gene
expression is suggested to be associated with endothelial cell proliferation and function [28].
AXIN2 mutations have been studied in different cancer entities including digestive tract
tumors and melanoma [29]. MCAM is highly expressed in many tumors and endothelial
cells. It plays an important role in the regulation of vascular permeability, cell–cell cohesion,
leukocyte transmigration, and angiogenesis [30].

MiRNAs may be a potential tie between TSPYL5, AXIN2, and MCAM and AAA
formation. MiRNAs have been shown to regulate the ECM turnover, MMP family, different
inflammatory components, and VSMCs by forming TF–miRNA network networks [17].

We here identified nine TFs and 290 miRNAs as the master regulators of the resulting
gene regulatory network, as they have the largest connectivity with the co-expressed
four genes associated with AAA. The diagnostic values of the four genes for AAA were
confirmed using ROC curves. These data confirmed that ASNS, AXIN2, MCAM, and
TSPYL1 showed significant prognostic values in AAA.

The compound search was based on the analysis of a TF–miRNA-hub gene network.
Increasing evidence has indicated that TF-related networks exert key roles in cancer. A
prominent example is the SOX4–Axin2 network and the CDX2–Axin2 network, both of
which are reported to inhibit the proliferation and tumor formation of cancer cells by
suppressing Wnt/β-catenin signaling [31]. The WWTR1–ASNS network, ATF4–ASNS
network, and DDIT3–ASNS network are reported to inhibit the proliferation and tumor
formation of cancer cells [32]. The CEBPB–ASNS network and ATF3–ASNS network can
activate the placental mammalian amino acid response pathway [33]. Furthermore, the
TFAP2A–MCAM network is reported to be associated with melanoma metastasis [34]. All
TF–miRNA networks have been previously associated with the development of AAA.

With the help of DGIdb, the target therapeutic compounds for two of the hub genes
were identified. Asparaginase has been identified as the target compound of ASNS, while
prednisolone and abiraterone were identified as target compounds of TSPYL1. Since all
four hub genes were firstly connected to AAA in the present study, there is so far no
experimental evidence for the drug compounds. This will also be an issue for further
experimental studies.

In summary, our study has firstly demonstrated a novel TF–miRNA-hub network
linked to AAA based on text mining and WCGNA analysis. While this is a novel approach
with novel findings, our work also has some limitations. Our work has focused on poten-
tial regulators of the most significantly overexpressed genes, TFs, and miRNAs of AAA,
without ruling out the possibility that other regulatory mechanisms, which may not only
depend on gene overexpression, may still be important in the development and progression
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of AAA. Therefore, our in silico findings will have to be confirmed by in vitro and in vivo
AAA models.

Moreover, the number of datasets available is still limited. We here used the GSE57691
dataset as the most complete available dataset to combine hits with the AAA-related genes
that we obtained from CTD to identify the DEGs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10051052/s1, Table S1: Differentially expressed
gene; Table S2: GO analysis; Table S3: KEGG analysis; Table S4: hub genes of hub modules; Table S5:
AAA-related genes from CTD.
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