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ABSTRACT: Data-driven computer-aided synthesis planning
utilizing organic or biocatalyzed reactions from large databases
has gained increasing interest in the last decade, sparking the
development of numerous tools to extract, apply, and score general
reaction templates. The generation of reaction rules for enzymatic
reactions is especially challenging since substrate promiscuity varies
between enzymes, causing the optimal levels of rule specificity and
optimal number of included atoms to differ between enzymes. This
complicates an automated extraction from databases and has
promoted the creation of manually curated reaction rule sets. Here,
we present EHreact, a purely data-driven open-source software
tool, to extract and score reaction rules from sets of reactions known to be catalyzed by an enzyme at appropriate levels of specificity
without expert knowledge. EHreact extracts and groups reaction rules into tree-like structures, Hasse diagrams, based on common
substructures in the imaginary transition structures. Each diagram can be utilized to output a single or a set of reaction rules, as well
as calculate the probability of a new substrate to be processed by the given enzyme by inferring information about the reactive site of
the enzyme from the known reactions and their grouping in the template tree. EHreact heuristically predicts the activity of a given
enzyme on a new substrate, outperforming current approaches in accuracy and functionality.

■ INTRODUCTION

Biocatalytic transformations nowadays comprise an ever-
expanding toolbox of chemo-, stereo-, and regioselective
reactions.1−7 The use of enzymes to catalyze reactions has
several benefits, such as mild reaction conditions, aqueous
media as solvents, compatibility of different reaction steps in
multistep syntheses, as well as the reduced need for protecting
groups.3,4,8 Most enzymes are promiscuous to at least some
extent or can be engineered to accept a new substrate, so that
the possible range of biocatalyzed transformations is large
enough to be of interest to synthetic chemists, as testified by
the large number of novel enzymatic cascades for the synthesis
of diverse targets that were published in the last dec-
ade.2,3,6,7,9−15 Enzymatic transformations thus provide a
promising and ecofriendly alternative to organic reactions in
the synthesis of pharmaceutical intermediates or fine
chemicals, among others.2

In practice, moderately promiscuous enzymes are often
preferred when designing a pathway, where a small amount of
activity can be increased via directed evolution.16 Enzymes can
exhibit both substrate promiscuity and reaction promiscuity,17

but within bioretrosynthesis, usually only the former is
exploited.18 Substrate promiscuity refers to the ability to
catalyze the native reaction on a non-native substrate, whereas
reaction promiscuity describes the ability to catalyze a non-

native reaction. In the following, we will only refer to substrate
promiscuity.
To address the challenge of enzymatic synthesis pathway

planning, a number of computational tools have been
developed for general purpose bioretrosynthesis planning,18−22

enzyme selection,23,24 metabolic pathway exploration,18,25 and
reaction rule extraction26,27 in recent years. The tools usually
extract the catalyzed transformation from a known reaction by
identifying the reactive center, coding the changes of atoms
and bonds into a reaction rule, and scoring the feasibility of a
new substrate undergoing the same transformation on a set of
criteria.
Here, a key challenge is to increase the accuracy of the

employed scoring functions and thus correctly rank reactions
that are anticipated to be feasible higher than reactions that are
most likely not catalyzed by the desired enzyme. Whereas
some tools consider a reaction feasible if it satisfies a reaction
rule at the desired level of specificity,21,25 others score the
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feasibility of a transformation based on chemical similarity to
known reactions or substrates via fingerprint vectors.20,22−24

However, methods relying on similarity or reaction rule
specificity lack the distinction between generalist and selective
specialist enzymes, i.e., they miss a description of enzyme
promiscuity, as pointed out by Jeffryes et al. recently.28 By
treating each reaction in the database as a separate and
independent data point, correlations between known substrates
for the same enzymes are lost and with them estimates for
enzyme promiscuity and substrate ranges. On the other hand,
describing enzymatic promiscuity on the basis of known
substrates, as proposed by Nath and Atkins,29 can suffer from a
lack of data. In fact, a poorly studied enzyme with only a
limited set of known substrates might be falsely viewed as
highly specific.28 However, even an imperfect prediction of
promiscuity adds to the accuracy of the predicted reaction
feasibility. Furthermore, this limitation becomes less severe as
enzymatic reaction databases such as BRENDA,30 RHEA,31 or
KEGG32 grow. The ability to pool information across sets of
substrates is especially true in the case of BRENDA, where
enzymes are reported with a variety of activities on natural and
non-natural substrates.
A missing description of enzyme promiscuity furthermore

affects the quality of extracted reaction templates. Namely, the
specificity of reaction rules extracted from databases of
biocatalyzed reactions, i.e., the number of atoms included in
the template, is usually set by a single user-defined value,
treating specific and promiscuous enzymes the same. A few
hand-curated sets of enzymatic reaction rules offer enzyme-
specific levels of rule generality,22,24 but there is currently no
method to automatically detect the promiscuity of an enzyme
and extract reaction rules accordingly.
We therefore believe that a data-driven approach to extract

enzymatic reaction templates at different levels of specificity, as
well as to score new queries on criteria beyond fingerprint
similarity, is needed, taking into account the estimated
promiscuity of an enzyme and the diversity of chemical
structures around the reactive center inferred from known
substrates.
In this article, we present a novel approach to compute

enzymatic reaction templates and predict their applicability on
non-natural substrates. We extract reaction templates at levels
of specificities imposed by the set of known substrates and
arrange them in a tree-like structure (a Hasse diagram of
molecule fragments33) to allow for an estimation of enzyme
promiscuity and substrate range. New substrates are scored on
the basis of each template tree by taking into account different
measures of overall similarity and diversity, as well as a
comparison of the structure of the query substrate to
conserved substructures within the known substrates. Our
open-source software allows a variety of different queries,
including the scoring of a specific reaction, the proposal and
ranking of possible reactions on a substrate including
regioselectivity and choice of cosubstrates, or scoring of
substrates instead of full reactions if the products are unknown.
We thus provide a valuable tool to describe and predict
enzymatic reactions, which is freely available on Github.34

The remainder of this article is organized as follows. The
extraction algorithm, as well as details on the employed scoring
functions and the preparation of literature data sets, is
explained in the Methods section. We then analyze the
number of known reactions per enzymes throughout different
databases, showcase the template extraction routine on a small

example, and compare the performance of the scoring routine
regarding activity prediction, regioselectivity, and cosubstrate
proposal against fingerprint-based approaches on experimental
screening data, as well as reactions from the enzyme database
BRENDA in the Results and Discussion section. Concluding
remarks are given in the Conclusions section.

■ METHODS
EHreact is implemented in Python and can be used either as a
standalone command line application or imported as a Python
package. EHreact uses RDKit to process molecules35 and
Graphviz36 to depict template trees.

Input Format and Transformation to Imaginary
Transition Structure. EHreact can operate in two different
template tree generation modes: taking reactions as input
(default, recommended) or only the reactants (single
substrates).
With standard settings, i.e., in reaction mode, EHreact takes

a balanced, atom-mapped reaction SMILES as input, which
must include explicit hydrogen atoms. If the atom-mapping is
not known, it is automatically calculated via the Reaction
Decoder Tool37 (RDT), a state-of-the-art tool for atom-
mapping enzymatic reactions.38 In this case, the non-atom-
mapped reaction SMILES can be given with or without
hydrogens. The accuracy of atom-mappings by RDT for the
different enzyme classes in this study is given in the Supporting
Information. Since correct atom-mappings are integral to the
performance of EHreact, we recommend to precompute
mappings via RDT or any other tool and correct them if
necessary.
Each reaction is then transformed into its imaginary

transition structure (ITS), closely related to the condensed
graph of reaction, by identifying every atom and bond that
changes during the reaction, where we take into account
changes in the charge, hybridization, number of radical
electrons, aromaticity, or bond number and order into account,
following the procedure outlined by Coley et al.39 Molecules
not contributing atoms to the reaction, for example, reagents,
are omitted. The ITS of a reaction is a topological
superposition of the reactants and products, where bonds
present in only the reactants, only the products, and both
reactants and products can appear at the same time.40 It
therefore describes the graph artificial transition state between
reactants and products (but not a true transition state or
mechanism). Figure 1 shows an exemplary ITS for the
oxidation of lactate via the enzyme lactate oxidase (EC
1.1.3.2). Such imaginary transition structures, although known
for decades, have recently attracted increased interest for
parsing reaction databases, predicting structure−activity
relationships and developing reaction descriptors.41−43

We note that the extracted templates in EHreact do not take
into account chirality, which is instead treated in the scoring
algorithm. Handling stereochemistry on the scoring level
instead of the template level has a number of advantages. First,
reactions with stereocenters specified only in a part of the
inputted reactions do not lead to different templates and thus
branching in the template tree if stereoinformation is omitted.
This is important because enzyme databases contain entries
lacking stereocenters for select reactions, but the correct
stereochemistry can usually be inferred from other reactions
catalyzed by the same enzyme during scoring. At the template
level, missing information on a stereocenter would cause
different templates to be extracted for the set of reactions,
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making a comparison at the scoring stage difficult. Second, not
every enzyme is perfectly stereoselective, making it favorable to
consider all possible stereoisomers at the template level and
filter these stereoisomers later during scoring to account for
the selectivity of the enzyme.
In single-substrate mode, EHreact takes SMILES strings as

input (e.g., “CC(O)C(=O)[O-]” for lactate), which may be
given with or without hydrogen atoms. Since no product is
specified in this mode, one can additionally input a seed for the
maximum common substructure search in SMILES format to
help the algorithm focus on the relevant part of the molecule.
For the oxidation of lactate (Figure 1), a meaningful seed
would be “C([H])O[H]”, which is simply the secondary
alcohol that lactate oxidase transforms to a ketone. If no seed is
specified, the algorithm uses the maximum common
substructure in all input substrates as seed.
In both reaction and single-substrate modes, multiple seeds

or reaction centers can be specified to describe enzymes that
catalyze slightly different transformations as long as they are
mutually exclusive.
Template Tree Generation. After identification of the

reactive center (or the seed atoms in substrate mode), the
template is expanded in a stepwise manner based on the
structures of the known reactions or substrates. In reaction
mode, the structures are ITS pseudo-molecules, and the initial
atoms comprise the reaction center. In single-substrate mode,
the structures are real molecules, namely, the input substrates,

and the seed is either given manually or automatically inferred
from the maximum common substructure. Since EHreact is
per default in reaction mode, we will use the ITS nomenclature
in the following. An overview of the template tree generation is
given in Figure 2.
The algorithm iteratively adds more information to a

template, creating a new, more specific template. To this
aim, all atoms with unspecified neighbors are shortlisted in the
current template. For example, in Figure 1, the reaction center
(the current template at the first iteration) can only be
expanded at atom C3, which is the only atom with unspecified
neighbors. If only one atom is shortlisted, the new template is
formed from the current template and all neighboring bonds
and atoms of the shortlisted atom. If more than one atom is
shortlisted, the algorithm searches for a combination of as
many atoms as possible that lead to the exact same new,
enlarged template. An example of this process is shown in
Figure 3 for a set of two known reactions, where, from the
shortlisted atoms 1, 7, and 8, only atoms 1 and 8 have the same
neighbors in all pseudo-molecules. Thus, the new template is
formed from the current template and the neighboring bonds
and atoms of only atoms 1 and 8. Multiple matches of the
template to a pseudo-molecule may occur, in which case all
options are explored, and the match leading to a maximum of
mutually expandable atoms across all pseudo-molecules is kept.
If multiple combinations are possible, the one including less
hydrogen atoms is favored. If only a single pseudo-molecule is
known, all shortlisted atoms are expanded, which is similar to a
diameter-based extraction of rules.19,20,26 If no expansion leads
to an applicable template for all pseudo-molecules, all
shortlisted atoms are expanded, which leads to a branching
in the generated template tree, where multiple new templates
emerge from the current template. If an expansion adds an
atom in a ring, the full ring is added within a single expansion
step.
The generated templates are saved in a template tree, where

each new template is attached to its parent template, that is,
the template it emerged from. Each template can only have a
single parent but one or multiple children. A node in the tree
without a child is simply one of the input pseudo-molecules,
where all atoms are included in the template, leaving no atoms
in the shortlist, and thus no more specific templates that could
be attached as children. Mathematically, such a picture is called
a Hasse diagram, which is simply a way of ordering and
depicting a set of objects using partial orders. Hasse diagrams
have been proposed in the literature to be applicable for the
ordering of substructures in molecules.33 Since we not only
save the information of parent and child to the diagram but
also a number of additional features, we call the generated
template trees “extended Hasse diagrams”.
The diagram is saved to disk in a custom Python class, where

all templates are saved as RDKit molecules. Furthermore,

Figure 1. EHreact processes an inputted atom-mapped SMILES
string (a, upper box), yielding three outputs (lower box), namely, the
respective imaginary transition structures (b), a table of bond changes
(c), and the reaction center that comprises only the atoms and bonds
undergoing changes or bonds between atoms undergoing changes
(d).

Figure 2. Schematic workflow of the template tree generation: for each enzyme, a list of known reactions is transformed into their respective
imaginary transition structures (ITS, white squares) and passed to the template tree generation algorithm. The algorithm outputs a Hasse diagram
of the common substructures around the reaction center (reaction templates, gray circles) and the known reactions, which is saved to the file.
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EHreact produces a text-based representation of the Hasse
diagram, as well as optionally a PNG picture. An example
output is given in the Supporting Information.
In summary, if only a single reaction is known, templates are

extracted at different diameters from the reaction center,
creating a linear Hasse diagram without any branching, but if
more than one reaction is known, the algorithm makes use of
the mutual structural information between them. In both cases,
a number of properties of the template tree and its leaf nodes
are then precomputed to speed up the subsequent scoring of a
query reaction or substrate. The novelty of this approach is to
add atoms and bonds to a reaction center, making use of
conserved substructures in all known reactions instead of some
predefined radius around the reaction center. Implicitly, we
thus assume that conserved substructures indicate the
importance of the respective structures to the mechanism of
the reaction or to specific interactions with amino acids in the
active pocket of the enzyme. Enzymes usually react only with
certain types of substrates, whereas chemical reagents are
typically only specific to a functional group,44 so that inferring
information about important substructures in known substrates
is especially relevant for biocatalytic transformations.
Queries on a Template Tree. Figure 4 schematically

depicts how a new substrate or reaction is queried and scored
on an extended Hasse diagram. There are three modes to score
a reaction or substrate on a given template tree. First, if the
Hasse diagram was produced in reaction mode, one can input a
reaction SMILES (preferably atom-mapped, else automated
mapping via RDT), i.e., one specific reaction, to obtain a score
whether the given enzyme will catalyze the query reaction. If
the reaction center of the query never occurs in the template
tree, the score is zero; otherwise, it is calculated as specified
later in this article. Second, one can use a single substrate in

SMILES format as a query for a Hasse diagram produced in
reaction mode. In this case, the substrate is matched to the
reactant fragments of the minimal template in the tree. If a
match is found, EHreact identifies whether cosubstrates are
missing (for nonunimolecular reactions), as well as whether a
transformation can occur in different parts of the molecule, and
calculates all possible products of the transformation. For a
unimolecular reaction with only one possible product, the
substrate is transformed to the corresponding reaction ITS and
scored. For possibly regioselective reactions, i.e., different
possible products, each possibility is translated to an ITS and
scored individually. For each missing cosubstrate in non-
unimolecular reactions, the algorithm detects what type of
cosubstrate is necessary (for example, an amine donor in an
amine transfer reaction, if the given substrate is an amine
acceptor) and creates a reaction for each cosubstrate that
occurs in the tree, creating one or multiple possible ITSs,
which are each scored individually. Third, one can specify one
or multiple substrates in SMILES format and omit the
cosubstrate search, so that the score is zero if one or more
cosubstrates are missing. Multiple possible products due to
regioselectivity are detected, and each reaction is scored
individually. This mode is beneficial for nonunimolecular
reactions if all reactants are known, and thus no cosubstrate
search is necessary.
If the Hasse diagram was produced in single-substrate mode,

it can only be queried by a single substrate. In this case, the
product after transformation of the query substrate remains
unknown. If the first substructure in the diagram (the seed)
occurs in more than one location in the query, multiple scores
are calculated, so that this mode still provides some measure of
regioselectivity but it cannot propose cosubstrates or identify
the product of a transformation. This functionality is only

Figure 3. Current template allows atoms 1, 7, and 8 to be extended (not all neighbors specified yet). The neighbors of each shortlisted atom in the
template are compared by matching the template to each pseudo-molecule and identifying its neighbors. The algorithm chooses all atoms that have
the same neighbors in all pseudo-molecules, here atoms 1 and 8 (highlighted in gray), for extending the template, leading to a new, larger, more
specific template.

Figure 4. To score the probability of whether a query molecule Q can be processed by enzyme N, the respective template tree is loaded and Q is
transformed to a list of possible imaginary transition structures (white squares, only one possibility shown). The ITS of Q is then iteratively
matched against the templates (gray circles) in the tree until the most specific (furthest to the right) match is found, highlighted in red. The score
then arises from various comparisons of Q to known substrates in the current branch (Y and Z), as well as the location of the template within the
tree and the overall shape and diversity of the tree.
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recommended for a quick scoring of related substrates if the
products are not known; for all other cases, we recommend
training in reaction mode, so that the full capabilities of
EHreact can be exploited during querying and scoring a new
substrate or reaction.
Scoring Function. EHreact scores are calculated as

S S S S S(1 0.1 )EHreact S P M L= * − + − * (1)

where SS is the maximum Tanimoto similarity of Morgan
fingerprints (radius 2, no features) between the query substrate
and the known substrates within the current branch. SP is the
average Tanimoto similarity between all pairs of substrates in
the template tree and is a measure of enzyme specificity. 1 − SP
is thus a measure of enzyme promiscuity. SP was capped at 0.8
for practical reasons, i.e., not setting the promiscuity to zero for
linear template trees with only a single substrate. SM is the
mean Tanimoto similarity between the query and all known
substrates (within the whole tree, not only the current branch).
A larger SP (more specific enzyme) necessitates a larger SM
value to still yield a good overall score. Thus, the difference
between SP and SM is either positive (increasing the overall
score) if the query substrate is more similar to the known
substrates than the specificity of the enzyme demands or
negative (decreasing the overall score) otherwise. SS, SP, and
SM are calculated on the reactants in single-substrate mode or
averaged over reactants and products in reaction mode. SL
scores the position of the highest applicable template within
the tree by counting the minimum number of edges to the
closest leaf node, where SL is calculated as the minimum
distance capped at 5, minus 1 so that it equals zero in the ideal
case of only one edge to the closest leaf node. Since the range
of SL is thus much larger than the ranges of SS, SP, and SM, its
coefficient is smaller. The coefficients −1, 1, and −0.1 were
determined empirically on part of the data. We note that there
are several different ways to calculate a score from SS, SP, SM,
and SL, as well as extract other metrics from the template tree.
Various scoring schemes and metrics were evaluated during the
course of this study, where eq 1 was found to have good
performance and generalization qualities. The score is easily
customizable in EHreact.
In this work, we compare EHreact scores against simpler

similarity scores, where only the maximum Tanimoto similarity
between Morgan fingerprints (length 2048, radius 2, no
features) to all known reactions is taken into account, similar
to ref 23, 24, as well as ref 22, which uses a different
fingerprint, though. Different similarity metrics, fingerprint
radii, and fingerprints with/without features were tested for
their ability to discern between active/inactive substrates (see
the Supporting Information), and the chosen metric and
parameters performed best. We note that SS is not always the
same as such a simple similarity score because SS is the
maximum similarity over the known substrates within the
specific branch in the diagram, whereas the latter is usually the
maximum similarity over all substrates.
Other scoring schemes in the literature involve combining a

similarity score with a further score, for example, a “biological”
score in ref 20, which incorporates a cluster analysis of
enzymes, as well as the radius at which the rule was extracted.
The novelty of our approach is that the difference between SP
and SM characterizes the promiscuity of the enzyme in relation
to the observed similarity, which is substantially different from
the cluster analysis of ref 20, which characterizes sequence
availability. Furthermore, counting the number of steps to the

nearest leaf node, SL, instead of counting the number of steps
from the most general rule to the current rule (radius of the
rule) provides an advantage when differently sized substrates
are known for an enzyme. Namely, scoring via the radius of a
rule disadvantages small known substrates versus larger ones
since any change in a small substrate will substantially decrease
the radius of the applicable rule, even if furthest away from the
reaction center.

Data Preparation. For validation of the scoring function, a
set of experimental studies on the substrate ranges of various
enzymes were extracted from the literature manually,45−52 as
well as a study on organic coupling reactions to test the
performance of EHreact on organic, nonenzymatic reactions.53

Each study reported either the yield or activity of an enzyme/
catalyst on a specified substrate under reaction conditions
consistent throughout each study. Each reaction was classified
as active or nonactive by assigning a threshold manually to
yield approximately 10−40% active reactions per data set
(thresholds are listed in Table 1); data is available in the

Github repository. Since the distribution of yields and activities
varied largely between data sets, the thresholds were roughly
chosen around the mean of the distribution of each data set
plus 1 standard deviation, but comparable results were
obtained with different thresholds. For the organic coupling
reactions, a larger threshold was chosen to limit the number of
active reactions due to the size of the data set. Substrates with
unknown products were omitted, as well as enzymes for which
no substrate was labeled as active. The number of remaining
substrates and enzymes is also listed in Table 1. All reactions
were atom-mapped via RDT and corrected by running
EHreact on all reactions per class, flagging reactions with a
deviant reaction center and correcting the atom-mapping
manually. The number of initially correct and incorrect atom-
mappings is available in the Supporting Information. A full list
of all employed enzymes/reaction classes, including identifiers
as used in the respective references, is available in the
Supporting Information.
To count the number of reported reactions for various EC

classes and enzymes, we furthermore analyzed BRENDA,30

RetroRules,26 and RHEA,54 as described in the following.
To recover enzymatic reactions for various EC classes, the

BRENDA database was parsed using a text download of the
database as exported in December 2019.30 To resolve SMILES
strings from substrate and product names, BRENDA ligands
were also queried generically from the search portal to export

Table 1. Summary of Employed Experimental Data
(Reference, Number of Substrates, Number of Enzymes/
Reaction Classes, and Threshold into Active/Nonactive
(Active If > Threshold)

ref #S #E thresh.

nitrilases [45] 38 7 50% yield
aminedehydrogenases [46] 18 12 50 mU/mg
alcoholdehydrogenases [47] 65 2 100 nmol/(min·mg)
carboxyl-
methyltransferases

[48] 17 3 50 pkat/mg

transaminases [49] 10 12 95% yield
tryptophansynthases [50] 9 42 50% yield
amidinotransferases [51] 42 1 30% yield
dehalogenases [52] 46 1 30 (mM·s)−1

C(sp2)−C(sp3)
couplings

[53] 52−117 7 70% yield
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Inchi values for various ligands included in the database. This
does not cover all ligands. To supplement the ligands
recovered from the search tool, all remaining compounds
were queried against PubChem and the Opsin name resolver.55

For downstream analysis, all reaction entries with unresolved
compounds were removed and duplicates in each EC class
were filtered. Code, including instructions for downloading
necessary files, is available on Github.56 The reactions from EC
1.1.X (X = 1.145, 1.149, 1.209, 1.213, 1.239, 1.265, 1.283, 1.50,
1.6, 1.64, 1.72, 3.2, 3.6, 3.9), EC 2.6.1.X (X = 1, 12, 14, 15, 18,
2, 27, 28, 36, 39, 40, 42, 44, 5, 51, 57, 64, 73), and EC 4.1.3.42
were atom-mapped via RDT and corrected manually, as
described above, to serve as test-cases for cosubstrate proposal,
regioselective prediction, and diagram construction.
Reactions from RetroRules (version rr02 based on the

MNXref (version rr02 based on the MNXref version 3.0,57

compatible with RetroPath2) were determined for each 4-digit
enzyme EC number in the forward direction at the lowest rule
diameter after removing duplicate reaction entries where
RetroRules splits multisubstrate reactions into multiple single-
substrate rules.
For RHEA, reaction ids were cross-linked to their respective

amino acid sequences in UniProt and SwissProt to determine
the number of unique reaction annotations available per
enzyme (not EC class).58 Since RHEA follows a hierarchical
annotation technique, specific reactions are associated with a
broader master class of reaction, if appropriate. If an enzyme

was annotated both with its specific reaction class and master
class, the master class was removed from the analysis to avoid
double counting.

■ RESULTS AND DISCUSSION

Exemplary Template Tree Construction. To illustrate
the transformation of input reactions to their respective
imaginary transition structures, as well as the iterative common
substructure search around the reaction center, we discuss the
enzyme 4-hydroxy-2-oxoglutarate lyase (EC 4.1.3.42), for
which BRENDA lists three known substrates, 4-hydroxy-2-
oxoglutarate, 4-hydroxy-2-oxobutanoate, and oxaloacetate. The
substrates, together with the reaction catalyzed by 4-hydroxy-2-
oxoglutarate lyase, are depicted in Figure 5a. The enzyme
enables the splitting of a carbon−carbon bond adjacent to a
hydroxyl group. The products are for all three cases pyruvate,
as well as glyoxylate, formaldehyde, or carbon dioxide,
respectively. Extracting reaction templates with literature
methods,26,39 for example, including all atoms up to one
bond away from the reaction center (a common choice),
would create three different templates (Figure 5b), which all
miss the mutual information inherent to the known reaction.
The ITSs of the reactions show a large common substructure
(Figure 5c). One side of the substrate is highly conserved,
namely, the side that forms pyruvate (everything attached to
C:10), while the other side (everything attached to C:4) is
diverse in structure and size. This indicates that the pyruvate

Figure 5. Standard templates and Hasse diagram of three known reactions of 4-hydroxy-2-oxoglutarate lyase (EC 4.1.3.42). Atom-mappings are not
shown for atoms that are not in the reaction center. The inputted reactions (a) are transformed to their respective ITSs (c). An iterative
substructure search yields the Hasse diagram of all templates (d), which is reprinted as drawn by EHreact (with the two reaction template drawings
added). The reaction center is highlighted in gray. Templates (substructures of the ITS pseudo-molecules) are framed in red, and leaf nodes (full
ITSs of known reactions) are framed in black. The first template corresponds to the reaction center. The fourth template is the most specific, largest
template that describes all inputted reactions and corresponds to the hand-crafted reaction rule for 4-hydroxy-2-oxoglutarate lyase. In contrast,
standard template extraction routines (b), here shown for the common choice of including atoms up to one bond away from the reaction center,
lead to three different templates, which do not characterize the system well.
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side is essential for a good fit into the active pocket of the
enzyme and/or is involved in the mechanism. And indeed, a
mechanistic study on 4-hydroxy-2-oxoglutarate lyase showed
specific interactions of the amino acids in the active pocket
with the pyruvate side of the substrate, as well as volume
restrictions at the same side.59 EHreact exploits this mutual
information between known reactions by iteratively adding
atoms in conserved substructures to the minimum reaction
template (first template in Figure 5d). In each step, the
algorithm adds only atoms and their corresponding bonds,
which are conserved in all reactions and are direct neighbors of
current atoms in the template, eventually leading to the fourth
template in Figure 5d, which is the most specific template that
applies to all input reactions. It identifies that 4-hydroxy-2-
oxoglutarate lyase acts on substrates exhibiting the important
pyruvate moiety next to the C−C bond to be split and does
not specify the other side of the molecule at all, thus
corresponding perfectly to a template crafted with expert
knowledge of the active pocket and mechanism in this system.
Upon further addition of atoms to the template, the diagram
splits up into three branches, where two branches lead to leaf
nodes directly (the full reaction ITS) and one yields an
additional template before ending in a leaf node as well. If the
user is interested in a single template, extracting the most
specific mutual template (the fourth template in Figure 5d) is
sufficient and provides an advantage over traditional template
extraction methods where the user decides on an appropriate
level of specificity. However, saving the whole template tree
and utilizing it in the scoring function were found to be highly
beneficial, as demonstrated later in this article. Additional
examples of Hasse diagrams (for the BRENDA entry EC
1.1.3.2 and the UniProt entry P23525) are available in the
Supporting Information, as well as benchmarks of constructing
a diagram and computing the score of a query reaction.
In general, the presented template tree extraction procedure

can be useful in a number of scenarios. For example, EHreact
reaction mode can be used to extract the single, most specific
but mutually applicable template for a set of reactions.
Furthermore, calculating a Hasse diagram in single-substrate
mode helps to quickly gain an overview over a set of molecules
and their common substructures and similarities. A further
possible application of EHreact is the reduction of the number

of extracted templates from reaction databases for enzymatic
and organic reactions alike without losing generality, just as
demonstrated in Figure 5, where EHreact yields a single
template for all reactions instead of the three different
templates as extracted by other routines. It is well known
that the number of extracted templates scales with the number
of reactions in a database, and a large fraction of templates only
occur once even in large data sets.60 One could thus reduce the
number of templates by using EHreact to extract a template
based on common substructures instead of a fixed number of
bonds adjacent to the reaction center or possibly even utilize
the template tree structure to speed up the application of a
template to a molecule, where a missing match to the most
general template in a Hasse diagram immediately disqualifies a
reaction type, thus making computer-aided synthesis planning
easier and faster. EHreact templates should thus be beneficial
to retrosynthesis applications since they comprise a small,
consistent and mutually exclusive set of templates. The
automated selection of generality for each enzyme class allows
for a reduced bias toward larger molecules compared to radius-
based template extraction. EHreact templates are furthermore
balanced and include cofactors and cosubstrates, which makes
them applicable to enzymatic cascade design including cofactor
recycling, a field of research that currently relies mainly on
manually extracted templates.

Composition of Enzymatic Reaction Databases. The
quality of EHreact templates and scoring directly depends on
the number of reactions. The number of reactions determines
the size and variety of each template tree and thus its ability to
create meaningful templates and scores.
Figure 6 depicts the number of known reactions per EC class

or enzyme in different databases, namely, RHEA (cross-linked
with SwissProt and UniProt), BRENDA, and RetroRules. For
RHEA, reaction ids were associated with their respective
amino acid sequences in UniProt and SwissProt, and unique
reaction classes were counted per enzyme. Nearly no
differences arose between cross-linking with SwissProt or
UniProt, and in the following, we refer to the results from
SwissProt only. For BRENDA, unique reactions that had valid
entries for reactants and products and could be parsed to
SMILES strings were counted for each 4-digit enzyme EC
number. If a reaction occurred in both forward and reverse

Figure 6. Number of reactions per EC class (left) and per enzyme (right) in different databases.
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directions in BRENDA, it was only counted once. For
RetroRules, the number of reactions per 4-digit enzyme EC
number was determined for transformations in the forward
direction at the lowest rule diameter after removing duplicate
reaction entries where RetroRules splits multisubstrate
reactions into multiple single-substrate rules. In total, 76%
and 51% of all EC numbers and 17% of all enzymes are
associated with more than one reaction for BRENDA,
RetroRules, and RHEA, respectively, where EHreact can
potentially exploit the mutual information between the
reactions. Although there are certainly a number of cases
where reported reactions are very dissimilar and thus limit the
applicability of EHreact, we believe that template extraction
based on sets of reactions is a possible and reasonable choice
for enzymatic reactions, especially for databases such as
BRENDA, and offers an advantage over the extraction of
reaction templates from independent reaction precedents.
Validation on Experimental Data. We compared the

ability of EHreact scores to identify promising substrate/
enzyme combinations observed in experimental screening
studies against different similarity metrics. Nine recent data
sets from the literature were chosen toward this aim, for which
both reactants and products were known (opposed to the more
prevalent manner of only reporting reactants). Eight studies
comprised enzymatic transformations, reporting the activity of
different nitrilases,45 aminedehydrogenases,46 alcoholdehydro-
genases,47 carboxyl-methyltransferases,48 transaminases,49 tryp-
tophansynthases,50 amidinotransferases,51 and dehalogenases52

on diverse sets of substrates. An additional study on seven
organic C(sp2)−C(sp3) couplings53 was utilized to showcase
the performance of EHreact on nonenzymatic transformations.
Leave-one-out experiments were conducted on each data set,

where the feasibility of each reaction (substrate/product/
enzyme combination) was evaluated by omitting it during the
calculation of the template tree (one tree per enzyme) and
subsequently calculating a score according to the above-
discussed scoring scheme. We calculated scores using both
EHreact and a traditional similarity metric (Tanimoto
similarity on Morgan fingerprints of length 2048, radius 2,
no features; see Supporting Information for other metrics and
parameters). Data points labeled as active according to the
thresholds in Table 1 were treated as known reactions (inputs)
for both EHreact and similarity-based approaches. The area
under the curve (AUC) of the receiver operating character-
istics was then evaluated per assay (for all leave-one-out
experiments), as well as the binary classification accuracy at a
threshold of 0.5 (which is close to the mean optimal threshold
averaged over all enzymatic systems for both EHreact, 0.43,
and similarity scores, 0.58; optimal thresholds for each system
are given in the Supporting Information). Other thresholds
and F1-scores are available in the Supporting Information, as
well as AUC and Acc. for running EHreact in single-substrate
mode (instead of reaction mode).
Table 2 lists the AUC and accuracy for the classification into

active/inactive substrates in reaction mode. In general,
EHreact leads to a similar AUC but higher accuracies, with
the differences being especially prominent for carboxyl-
methyltransferases, transaminases, tryptophansynthases, and
amidinotransferases. In these assays, substrates have high
similarity scores between each other, but the enzymes only act
on a very narrow range on substrates, i.e., are rather selective.
In this case, a high similarity score does not necessarily ensure
an enzyme being active toward a new substrate. Figure 7

depicts the similarity scores of a new substrate, as well as the
similarities between known substrates, over the observed
classification accuracies for all eight assays. The classification
accuracy of simple similarity metrics significantly decreases
with increasing similarity scores (left panel) since the similarity
between known substrates also increases, indicating very
specific enzymes. Since the specificity/promiscuity of an
enzyme is not taken into account, the high similarity scores
cause a large number of false positives in the classification. In
contrast, the accuracy of EHreact scores (center panel) does
not show a dependence on the individual similarities and
specificities because they can both contribute to the score
(higher specificities necessitate higher similarities to still
observe a good overall score). The right panel shows the
difference of accuracies via EHreact and similarity scores,
which is largest for cases with high individual similarities and
specificities. The shortcoming of similarity metrics to discern
between specific and promiscuous enzymes was already
identified in the literature,28 but, to the best of our knowledge,
EHreact offers the first systematic scoring scheme to correct
for it. This observation is not tied to the threshold used (see
the Supporting Information for other thresholds) but a
fundamental shortcoming in similarity metrics not discerning
between generalist and specialist enzymes and thus necessitat-
ing different thresholds for each enzyme. We thus find that the
additional information in the shape, size, and diversity of the
template tree of known reactions of an enzyme is beneficial for
the scoring of new substrates and helps to find a universal
scoring threshold across different data sets.
Table 2 furthermore lists classification metrics for a

nonenzymatic assay, namely, a set of organic C(sp2)−C(sp3)
coupling reactions, where each name reaction (BF3K-Ni-
photoredox, BF3K-Pd-Suzuki, CEC-Ni-Weix, CEC-Ni-photo-
redox, COOH-Ni-photoredox, MIDA-Pd-Suzuki, and Negishi-
Pd) was used to group known reactions, similar to each
individual enzyme in the enzymatic assays. Leave-one-out
experiments were conducted to score each reaction within each
name reaction group. EHreact scores provide an improvement
regarding both AUC and accuracy compared to similarity
scores, although EHreact scores were developed and tested
solely on enzymatic reactions. We expect this improvement to
hold for some other organic reactions, too, namely, whenever
the structure around the reaction center contributes to the
reaction outcome or yield significantly. Although this is

Table 2. Area under the Curve AUC and Classification
Accuracy Acc. (at a Threshold of 0.5) for Scores Obtained
via Similarity or EHreacta

AUC Acc.

Sim. EHreact Sim. EHreact

nitrilases 0.91 0.93 0.87 0.88
aminedehydrogenases 0.88 0.87 0.89 0.90
alcoholdehydrogenases 0.80 0.77 0.75 0.75
carboxyl-methyltransferases 0.82 0.86 0.25 0.69
transaminases 0.59 0.73 0.53 0.79
tryptophansynthases 0.66 0.57 0.39 0.62
amidinotransferases 0.78 0.82 0.19 0.76
dehalogenases 0.74 0.76 0.70 0.78
C(sp2)−C(sp3) couplings 0.70 0.75 0.53 0.75

aHighest values for AUC and Acc. are printed in bold. Corresponding
data for EHreact in single-substrate mode is available in the
Supporting Information.
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certainly not the case for organic reactions in general, it makes
EHreact a useful tool for at least some reaction classes.
Next, we investigated whether EHreact still provided an

improvement over similarity-based approaches if only a single
substrate per enzyme was known. Thus, template trees and
similarity comparisons were solely calculated for the most
active substrate for each enzyme in each data set, producing
linear template trees without any branches. This analysis thus
reflects the case of n = 1 in Figure 6. In a linear template tree,
the promiscuity scores do naturally not come into play, but the
location score may still provide a means to penalize
modifications close to the reactive center over modifications
in other parts of the molecule compared to the reference
structure. However, we found no significant trends in the AUC
between scores based on similarity and EHreact. For some
systems, a penalty based on the location score was beneficial
but not for others, indicating that diameter-based template
scoring is not necessarily superior to the overall similarity
scoring.
Regioselectivity and Cosubstrate Proposal. To eval-

uate the EHreact’s ability to propose meaningful cosubstrates
for multisubstrate reactions, we selected EC classes from
BRENDA, which report on reactions with two substrates each,

have more than 10 known reactions, less than 70% occurrence
of the most frequent substrate over all reactions, and molecular
weights less than 200 g/mol per substrate. All reactions were
then checked for balance, where unbalanced reactions were
discarded, and then atom-mapped via RDT. Due to the
difficulties of RDT to map some of the reactions, mappings
were checked manually and corrected if necessary. This yielded
555 reactions in 18 EC classes, namely, 2.6.1.X with X = 1, 12,
14, 15, 18, 2, 27, 28, 36, 39, 40, 42, 44, 5, 51, 57, 64, and 73
(transaminase reactions). For the reactions in each EC class,
the ability of EHreact and similarity scores to discern between
combinations of amine-donors and acceptors as observed in
BRENDA (positive data) and all other combinations (obtained
by the exhaustive combination of all donors and acceptors
within a class corresponding to negative data) was analyzed.
We calculated the area under the curve of the receiver-
operator-characteristic to obtain a measure of how well the
obtained scores can discern between true and artificial
combinations of substrates (Figure 8, left panel). EHreact
outperforms similarity scores with an average AUC of 0.69
versus 0.59. We furthermore calculated the rank of the correct
reaction partner for each substrate, which occurred only once
in the reported reactions but its partner occurred in multiple

Figure 7. Relationship between the classification accuracy of an assay and the similarity score SS and the promiscuity score SP calculated via
similarity (left), EHreact (center), and their difference (right). The lines connect the respective SS and SP values of each system. The new EHreact
method is much more accurate for nonpromiscuous enzymes or if the new substrate is very similar to substrates in the training set.

Figure 8. Comparison between EHreact and similarity scores. Boxplots of the ROC−AUC for the classification of whether a combination of
substrates is likely (left), top-1-accuracy for the proposal of a cosubstrate (middle), and average rank of the correct cosubstrate (right).
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reactions by enumerating all possible reaction partners and
calculating scores via EHreact and similarity on the basis of the
other known reactions within an EC class. The average ranks
are shown in Figure 8, right panel, where EHreact ranks the
correct partner on average at rank 2.5 and thus higher than a
comparison via similarity (average rank 3.6). The fraction of
reactions where the correct partner was identified at rank 1
(top-1-accuracy) is 64% for EHreact and 41% for similarity.
Taking into account the first three suggestions (top-3-
accuracy), EHreact correctly identifies the cosubstrate in
81% of cases and similarity for 62% of cases. EHreact thus
outperforms similarity scores for both classifying whether a
given combination of substrates is likely to undergo an
enzymatic reaction, as well as ranking suggestions for reaction
partners.
Regarding regioselectivity, we selected 13 EC classes from

BRENDA where some reactions had multiple possible sites of
transformation, here alcohols for oxidoreductase enzymes
catalyzing the oxidation of alcohols to ketones/aldehydes
(EC 1.1.X with X = 1.145, 1.149, 1.209, 1.213, 1.239, 1.265,
1.283, 1.50, 1.6, 1.64, 1.72, 3.6, 3.9). We calculated scores for
each reaction site using EHreact or similarity scores using the
nonregioselective reactions within the same EC class as
training reactions. Both EHreact and similarity scores showed
100% top-1-accuracy, thus identifying the correct site of
transformation in all cases.
The capability of EHreact to propose and rank cosubstrates,

as well as output byproducts, makes it especially attractive for
use in the enzymatic cascade design. Designing an efficient
cascade includes selecting transformations from a set of
possible reactions that recycle cofactors, reduce waste in the
form of unwanted byproducts, and find combinations of
reactions that drive the equilibrium to the product, which are
all tasks that rely on an accurate prediction of cosubstrates,
cofactors, and byproducts.
Limitations. In the following, we briefly summarize the

current limitations of our tool since we believe that a critical
discussion helps us to prevent unintentional misuse, as well as
spark developments and solutions that overcome current
shortcomings. Since the software is open source, we
furthermore invite interested users to contribute toward this
effort.
An apparent limitation of the proposed method is its need

for atom-mapped, balanced reactions, which can add additional
burden to the preprocessing of databases, where reactions are
often unbalanced, and not always atom-mapped, sometimes
even incorrectly atom-mapped. In fact, erroneous atom-
mappings are a major limitation to all template-based reaction
predictions in both organic and biocatalytic syntheses.
Incorrect atom-mappings usually cause unique, nonmeaningful
ITSs, which branch off at the beginning of the Hasse diagram
of templates. EHreact thus provides a framework to easily
detect incorrect mappings, but a correction can be tedious and
often requires manual interaction. On a similar note, the input
of inconsistent configurations, such as open- and closed-loop
sugars, leads to an undesired branching in the template
diagram. Furthermore, the full functionality of EHreact
requires the knowledge of reactants and products for the
training set, but substrate screening studies often only report
on the reactants but not the products, measuring reaction
success by the consumption of the substrate or a cofactor.
We have shown in previous sections that EHreact functions

best if more than one reaction per enzyme is known. If only a

single reaction is known, the scoring scheme still profits from
the multiple templates extracted at different specificities
forming a linear template tree in some cases, but if the user
wishes to only output a single reaction template, then there is
no advantage over other template extraction routines in the
literature. For a linear template tree, EHreact cannot determine
which specificity or level of generality is best, and the
specificity has to be determined by user input (for example,
include all atoms up to one bond away from the reaction
center, which is the second template in a linear template tree).
This only comes into play where the primary use of EHreact is
template extraction instead of scoring.
Finally, there are some limitations to the scoring algorithm,

too. Although EHreact uses a scoring scheme beyond simple
chemical similarity metrics, it is still based on common
structures and their similarities. Thus, for enzymatic systems
where the activity does not correlate well with conventional
molecular descriptors, we also expect that EHreact will not
perform well. Other similarity-based approaches will also fail
for such cases. Also, an inherent limitation of all similarity-
based and structure-based approaches is their inability to
extrapolate to new substrates, which are very different from
known ones. Although the diversity of the EHreact scoring
routine might help us to perform better than a fingerprint
similarity comparison for extrapolating to new substrates, we
expect its extrapolation ability to be at best mediocre.

■ CONCLUSIONS
We have introduced a novel method of extracting multiple
reaction templates from a set of known reactions and utilizing
the mutual information between them to obtain better
predictions of the activity of non-natural substrates. The
developed open-source software, EHreact, extracts, groups, and
saves templates as imaginary transition structures and
constructs a Hasse diagram of molecular fragments of the
transition states.
EHreact allows for the extraction of single, unique, and

mutually exclusive templates at a level of specificity imposed by
the set of input reaction, whereas conventional extraction
routines lead to multiple, sometimes not mutually exclusive
templates and require user-defined criteria of how many atoms
to include. Using the most specific mutual template in a Hasse
diagram automatically includes all atoms close to the reactive
center, which are conserved within the full set of known
reactions, without any knowledge about the system. This
significantly lowers the number of extracted templates in a
database and discerns between specialist and generalist
enzymes. It furthermore reduces the bias toward larger
molecules that is present in radius-based template sets, thus
allowing for predictions of reactions that are missed by current
approaches. EHreact can also be used to visualize substrate
scopes and specificities of enzymes (or groups of reactions in
general) in a straightforward, transparent, and interpretable
fashion. It thus offers a white box alternative to black box
approaches such as neural network models to predict template
specificity for chemical synthesis planning.
The template trees, together with a scoring function, can

furthermore be utilized to propose possible transformations on
a substrate by a given enzyme, as well as score and rank the
proposed reactions according to their anticipated feasibility.
The scores allow for a better classification into active and
nonactive substrate/enzyme combinations compared to
similarity-based scores for experimental screening studies of
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substrate ranges of diverse enzymes. The scoring scheme was
furthermore shown to accurately rank the correct product
highest for substrates that can undergo transformations at
different positions, as well as correctly propose cosubstrates for
multireactant transformations such as amine transfers, which is
an important prerequisite for the application in the computer-
aided enzymatic cascade design.
We have thus established the extraction and scoring of

reaction templates based on Hasse diagrams of common
substructures in the imaginary transition structures to be an
easy and promising alternative to conventional template
extraction and scoring routines, especially where only a few
reactions per enzyme are known. We acknowledge that
different approaches, such as machine learning of structure−
activity relationships of enzymes and substrates, are a very
promising alternative for large data sets, with a number of
studies published recently.61,62 However, for regimes of little
data, as presented in this study, we believe that simple heuristic
scoring schemes are a more robust and interpretable route
toward success and estimate the performance of EHreact to be
satisfactory for use in computer-aided pathway design. We plan
to utilize EHreact to design multistep synthesis pathways and
enzymatic cascades.
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