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ABSTRACT Small, noncoding RNAs (sRNAs) are being increasingly identified as impor-
tant regulatory molecules in prokaryotes. Due to the prevalence of next-generation
sequencing-based techniques, such as RNA sequencing (RNA-seq), there is potential for
increased discovery of sRNAs within bacterial genomes; however, these elements are
rarely included in annotation files. Consequently, expression values for sRNAs are omit-
ted from most transcriptomic analyses, and mechanistic studies have lagged behind
those of protein regulators in numerous bacteria. Two previous studies have identified
sRNAs in the human pathogen group B Streptococcus (GBS). Here, we utilize the data
from these studies to create updated genome annotation files for the model GBS
strains NEM316 and COH1. Using the updated COH1 annotation file, we reanalyze pub-
licly available GBS RNA-seq whole-transcriptome data from GenBank to monitor GBS
sRNA expression under a variety of conditions and genetic backgrounds. This analysis
generated expression values for 232 putative sRNAs that were overlooked in previous
transcriptomic analyses in 21 unique comparisons. To demonstrate the utility of these
data, we identify an sRNA that is upregulated during vaginal colonization and demon-
strate that overexpression of this sRNA leads to increased bacterial invasion into host
epithelial cells. Finally, to monitor RNA degradation, we perform a transcript stability
assay to identify highly stable sRNAs and compare stability profiles of sRNA- and pro-
tein-coding genes. Collectively, these data provide a wealth of transcriptomic data for
putative sRNAs in GBS and a platform for future mechanistic studies.

IMPORTANCE In recent years, sRNAs have emerged as potent regulatory molecules in
bacteria, including numerous streptococcal species, and contribute to diverse proc-
esses, including stress response, metabolism, housekeeping, and virulence regulation.
Improvements in sequencing technologies and in silico analyses have facilitated
identification of these regulatory molecules as well as improved attempts to deter-
mine the location of sRNA genes on the genome. However, despite these advance-
ments, sRNAs are rarely included in genome annotation files. Consequently, these
molecules are often omitted from transcriptomic data analyses and are commonly
repeat identified across multiple studies. Updating current genomes to include sRNA
genes is therefore critical for better understanding bacterial regulation.

KEYWORDS RNA stability, Streptococcus agalactiae, group B streptococcus, regulatory
RNA, sRNA, virulence

S treptococcus agalactiae, or group B Streptococcus (GBS), is a Gram-positive bacte-
rium that colonizes the urogenital and gastrointestinal tract of 20% to 30% of

healthy individuals (1, 2). However, as an opportunistic pathogen, GBS also causes
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diverse diseases, including meningitis, sepsis, skin and soft tissue infections, and pneu-
monia (3, 4). Studies on GBS gene regulation have focused on protein regulators (such
as two-component systems), which sense environment signals and respond by regulat-
ing bacterial gene expression (5–7). However, nonprotein regulators, such as small,
noncoding RNAs (sRNAs), have been understudied in GBS thus far.

Two previous studies identified putative sRNAs in GBS strain NEM316 (8, 9). Pichon
et al. utilized in silico analysis to identify 197 novel sRNA candidates (8), and subse-
quent work by Rosinski-Chupin et al. utilized differential RNA sequencing (dRNA-seq)
and strand-specific RNA sequencing (RNA-seq) to identify 120 putative sRNAs (9).
These sRNAs were later classified by Wolf et al. into conserved RNA families across 27
GBS genomes (10). However, because only those with high structural similarity to
known bacterial sRNAs were analyzed, only 30 GBS sRNAs were classified in this study,
potentially excluding many legitimate GBS sRNAs. Here, we utilize these previous stud-
ies to update the genomes of the clinically relevant strains NEM316 and COH1 to
include sRNA annotations and utilize these updated genomes to generate both sRNA
expression and transcript stability data.

ANNOTATION OF sRNAS ON THE GBS GENOME

To facilitate the study of sRNAs in GBS, we updated two genomes from clinically rele-
vant GBS strains (NEM316 and COH1) to include annotations for all putative sRNA candi-
dates identified by Pichon et al. and Rosinski-Chupin et al. Supplemental files indicating
the location of the sRNAs from each study were combined, and all repeat-identified
sRNAs were eliminated. The remaining sRNAs were then annotated on the GBS
genomes, resulting in the addition of 272 sRNAs to the NEM316 genome and 232 to the
COH1 genome (Fig. 1A; see File S1 in the supplemental material, genome annotation
files available at https://figshare.com/projects/Global_annotation_expression_analysis
_and_stability_of_sRNAs_in_Group_B_Streptococcus/117768). A total of 40 sRNAs were
not added to the COH1 genome due to reduced sequence homology (,80%) or ab-
sence from the genome. sRNA-encoding genes were annotated sequentially starting at
the origin of replication as was performed for GBS coding sequence annotations (see
Text S1).

GLOBAL sRNA EXPRESSION ANALYSIS

All previously published GBS RNA-seq studies have overlooked sRNA gene reads. To
recover and analyze these overlooked data, we downloaded publicly available GBS
RNA-seq data sets and generated expression data for 232 sRNAs in the COH1 back-
ground (see Text S1 for selection criteria used). A total of 70 RNA-seq data sets fulfilled
the criteria for reanalysis (see File S2 in the supplemental material) (7, 11–15). Using
these studies, we performed 21 unique differential gene expression analyses (DEAs) in
which sRNA expression was analyzed across two different conditions (see Table S1 in
the supplemental material; Fig. 1B). The expression values of all sRNAs in each DEA are
included as File S3 in the supplemental material, and the number of differentially
expressed (.3-fold with a minimum expression of 10 in at least 1 condition) sRNAs in
each comparison is shown in Fig. 1B and File S4 in the supplemental material.

Of these 21 comparisons, we first examined DEA 9 (A909 chemically defined me-
dium [CDM] versus A909 vaginal tract) to evaluate sRNAs that have altered expression
in vivo (compared with laboratory conditions), as these sRNAs may affect GBS host per-
sistence. A total of 85 sRNAs demonstrated .3-fold variation in expression (which met
our cutoff criteria), with 28 being downregulated and 57 being upregulated in the vag-
inal tract (Fig. 1B; File S4). Of those 57 sRNAs, s1160 was the most highly upregulated
in the vagina (88-fold) (Fig. 1C) and exhibited the second highest expression in the
GBS cell (average reads per kilobase per million [RPKM] expression level of .32,000
across all conditions examined) (File S3). Since sRNA function is often related directly
to abundance, we hypothesized that s1160 may play a role during GBS vaginal coloni-
zation. To examine this hypothesis, we overexpressed s1160 in GBS and assessed its
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interaction (adherence and invasion) with human vaginal epithelial cells (hVECs). The
s1160 overexpression construct included the upstream sequence as to include its puta-
tive promoter. Although an adjacent sRNA, s1165, was also included in this upstream
region, s1165 had an expression value of 0 in the vaginal tract and little to no expres-
sion across the other DEAs; therefore, it is unlikely to influence any vaginal colonization
phenotypes. s1160 overexpression did not impact GBS adherence to hVECs but did sig-
nificantly increase GBS invasion compared with the vector control (Fig. 1D and E).
These results demonstrate the utility of the analysis presented here and suggest a
potential role for s1160 during GBS vaginal colonization. Future studies will examine
the contribution of s1160 to GBS colonization in vivo, as well as investigate the mecha-
nism of action of this sRNA. Quantitative PCR (qPCR) analysis of the s1160 and s1165

FIG 1 Global sRNA identification and expression analysis. (A) Diagram showing the distribution of sRNA genes (blue lines, inner circle) throughout the GBS
genome. Coding sequence genes on the forward strand (outer circle) and reverse strand (middle circle) are depicted in red. Circos plot was created with
Circa (http://omgenomics.com/circa). (B) Results of 21 DEAs performed. The conditions for each DEA are indicated as well as the number of sRNA genes
upregulated and downregulated (.3-fold). The total number of sRNA genes altered is shown in parentheses. (C). The s1160/s1165 locus and transcript read
mapping in GBS strain COH1. Coding sequence genes are illustrated as dark-blue arrows and sRNA genes as yellow arrows. RNA-seq read mappings from
DEA9 (CDM top, vaginal tract bottom) are displayed for the locus. Red bar indicates the region cloned into pDC to create pDCs1160/s1165. (D and E) GBS
strain COH1 with an empty vector (pDC) compared with an s1160 overexpression strain (pDCs1160/s1165) were used to test adherence to (D) or invasion
of (E) hVECs. All data are represented as percent CFU recovered of the initial inoculum and were performed at least in technical triplicates. Each plot is
representative of five individual experiments. Significance determined by paired t test; *, P , 0.05.
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genes in COH1 at an optical density at 600 nm (OD600) of 0.2, 0.5, and 1.0 (correspond-
ing to the time points used in DEAs 1, 2, and 3) confirmed the expression patterns
observed in the RNA-seq data analysis (see Fig. S1 in the supplemental material).

GLOBAL RNA STABILITY ANALYSIS

Cellular RNA levels are regulated by the control of RNA synthesis (i.e., transcription)
but also by the rate of RNA stability/degradation. The combined application of rifampi-
cin RNA stability experiments with RNA-seq (here referred to as stability RNA-seq)
allows a global analysis of the stability/rate of degradation of all cellular transcripts
simultaneously (16). We performed stability RNA-seq using our updated GBS genome
reference file and analyzed the stability of both coding DNA sequence (CDS) and sRNA
transcripts. Gene expression values were normalized against the value for ssrA at the
corresponding time point, and the half-life of each RNA was calculated (see Text S1 for
details and cut off criteria applied). Half-lives were determined for 1,759 CDS tran-
scripts and 72 sRNAs (see File S5 in the supplemental material). While the median nor-
malized half-life for CDS and sRNA transcripts was very similar (2.4 min and 2.39 min,
respectively), the mean half-live for sRNA transcripts was much larger (6.3 min com-
pared with 2.7 min for CDS) (Fig. 2A). Only five CDS transcripts had half-lives exceeding
10 min, with the maximum half-life of 14.4 min for GBSCOH1_RS09545. In contrast,
eight sRNA transcripts had half-lives longer than 10 min (Fig. 2B), including values of
45.7 min for ssrA, 32.8 min for rnpB, and a maximum value of 95.9 min for the unchar-
acterized sRNA s0380. Of note, s1160 (shown above as one of the most highly
expressed sRNAs in GBS and being upregulated during vaginal colonization) was also
among the most stable transcripts in the cell with a half-life value of 26.75 min. This
result was confirmed by Northern blotting (see Fig. S2 in the supplemental material).

The half-life analysis returned negative values for three CDS transcripts and five
sRNAs. In most cases, this result was because one (or more) of the normalized expres-
sion values for that transcript was zero at one (or more) time points. However, one CDS
and one sRNA transcript, namely, GBSCOH1_RS10860 and GBSCOH1_s0385, generated
negative values because their normalized expression values increased over time, indi-
cating that the abundance of these transcripts increased relative to ssrA; therefore,
they are more stable than ssrA. Interestingly, s0385 (which exhibited the highest sRNA
half-life) (Fig. 2B) is encoded adjacent but antisense to another highly stable sRNA,

FIG 2 RNA stability analysis. (A) Violin plot of normalized RNA stability data showing (i) the range and (ii) the median half-life of GBS sRNA and coding
sequence (CDS) RNA. The 75% and 25% range are also indicated. The dashed line indicates a half-life of 10 min. (B) Normalized stability profiles of select
sRNAs over time. Normalized stability plots over time (from 0 to 10 min) are shown for all sRNAs with a half-live exceeding 10 min, including s0385 which
had a half-life greater than that of ssrA. Plots show abundance relative to ssrA.
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s0380. These two sRNAs are divergently transcribed, and the locus contains a gene
potentially encoding a holin-like protein (see Fig. S3 in the supplemental material). The
high degree of stability of antisense transcripts, of which one putatively encodes a
toxin, is reminiscent of a toxin-antitoxin system and would be of interest to study in
the future.

CONCLUSIONS

The data presented here demonstrate the utility of the updated genome annota-
tion files, allowing us to determine the stability of 232 sRNAs in COH1 as well as their
expression in 21 unique comparisons. These results will inform future phenotypic stud-
ies and likely identify new sRNA regulators in GBS. Undoubtedly, many sRNAs have yet
to be discovered in GBS. Our newly annotated genomes will be an invaluable tool for
the further identification of sRNAs, and these updated annotation files will prevent
repeat sRNA identification in future studies. Collectively, the data generated highlight
the importance of updating genome annotation files as new regulatory elements are
identified in bacteria.
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