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Although protein synthesis dynamics has been studied both with
theoretical models and by profiling ribosome footprints, the deter-
minants of ribosome flux along open reading frames (ORFs) are not
fully understood. Combining measurements of protein synthesis rate
with ribosome footprinting data, we here inferred translation initia-
tion and elongation rates for over a 1,000 ORFs in exponentially
growing wild-type yeast cells. We found that the amino acid com-
position of synthesized proteins is as important a determinant of
translation elongation rate as parameters related to codon and trans-
fer RNA (tRNA) adaptation. We did not find evidence of ribosome
collisions curbing the protein output of yeast transcripts, either in
high translation conditions associatedwith exponential growth, or in
strains in which deletion of individual ribosomal protein (RP) genes
leads to globally increased or decreased translation. Slow translation
elongation is characteristic of RP-encoding transcripts, which have
markedly lower protein output compared with other transcripts with
equally high ribosome densities.

translation | yeast | protein charge | TASEP | ribosomal proteins

Gene expression analysis frequently relies on the high-
throughput sequencing of cellular messenger RNAs (mRNAs).

While the mRNA expression levels may be sufficient to decipher
how cells respond to specific stimuli, they explain protein
abundances only to a limited extent, with coefficients of deter-
mination R2 in the range of 0.14 to 0.41 (1, 2). Protein levels vary
over a much wider range than the levels of the corresponding
mRNAs, indicating extensive regulation of protein metabolism,
and especially synthesis (1). Translation is predominantly regu-
lated at the initiation step (3), whose rate varies broadly between
mRNAs, depending on the structural accessibility of the 5′-end
to translation factors, and on the presence of upstream open
reading frames. The latter generally hinder translation of the main
open reading frame (ORF) (4). Translation elongation rates also
differ between mRNAs, primarily due to codon biases and dif-
ferences in the availability of cognate transfer RNAs (tRNAs).
Whether and how the translation elongation rate is dynamically
modulated is currently debated (2, 5–8). tRNA availability,
translational cofolding of the polypeptide chain, and the presence
of positively charged amino acids in the nascent peptide have all
been linked to variation in elongation rate (5–8). Furthermore, it
has been proposed that the codon usage is the substrate of
“translational programs” that adjust the protein output of specific
classes of mRNAs to the state (proliferation or differentiation) of
the cell (9). However, explicit comparison of the coverage of 5′
and 3′ halves of ORFs by ribosome footprints did not reveal clear
differences, indicating that bottlenecks in elongation along coding
regions are uncommon (2).
Insights into the dynamics of translation and putative bottle-

necks have emerged from theoretical studies, in particular of the
totally asymmetric simple exclusion process (TASEP), introduced
5 decades ago (10). In a simple form of this model, ribosomes bind
to mRNAs according to an initiation rate, move stochastically to
downstream codons with an average elongation rate, if these co-
dons are not already occupied by ribosomes, and are released at

the end of the coding region with a given termination rate. The
interplay of these rates gives rise to 3 distinct regimes. If initiation
is infrequent, proteins are synthesized at a rate equal to the ini-
tiation rate and the ribosome density on ORFs is very low. As the
initiation rate increases relative to the rate of elongation, the ri-
bosome density on the ORF increases in parallel with the protein
output. Finally, when the rate of initiation is too high, ribosomes
start to “collide,” the ribosome density becomes very high, and the
protein output drops markedly (11).
Currently available technologies enable predictions about the

relationship between ribosome flux (corresponding to the protein
synthesis rate) and ribosome density along ORFs to be tested.
Ribosome density along ORFs can be studied with high resolution
by sequencing of ribosome-protected mRNA footprints, a method
known as ribosome footprinting or ribosome profiling (2). The
approach has already uncovered novel principles of resource al-
location and translation regulation (12, 13). Furthermore, model-
based analyses of ribosome profiling data uncovered sources of
local variation in ribosome densities and translation elongation
along transcripts (14). However, the ribosome flux has rarely been
measured directly, despite mass spectrometry-based methods
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being able to provide estimates of synthesis and degradation
rates for a substantial fraction of eukaryotic proteomes (15).
Direct measurement of protein synthesis rate is necessary to
detect global changes in translation capacity between conditions
(16) and for studying translation in an ORF-specific manner,
because the protein synthesis rates can be inferred from ribo-
some profiles only up to a constant factor.
To fill this gap and further uncover factors that underlie var-

iations in translation elongation rates between ORFs, we mea-
sured protein synthesis rates transcriptome-wide, by pulsed
stable isotope labeling of amino acids in culture (pSILAC), in the
widely studied experimental model of exponentially growing
yeast cells. Combined analysis of pSILAC and ribosome foot-
printing data revealed the range of variation in translation
elongation rates between yeast ORFs. Among broadly studied
determinants of this rate, most indicative were the availability of
cognate tRNAs and the frequency of positively charged amino
acids in the synthesized protein. We found no evidence that
translation is curbed by ribosome collisions either in exponen-
tially growing wild-type yeast or in mutant strains with global
alterations in translation. Rather, we found that translation
elongation on mRNAs encoding positively charged proteins
(particularly ribosomal proteins [RPs]) is slower compared with
other mRNAs with similar ribosome densities.

Results
Ribosome Allocation Is Largely Explained by the Copy Number and
Length of ORFs. To uncover determinants of translation speed in
exponentially growing yeast cells, we analyzed a recently published
ribosome footprinting dataset obtained in this system (4), from the
perspective of the TASEP model of translation (Fig. 1A).
Denoting by N the number of ribosomes bound to a coding region
of L codons, and assuming that the rate with which a ribosome
completes the polypeptide chain is given by the product of the
frequency of finding a ribosome at the stop codon N=L, and the
effective ribosome translocation (and termination) rate kel,
the change in the number of ribosomes bound on the mRNA is
given by the differential equation dN=dt= kinm− ðkel=LÞN. Here,
m is the number of mRNA molecules, kin is the effective rate of
translation initiation on an mRNA molecule, and we assume the

broad region of parameter values where ribosome collisions are
rare. This model predicts that the number of ribosome-protected
fragments (RPFs) mapping to a specific mRNA is proportional to
the mRNA abundance, the length of the ORF, and the ratio of the
effective rates of initiation and elongation, N ≈ ðkin=kelÞLm.
Testing this prediction with the experimental dataset men-

tioned above (4), we found that the number of RPFs mapped to
a specific mRNA indeed correlated very well with the relative
abundance of the mRNA estimated by mRNA sequencing.
However, further incorporating the ORF length slightly but sig-
nificantly (z score = −4.74, Fisher z-transformation test) reduced
the correlation, rather than improved it (SI Appendix, Fig. S1). As
it was reported that the estimation of mRNA abundance by RNA
sequencing is a critical aspect to control in the analysis of ribo-
some footprinting data (4), we repeated the analysis of the scaling
behavior with estimates of mRNA abundance from another RNA-
seq dataset, obtained by sequencing of RNAs purified directly with
oligo(dT) from yeast cell lysates (17). The 3′-end bias in ORF
coverage by RNA-seq reads, which strongly affects the accuracy of
mRNA abundance estimates (4), was limited in this dataset,
comparable with that inferred from the data obtained with a Ribo-
zero protocol (SI Appendix, Fig. S2). We found that, when using the
RNA samples obtained by oligo(dT)-based purification, both the
mRNA level and ORF length contributed to the number of RPFs,
as expected (Fig. 1C). We therefore used this mRNA-sequencing
dataset for the analyses described below, but present similar results
with the RNA-seq data from reference 4 in SI Appendix.
The mRNA levels alone explained 65% of the variance in RPF

numbers. Further taking into account the ORF length increased
this number to 74% (Fig. 1C), setting an upper bound of 25% on
the variance in RPFs that could be due to differences in ribo-
some density along transcripts. From previously published
measurements of protein levels in the same yeast strain (18), we
further inferred that the number of RPFs explained ∼50% of the
variance in protein levels, compared with only 38% explained by
the mRNA abundance (Fig. 1B).

Ribosome Allocation Predicts Protein Synthesis Rates. Theoretical
analysis of the TASEP model showed that the main dynamical
regimes are defined by the density and the flux of ribosomes on
mRNAs (11), the latter corresponding to the protein synthesis
rate. To infer the translation regime of individual yeast mRNAs,
we determined relative ribosome densities on individual ORFs
from the RPF and RNA-seq data, knowing the ORF lengths. The
estimates that we obtained here correlated quite well (Fig. 2A;
Spearman correlation coefficient, 0.46; P = 1.6e-194) with those
from a much earlier study that determined the distribution of
individual mRNA species across polysomal fractions correspond-
ing to 1, 2, 3, etc., translating ribosomes, with microarrays (19).
Having computed ribosome densities for each ORF, we used
pSILAC to measure the corresponding protein synthesis rates.
On a short timescale, upon shifting cells from a medium with

heavy-isotope–containing amino acids to a medium with light-
isotope–containing peptides, “light” peptides should accumulate
proportionally to the protein synthesis rates (Fig. 2B). Indeed,
we found that the light peptide accumulation in the first 30 min
after the medium change was very well described by a linear
model (R2 for the linear fit >0.8 for 1,114 of the 1,616 proteins;
Fig. 2C). Furthermore, the protein synthesis rates thus estimated
correlated better with the density RPFs than the protein levels
did (Pearson correlation coefficients of 0.81 and 0.7, re-
spectively; Fig. 2D and Fig. 1C). This conforms to the expecta-
tion that RPFs reflect protein synthesis, while protein levels are
set by the balance between synthesis and degradation.

Protein Synthesis Rates Are Not Limited by Ribosome Collisions in
Exponentially Growing Yeast Cells. Although protein synthesis
rates increased linearly with the ribosome allocation over the
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Fig. 1. Predicted and observed relationships in gene expression in the BY4741
yeast strain. (A) Illustration of the classical totally asymmetric exclusion process
(TASEP) with constant rates of initiation, elongation, and termination. (B) Re-
lationship between protein abundance (ref. 18) and the density of RPFs
on the ORF, or the mRNA abundance. (C ) Relationship between the
number of RPFs mapped to individual mRNAs and the corresponding ORF
length, mRNA level, and both. p and s are Pearson’s and Spearman’s
correlation coefficients, respectively.
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entire range, a small cluster of ORFs did not conform to this
relation but had distinctly lower protein output than other ORFs
with similarly high numbers of allocated ribosomes (Fig. 2D, or-
ange box). These ORFs encoded almost exclusively RPs, while
other highly translated ORFs, with a single exception (the trans-
lation elongation factor 2 [TEF2]), encoded genes involved in
sugar metabolism (Fig. 2D, red box). Indeed, Gene Ontology
terms Glucose metabolic process and Gluconeogenesis and KEGG
Glycolysis/Gluconeogenesis pathway were strongly enriched in this
set (false discovery rate [FDR] for these biological processes:
1e-14 and 2e-12, respectively; Fig. 2D). To understand the dy-
namics of translation on individual ORFs, we then sought to infer
their absolute rates of translation initiation and elongation.
A yeast cell needs about 2 h to divide (20) and contains about

5 × 107 protein molecules (21), whose average half-lives are ∼8.8 h
(22). These numbers define the total number of proteins produced
by a yeast cell per unit time, allowing us to convert the relative
protein synthesis rates inferred from the pSILAC time series to
absolute rates of molecules per unit time. Further taking into ac-
count the estimated number of 40,000 (23, 24) mRNAmolecules in
a yeast cell, we obtained protein synthesis rates per mRNA
(Methods). To directly compare the experimental data (Fig. 3B)
with predictions of the TASEP model (Fig. 3A), we converted the
relative ribosome densities that we obtained from sequencing of
RPFs to absolute densities of ribosomes per codon (rpc) using the
first principal component of the scatter of RPF-based densities as a
function of absolute density measured in ref. 19 (Fig. 2A). Results
of protein synthesis rate and ribosome density for individual ORFs,
computed using either oligo(dT) or Ribo-zero RNA-sequencing
datasets, are given in Datasets S1 and S2.
In the model, ORFs that initiate translation at very low rates

have very low protein output and their ribosome coverage per
codon reflects the rate of translation elongation (Fig. 3A). Al-

though our dataset contained only few proteins with very low
synthesis rate, the ∼10-fold range in ribosome coverage that we
infer this way is comparable to the 20-fold range that we observed
for ORFs with the same RPF density (Fig. 3B). The model also
predicts that protein synthesis rate and ribosome coverage in-
crease linearly with the initiation rate, as long as ribosome colli-
sions do not halt elongation (Fig. 3A). The ∼100-fold range of
variation in protein output in the experimental data corresponds
to a similar range of variation in translation initiation rate. Thus,
our analysis indicates that translation is primarily regulated at the
level of initiation, as reported before (4). The regime of high ri-
bosome density and low protein output exhibited by the model was
not observed in our data (Fig. 3B). We also carried out simulations
of the inhomogeneous TASEP model using the codon-specific
speeds inferred from Ribo-seq codon densities (SI Appendix,
Materials and Methods) and found that differences in elongation
speed between codons are not sufficient to explain the observed
variability in synthesis-density scatter (SI Appendix, Fig. S3). Fur-
thermore, even in the inhomogeneous model, queued ribosomes
only start to accumulate abruptly and limit protein output at very
high ribosome densities (∼0.05 rpc).
An additional indication of evolutionary optimization of trans-

lation so as to avoid wasteful ribosome collisions comes from com-
paring the first principal component of the experimental data from
Fig. 3B with the equal elongation rate isoclines from the simulation
(black line in Fig. 3A). This comparison suggests that the rates of
translation initiation and elongation are correlated, transcripts for
which the initiation rate is high having also higher rate of elongation
compared with transcripts for which the initiation rate and protein
output are lower (SI Appendix, Fig. S3). Allowing for a 2-fold error in
the estimation of protein synthesis rate or ribosome density, either
due to experimental variability or to processes that we did not
consider here such as sequestration or degradation of mRNAs with
stalled ribosomes (25), does not destroy this correlation (SI Appen-
dix, Fig. S4). Thus, although ribosome stalling may contribute to the
variability in synthesis density scatter observed in Fig. 3B, it is un-
likely that those ribosome collisions curb the rate of protein synthesis
in the high protein output regime of exponentially growing yeast.
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proteins with highest synthesis rates. The orange box highlights the cluster of
RPs. p and s are Pearson’s and Spearman’s correlation coefficients, respectively.
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Combining Protein Synthesis Rate and Ribosome Footprint Density
Reveals the Speed of Translation Elongation. If ribosome queue-
ing events are rare, proteins should be synthesized at the rate at
which new chains are initiated s ’ kin, the ribosome density can
be approximated as ρ ’ kin=kel, and the ratio of protein synthesis
rate to ribosome density (SDR) will be the effective translation
elongation rate, s=ρ ’ kel. We used this relationship to uncover
features of the mRNA or of the corresponding protein that most
strongly affect elongation (Fig. 4). The positive correlation of the
SDR with the average speed of ribosomes, calculated from the
normalized ribosome densities at individual codons, served as
control (Fig. 4A). We found that all measures related to tRNA
availability and codon usage [tRNA adaptation index (tAI) (26),
“normalized tAI” (27), fraction of optimal codons (FOP) (28),
and codon adaptation index (CAI) (29)] (see Methods for de-
tails) correlated positively with the SDR, as expected (30) (Fig.
4A). Interestingly, the ribosome density was also positively cor-
related with the SDR (Fig. 4A). This could be due to a corre-
lation between initiation and elongation, but also to ribosomes
promoting translation speed by resolving RNA secondary
structure, consistent with the negative correlation between the
average predicted propensity of 5-nt-long windows along the
ORF to be in single-stranded conformation (“accessibility,”
denoted as Acc5) and the SDR (see below). Participation of the
newly incorporated amino acid in a protein domain was also
associated with faster elongation, and this association was not
due to a specific type of domain such as α-helix or β-sheet.
Strikingly, the feature most strongly anticorrelated with SDR was

the estimated isoelectric point (pI), reflecting the charge of the
encoded protein. Other global features of the encoded protein such
as the proportion of aromatic amino acids (aromaticity), hydro-
pathicity [measured by the grand average of hydropathy (GRAVY)
index (31)], molecular weight (Mw), and instability [measured by the
instability index (32)] had much smaller correlation with SDR and
thus with translation speed. Incorporating all of the features shown
in Fig. 4A into a linear model predicted better the protein synthesis
rate than the ribosome density alone (correlation coefficient, 0.69 vs.
0.49; Fisher’s Z test z score = −7.84). Using only the tAI from among

the tRNA abundance-related features with high pairwise correlation
(SI Appendix, Figs. S5 and S6) reduced the predictive power of the
model only marginally (correlation coefficient, 0.65). The linear
model also highlighted the most explanatory features, which were (in
order of the significance of their correlation coefficient being dif-
ferent from zero) the ribosome density (P < 2e-16), isoelectric point
pI (P = 3.64e-15), codon adaptation index (P = 1.22e-11), molecular
weight of the encoded protein (P = 9.83e-05), ORF length (P =
0.000118), GRAVY index (P = 0.000256), tRNA adaptation index
(P = 0.000977), domain coverage (P = 0.006493), and fraction of
optimal codons (P = 0.009106). The weights of individual features in
the linear model are shown in Dataset S3. Qualitatively similar but
somewhat lower in magnitude correlation coefficients were obtained
when the other RNA-seq dataset, from ref. 4, was used in the
analysis (SI Appendix, Fig. S7).
Consistent with RPs being elongated relatively slowly (Fig. 2D),

the set of 50 genes with greatest distance from PC1 in the di-
rection of reduced elongation rate was strongly enriched in RPs
(15 genes are in GO:CC ribosome; hypergeometric test FDR =
3e-8) but also contained other positively charged proteins such as
histones HTA1 and HHF1, the INH1 inhibitor of F1F0-ATP
synthase, and the SEC62 component of the Sec63 complex for
protein targeting to the endoplasmic reticulum. No specific bi-
ological process or cellular component was preferentially repre-
sented among the genes with the highest elongation rates.

Complex Effect of RNA Secondary Structure on Translation Elongation.
Although it did not significantly contribute to the linear model, the
structural accessibility of translated RNAs—measured by the av-
erage probability of windows of n nucleotides along the ORF of
being predicted in single-stranded conformation—was anti-
correlated with SDR for n up to 20 to 40 nt (Fig. 4B). This indi-
cates that RNAs that are highly structured are also highly
translated (33). Although this seems counterintuitive, a theoretical
study proposed that structural rearrangements of the mRNA
during translation may serve to maintain an optimal ribosomal flux
for high protein output (34). On the other hand, structural ac-
cessibility of the RNA immediately ahead of the decoded codon
was significantly anticorrelated with the ribosome density on the
decoded codon, as found in vitro (35, 36) (Fig. 4C). Our results
thus indicate that, although ribosomes progress faster through
unstructured regions of the ORFs, unstructured RNAs ultimately
have lower translational output.

Influence of Incorporated Amino Acids on Translation Speed. A
functional analysis uncovered sequence-dependent rearrangements
of the nascent polypeptide in the ribosomal exit tunnel, suggesting
that side-chain size and charge of the incorporated amino acid
impact the rate of polypeptide chain elongation, as do cotransla-
tional protein folding and interaction with chaperones (37). Indeed,
our analysis provides evidence for both size and charge of amino
acids affecting translation speed; negatively charged proteins are
synthesized at up to ∼2-fold higher rates, on average (comparing
first last pI quantile bins; Fig. 5 A and B), compared with positively
charged proteins. Furthermore, among nonpolar amino acids, those
with small side chains are associated with faster elongation, whereas
the more voluminous ones have the opposite effect (Fig. 5C). The
amino acid charge and relative abundance of cognate tRNAs im-
pact translation elongation rate to a similar degree.
The explanatory power of linear models using relative fre-

quencies of encoded amino acids or features related to tRNA
abundance along with the ribosome density on the ORF were
very similar (Pearson’s R, 0.69 vs. 0.68). The most informative
amino acids were Arg (P value of the coefficient being different
from zero in the linear fit = 2.35e-10), Pro (P = 1.68e-07), Ala
(P = 1.87e-07), Glu (P = 1.14e-06), and Ser (P = 0.00861). See
Dataset S3 for the inferred weights of these features.
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Ribosomal Protein mRNAs Are Translated Slowly for Their Ribosome
Densities. Assuming that all initiating ribosomes complete trans-
lation and that they elongate at similar rates across transcripts the
ribosome footprint density is generally used as an estimate of the
translation efficiency, defined as the number of protein molecules
produced per mRNA molecule per unit time (12). As RPs rep-
resent a high translation burden for the cell, their transcripts
should be highly optimized for translation. Indeed, RP-encoding
genes have a significantly higher tRNA adaptation index than
other genes (Fig. 6A; t test, P = 9.7e-49). However, the high ri-
bosome density of the RP-encoding transcripts is not a simple
reflection of high translation efficiency, because RPs also have a
much higher isoelectric point than other proteins (Fig. 6B; t test,
P = 2.3e-47). Visualizing the tAIs of the ORFs and the pIs of
proteins along with the protein synthesis rate and ribosome allo-
cation on individual ORFs, clearly illustrates that positively
charged proteins stand out as having lower than expected protein
output for the ribosome densities on the corresponding ORFs
(Fig. 6C and SI Appendix, Fig. S8), or in other words, the ribosome
density on their ORFs is higher compared with ORFs encoding
other proteins that are synthesized at the same rate. These results
suggest that the interaction of positively charged proteins, and in
particular of RPs, with the negatively charged exit tunnel, slows
down translation elongation, increasing the ribosome density on
the ORF without a corresponding increase in protein output.

Perturbed Translation Dynamics in Ribosomal Protein Deletion Strains.
Deletion of specific RP genes has been associated with changes in
translation and replicative life span (17, 38). In particular, deletion
of rpl7a (Δrpl7a strain) led to ribosome assembly defects and overall
decreased protein synthesis (measured by the incorporation of a
methionine analog), whereas deletion of rpl6a (Δrpl6a strain) led to
increased protein production (17). To determine how the trans-
lation parameters of individual ORFs are affected in these strains,
we measured the protein synthesis rates by pSILAC and analyzed

them jointly with ribosome profiling data obtained before (17).
Results for individual ORFs are given in Datasets S4–S6, for the
wild-type control, Δrpl6a, and Δrpl7a strains.
We found that accumulation of light peptides in the mutant

strains was less well explained by a linear fit compared with the
wild-type strain, especially for the high-translation Δrpl6a strain
(SI Appendix, Fig. S9). In both mutant strains, the correlation
between ribosome density and protein synthesis rates was lower
(Fig. 7 A and B) compared with the wild type maintained in the
same conditions (SI Appendix, Fig. S10). For the Δrpl7a strain, the
decrease was due, in large part, to ORFs encoding proteins in-
volved in starch and sucrose metabolism (FDR = 1.86e-6), gly-
colysis and gluconeogenesis (FDR = 0.00389), whose protein
output was higher than expected for their observed ribosome
densities in all of the strains (Fig. 7B and SI Appendix, Fig. S10).
Excluding the 31 ORFs with a log10 ribosome density lower than
−1 led to correlation coefficients comparable with those obtained
for the Δrpl6a strain (both Pearson and Spearman correlation
coefficients = 0.41). We then compared the synthesis rate–density
relationship of these strains with that of the wild-type strain ana-
lyzed in the same study (17) (SI Appendix, Fig. S10). The ribosome
density changed very little in the Δrpl6a strain (Fig. 7C), and large,
correlated changes in density and flux (more than 2-fold in either
direction) were only observed for 11 ORFs. Furthermore, we did
not find any ORF that was highly translated in the wild-type strain
and whose protein output collapsed in the high-translation Δrpl6a
strain, as would be expected if ribosome collisions occurred in this
high-translation strain. This was not due to missing protein syn-
thesis rate data, because the large majority (25 of 31) of ORFs
with highest ribosome density and measured output in the wild
type were also measured in the Δrpl6a strain.
In contrast, hundreds of proteins had reduced synthesis rates

in the Δrpl7a strain relative to wild type, with correspondingly
reduced ribosome densities along ORFs (Fig. 7D). The change in
ribosome density was well correlated with the change in protein
output (correlation coefficients = 0.64 [Spearman, P < 2e-16] and
0.67 [Pearson, P < 2e-16]). However, ORFs with high SDR had a
higher reduction in output compared ORFs with low SDR. This is
indeed the behavior expected upon a global reduction in trans-
lation that comes with reduced ribosome biogenesis in the Δrpl7a
strain. Namely, ORFs on which elongation is relatively slow and
are in the elongation-limited regime of translation in the wild-type
strain will not undergo as large a change in protein output upon
the reduction of translation initiation rate as ORFs that are in the
initiation-limited regime already in the wild-type strain. This can
be inferred from the size of the intervals between 2 lines of distinct
translation initiation rates (dashed lines in Fig. 3B) along 2 lines of
high and low elongation rates (colored lines in Fig. 3B). These
results demonstrate that the analysis of protein synthesis rates and
ribosome densities enables the inference of translation initiation
and elongation parameters for individual genes and that these
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parameters can be used to uncover elements that regulate trans-
lation in individual strains and conditions.

Discussion
Protein synthesis is a central activity in all cells, which has to be
appropriately adjusted to resources and to the signals that a cell
receives. The overall ribosome content of mammalian cells is
strongly linked to their proliferation rate, in actively dividing cells
ribosomal RNAs (rRNAs) taking up ∼80% of all nucleic acids and
∼15% of the biomass (39). Understanding how translation is reg-
ulated in relation to the cellular state is important, as changes in the
protein synthesis capacity can lead to both cancers (40, 41) and
changes in organism life span (17, 38, 42). Although theoretical
models of biosynthetic processes have been proposed and studied
for decades (10, 11, 43–46), measurements of translation dynamics
across a large fraction of the transcriptome became possible only
recently. Taking advantage of abundant data generated for the yeast
Saccharomyces cerevisiae and measuring protein synthesis rates with
the high transcriptome coverage afforded by currently available
methods, we evaluated the translation initiation and elongation
rates for individual yeast ORFs.
Using additional datasets to estimate absolute protein syn-

thesis rates as well as ribosome densities per codon, we found
that the translation initiation rate varies over a ∼100-fold range
among yeast transcripts (Fig. 3). This is consistent with an initial
estimation of translation efficiency based on ribosome profiling
(2) as well as with the results of a study that used these data to
parametrize a whole-cell model of translation, which found that
the time between initiation events on individual mRNAs (5th to
95th percentile) is from 4 to 293 s (45). However, a narrower
range of variation, ∼11-fold (1st to 99th percentile), was reported

based on the initial analysis of the ribosome profiling data that we
also used here (4), as well as in a subsequent study of a more
limited set of proteins (14). It was suggested that inaccuracies in
estimation of mRNA expression levels could account for dis-
crepancies in estimates of translation efficiency from ribosome
profiling (4). However, here we found that to explain the direct
measurements of protein synthesis rates, the wider range of vari-
ation (∼150-fold; SI Appendix, Fig. S11) in translation initiation
rates was indeed necessary. This was the case irrespective of the
protocol used to prepare the mRNA-sequencing samples that
were used in the analysis of ribosome densities. The similar results
obtained based on mRNA level estimates with 2 sequencing
protocols is perhaps not surprising, as the 3′-end bias of these
mRNA-sequencing data was similar (SI Appendix, Fig. S2) and the
transcript abundance estimates showed limited systematic differ-
ences between the 2 datasets (SI Appendix, Fig. S12). However, it
is interesting to note that the data obtained with the optimized
Ribo-zero protocol did not yield the expected scaling of RPFs with
mRNA length and abundance, even though the mRNA abun-
dances inferred from these data were very highly correlated with
the number of RPFs. In the future, it will be interesting to de-
termine the translation status of mRNA species that are prefer-
entially enriched by different protocols. It is also unlikely that the
wider range in translation initiation rate is due to error in esti-
mating the protein synthesis rates because our analysis only in-
cluded ORFs for which peptide accumulation was well described
by a constant accumulation rate. The selection of transcripts for
analysis in different studies may account for some of the reported
differences in the range of rate variation, as the study of ref. 14, for
example, used only ORFs of at least 200 codons and with a
minimum ribosome density of 10 per site. This amounted to 894
ORFs, of which 826 are also covered by our analysis. However,
our analysis includes 290 additional ORFs, some with relatively
low translation. Despite this, the mean initiation and elongation
rates in our data are quite close to those reported before, namely
mean waiting time between initiation events of ∼25 s compared
with a median of 8 s reported by ref. 14, and elongation rates of
2.63 aa/s compared with the 5.6 aa/s reported for mouse peptides
by ref. 47, based on a ribosome runoff assay. More importantly,
previous studies did not measure protein synthesis rates directly,
but rather estimated initiation and elongation rates from ribosome
densities. This can be done up to a constant scale factor, which was
assumed to be identical between genes and set such as to achieve a
specific target elongation rate toward the 3′-end of the ORF (14).
Our data indicate, however, that there are substantial differences
in protein output of ORFs with similar ribosome densities,
underscoring the importance of direct measurements of protein
synthesis rates to analyze the dynamics of translation.
The translation parameters of short ORFs, many of which

encode RPs, have been the topic of much discussion (4, 45). The
high ribosome density observed on short ORFs (19) has been
attributed to their being evolutionarily optimized for protein
output through high rate of translation initiation (45). As the
high codon adaptation index exhibited by these ORFs would
predict fast elongation and thereby low ribosome density (45),
high ribosome density on short ORFs has also been interpreted
as evidence for initiation being the main determinant of ribo-
some density. Consistently, we also found a small but significant
correlation between ORF length and the principal component of
the protein synthesis rate—ribosome density scatter, which is
indicative of the translation initiation rate (Fig. 3 and SI Ap-
pendix, Fig. S13). However, our results reveal a more complex
picture, which suggests that the charge of the encoded protein is
an important determinant of ribosome flow. ORFs with similar
overall ribosome density differ by up to ∼20-fold in protein
output. This effect is not captured by models that assume that
the rate of elongation depends only on the tRNA availability-
dependent decoding speed at the A site of the ribosome. Indeed,
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we demonstrated that protein synthesis rates can be predicted
with significantly higher accuracy when taking into account
global features of the encoded protein such as the pI than when
using solely the ribosome density.
Dissecting the independent contributions of various features to

the rate of elongation is nontrivial because these features are not
uniformly represented among various classes of proteins. RPs, in
particular, tend to be short, positively charged, and enriched in
amino acids such as lysine and arginine, which are targeted by en-
zymes such as trypsin, used during sample preparation for mass
spectrometry. These are also the amino acids that are isotope la-
beled for pSILAC. Although we cannot completely exclude these
confounding factors influencing our estimates of elongation rates,
we did try to minimize their effect. In particular, we estimated the
protein synthesis rates by measuring the accumulation of light
peptides, after switching the cells from a medium with heavy iso-
topes to a medium with light isotopes so as to not impair protein
synthesis. Furthermore, although the frequency of lysines and ar-
ginines in RPs is higher compared with other proteins, RPs do yield
peptides that are sufficiently long and amenable to quantification.
Finally, the estimated “rate” with which a given RP-derived peptide
accumulates as a function of time should not be affected by the
enzymatic digestion during samples preparation.
Overall, we found that the rate of elongation varies up to ∼20-

fold among yeast ORFs, less than the rate of initiation. As the
determinants of translation elongation rate are actively debated
(9, 30, 45, 48, 49), we evaluated their relative contributions in our
data. We further included in our study yeast strains with globally
perturbed translation through RP gene deletions. We found no
evidence that translation elongation severely curbs protein out-
put, either in the exponentially growing BY4741 yeast strain, or in
the Δrpl6a and Δrpl7a deletion strains, the first with higher and
the second with lower overall protein synthesis rate compared
with the BY4741 wild type. Rather, several lines of evidence
point to evolutionary optimization of ORF sequences to main-
tain appropriate ribosome flux and minimize the chance of ri-
bosome collision. For instance, ORFs with high protein output
have high rates of translation initiation and at the same time a
high codon adaptation index. This is predicted to enable fast
elongation, as optimal codons will be rapidly found by cognate
tRNAs that are in highest abundance. Our data provide
transcriptome-wide evidence for the high elongation rates of
highly expressed ORFs. Thus, although initiation rates vary over
a wide range, the protein output increases in parallel with the
ribosome density, without the latter reaching saturation. More-
over, the density of RNA secondary structure predicted in the
ORF was positively correlated with the translation elongation
rate, not negatively correlated, as would be expected if RNA
structure were to hinder translation. This indicates that the RNA
structure may also help maintaining the flux of ribosomes along
the ORF to minimize ribosome collisions, as proposed in a
previous study (34). Interestingly, we were able to confirm the
positive influence of RNA secondary structure using dimethyl
sulfate-sequencing–based measurements of secondary structure
density (50) rather than computational predictions; despite the
experimental dataset being sparser than our computational
predictions (only 231 ORFs for which we had protein synthesis
and ribosome density data also had experimental data on sec-
ondary structure), the density of secondary structure (measured
by a Gini index; see ref. 50 and Dataset S8) correlated positively
with our SDRs (Pearson correlation coefficient = 0.17; P =
0.007). Our results do not exclude “controlled” ribosome stalling
at specific positions, such as on upstream ORFs (51), or at co-
dons for which cognate tRNAs are limiting in specific conditions,
where active regulatory mechanisms are used to modulate the
output of specific ORFs (49). They also do not exclude that slow
clearance of the ribosomes from the 5′-end of transcripts reduces
the initiation rate to some extent [the concept of 5′-ramp (14)].

Rather, our data support the notion that ORFs have undergone
evolutionary selection to minimize the chance of ribosome
stalling due to imbalanced initiation and elongation rates.
That the charge of the translated protein affects the rate of

translation elongation has been observed before (7, 8, 14, 52) and
has been attributed to variation in the “friction” of the polymeric
chain with the ribosomal exit tunnel. This effect is most marked for
the positively charged RPs, whose elongation rate is low relative to
other proteins whose transcripts have similar ribosome densities,
and also in comparison with negatively charged RPs (SI Appendix,
Fig. S14). Furthermore, even considering only transcripts whose
codon usage is not optimal (CAI < 0.5), the vast majority of which
encode non-RPs, the SDR is significantly lower when comparing
encoded proteins with high predicted pI (>7.5) with those with low
predicted pI (<7.5) (SI Appendix, Fig. S14). Our results thus provide
a rationale for the previous observation that the ratio of protein to
mRNA molecules is lower for RP-encoding compared with other
genes (53). It is important to note that establishing a causal role of
protein charge on elongation rate remains a big challenge. RPs are
unusual in many respects that could affect or feedback on trans-
lation. They are very small, very abundant, under very strong se-
lection, etc. Among all of the features of transcripts and proteins
that we have tested, the pI had one of the highest correlations with
the elongation rate, which argues for a more direct contribution of
this parameter to the elongation rate. However, a causal effect will
need to be established through additional experiments. A very ex-
citing possibility would be to apply the recently developed nascent
polypeptide chain tracking technique to a variety of constructs,
engineered to vary in one specific aspect such as the pI. Although
the data available to date are very limited, one study reported
average translation elongation rates of ∼8, 10, and 12 aa/s for
3 very distinct proteins, histone H2B, lysine demethylase KDM5B,
and actin (54), whose pIs (from GeneCards, http://www.genecards.
org/) are 10.32, 6.26, and 5.29, respectively. Thus, albeit extremely
sparse, these data are consistent with our finding that the pI of the
protein is anticorrelated with the average speed with which the
ribosome elongates the polypeptide chain, a finding that extends
beyond the unusual class of RPs.
The interaction of RPs with the negatively charged rRNAs

likely imposes a strong selection pressure for positive charge on
RP genes (55), which in turn sets an upper bound on the rate of
translocation of the polypeptide chain through the ribosome
channel. It will be interesting to explore whether this slower
elongation rate may have as side effect an increased translation
fidelity of these very abundant proteins (56).
Over 10 y ago it was discovered that protein folding takes

place already cotranslationally and that helices can fold within
the ribosome exit tunnel (57). A recent study further suggested
that nonoptimal codons drive effective cotranslational folding of
α-helices and β-sheets (27). Although our results are consistent
with these conclusions, they indicate that the positive correlation
of translation speed with high density of protein domains is not
limited to particular secondary-structure elements.
All of the distinct features that we analyzed here, namely tRNA/

codon usage, structure accessibility of the RNA and protein charge,
have small and comparable correlation with elongation rate. Alto-
gether, they explain approximately one-half of the variance in
elongation rate. This indicates that more detailed models that also
include positional features (14) as well as more accurate ribosome
coverage profiles (58) will be necessary to improve the prediction of
translation dynamics. Our measurements of protein synthesis rates
in multiple yeast strains with different translation capacity provide
an ideal test bed for new models.

Materials and Methods
Simulations. All simulations of the TASEP model have been performed with
C++ code developed in-house and available in the github repository at the
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following link: https://github.com/andreariba/codon_TASEP. The size of the
ribosome footprint has been set to 10 codons.

Analysis of Poly-A Selected RNA-Seq. Reads from the fastq files associated with
the publication of ref. 17 have been trimmed with cutadapt (59) with pa-
rameters “–error-rate 0.1 –minimum-length 15 –overlap 1,” first of the 3′
adapter (TGGATTCTCGGGTGCCAAGG) and then of the poly-A tail
[“adapter” = (A)50]. Resulting sequences of at least 15 nt were then mapped
to yeast ORFs obtained from the yeastgenome.org (60) database (https://
downloads.yeastgenome.org/sequence/S288C_reference/orf_dna/), with the
bowtie2 (61) aligner, version 2.2.9, with parameter “-q” (fastq format). For
each read, the best alignment reported by bowtie2 was used, and expression
levels for each ORF, expressed in reads per kilobase per million (RPKM) were
calculated by dividing the number of reads mapped to the ORF by library
size and ORF length, then multiplying by 106. For each ORF, the expression
level used in the analysis was the average computed from 3 replicates.

Analysis of Ribosome Profiling Data. Ribo-seq data have been downloaded
from the Gene Expression Omnibus database (62) (accession number
GSE53313). Reads from raw fastq files were trimmed with cutadapt (3′
adapter: TCGTATGCCGTCTTCTGCTTG) with parameters “–error-rate 0.1
–minimum-length 15 –overlap 1.” The first 8 nt corresponding to random
barcodes were then trimmed as well and the remainder of the sequence was
first aligned to rRNAs with bowtie2, version 2.2.9, parameters “-q” and
“–un” to indicate the fastq format of the input file and to obtain also the
unmapped reads. The latter were then aligned to a database consisting of all
yeast ORFs extended by 200 nt upstream and downstream, to be able to
reconstruct full-length ribosome profiles along the ORFs. To allow for the
possibility of closely spaced ORFs which would lead to reads mapping in an
overlapping manner to the 2 genes, we extracted up to 2 best mappings,
with bowtie2 parameter “-k 2.” The positions of the “A” site of ribosomes in
individual reads were inferred as in ref. 4.

Codon densities have been estimated as in ref. 4 by considering only ORFswith
more than 1 read per codon and removing the first 200 codons. For each ORF,
deviations were computed relative to the average number of reads per codon.
These relative densities of reads were then collected for individual codons and
averaged to get the estimated residence time of the ribosome in each codon.

Analysis of Protein Synthesis Rates. For the pSILAC experiment, the S. cer-
evisiae strain BY4741 was grown as described (22). Briefly, synthetic medium
containing 2% glucose, yeast nitrogen base (6.7 g/L), and dropout medium
(2 g/L) containing all of the amino acids except L-lysine was prepared. Ini-
tially, a preculture of yeast was grown at 30 °C, 200 rpm, in 3 biological
replicates obtained by inoculating 3 different colonies in 5 mL of heavy
SILAC synthetic medium containing heavy L-lysine-2HCl, 13C6,

15N2 (Thermo
Fisher; 88209) at a final concentration of 30 mg/L. The preculture step was
repeated one more time so that all of the proteins became tagged with
heavy isotope. The preculture thus obtained was used to grow cells at op-
tical density of A600 = 0.4 in 200 mL. At this point, cells were centrifuged,
washed twice with light SILAC synthetic medium containing light L-lysine-
2HCl (Thermo Fisher; 89987) at concentration of 30 mg/L and transferred to
200 mL of light SILAC media. Cells were harvested at 0, 5, 15, 30, 60, 120, and
180 min for the mass-spectrometric analysis.

Cells were lysed in a buffer containing 1% sodium deoxycholate, 0.1 M
ammonium bicarbonate, and 10 mM TCEP using strong ultrasonication
(Bioruptor; 10 cycles, 30 s on/off; Diagenode). Samples were heated to 95 °C
for 10 min, and after cooling, the protein concentration was determined by
the BCA assay (Thermo Fisher Scientific), using a small sample aliquot. Fifty
micrograms of protein were alkylated with 15mM chloroacetamide for 30 min
at 37 °C and incubated with sequencing-grade modified trypsin (1/50 [wt/wt];
Promega) overnight at 37 °C. After acidification using 5% TFA, precipitated
detergent was removed by centrifugation (14,000 rpm, 5 min). Peptides were
desalted on C18 reversed-phase spin columns according to the manufacturer’s
instructions (Microspin; Harvard Apparatus) and dried under vacuum.

The setup of the μRPLC-MS system was as described previously (63). Chro-
matographic separation of peptides was carried out using an EASY nano-LC
1000 system (Thermo Fisher Scientific), equipped with a heated reversed-
phase–high-performance liquid chromatography column (75 μm × 37 cm)
packed in-house with 1.9-μm C18 resin (Reprosil-AQ Pur; Dr. Maisch). Aliquots
of 1-μg total peptides were analyzed per liquid chromatography–tandemmass
spectrometry run using a linear gradient ranging from 95% solvent A (0.15%
formic acid, 2% acetonitrile) and 5% solvent B (98% acetonitrile, 2% water,
0.15% formic acid) to 30% solvent B over 90 min at a flow rate of 200 nL/min.
Mass spectrometry analysis was performed on Q-Exactive HF mass spec-
trometer equipped with a nanoelectrospray ion source (both Thermo

Fisher Scientific). Each MS1 scan was followed by high-collision–dissociation of
the 10 most abundant precursor ions with dynamic exclusion for 20 s. Total
cycle time was ∼1 s. For MS1, 3 × 106 ions were accumulated in the Orbitrap
cell over a maximum time of 100 ms and scanned at a resolution of
120,000 full width at half-maximum (FWHM) (at 200 m/z). MS2 scans were
acquired at a target setting of 105 ions, accumulation time of 50 ms, and a
resolution of 15,000 FWHM (at 200 m/z). Singly charged ions and ions with
unassigned charge state were excluded from triggering MS2 events. The
normalized collision energy was set to 27%, the mass isolation windowwas set
to 1.4 m/z, and 1 microscan was acquired for each spectrum.

The acquired raw files were imported into the Progenesis QI software
(version 2.0; Nonlinear Dynamics, Limited), which was used to extract peptide
precursor ion intensities across all samples applying the default parameters. The
generated mgf files were searched using MASCOT using the following search
criteria: full tryptic specificity was required (cleavage after lysine or arginine
residues, unless followed by proline); 3 missed cleavages were allowed; car-
bamidomethylation (C) was set as fixed modification; oxidation (M) and heavy
SILAC (K8) were applied as variable modifications; mass tolerance of 10 ppm
(precursor) and 0.02 Da (fragments). The database search results were filtered
using the ion score to set the FDR to 1% on the peptide and protein level, re-
spectively, based on the number of reverse protein sequence hits in the datasets.
The relative quantitative data obtained were normalized and statistically ana-
lyzed using our in-house script (SafeQuant) as above (63). The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium via
the PRIDE (64) partner repository with the dataset identifier PXD014357.

The protein synthesis rates have been obtained from the slope of linear
regression constrained to 0 at time point 0. This analysis was performed with
the lm() function of R (version 3.4.2). For each regression, R2 values have
been recorded for further analysis (Fig. 2C).

Scaling mRNA Copy Numbers, Protein Synthesis Rates, and Ribosome Densities.
To obtain absolute protein synthesis rates, the relative rates obtained from
pSILACwere scaled, using the known values of the numberofproteinmolecules
per yeast cell (21), the doubling time of yeast, and the average half-life of yeast
proteins (22). Furthermore, as the proteomics experiment does not capture all
proteins, the uncaptured fraction had to be taken into account. The fraction of
captured proteins has been approximated as follows: reads from ribosome
footprints were used to compute normalized ORF abundances in the Ribo-seq
data (RPKMs). The total abundance of translated ORFs that were not captured
in the proteomics data, relative to all of the ORFs captured in Ribo-seq, was
used as the fraction of uncaptured protein. The steady-state level of protein
per cell should be given by the ratio of synthesis and degradation rates. The
synthesis rate can thus be calculated as the product of the steady-state level of
protein per cell and the degradation rate. The latter is the result of 2 processes,
protein degradation and dilution due to cell growth. This leads to the fol-
lowing expression for the average synthesis rate of the captured fraction:

kp = captured  fraction *protein  per  cell * lnð2Þ
*
�

1
doubling  time

+
1

average  protein  half-life

�
.

To obtain synthesis rates for individual ORFs, wemultiplied the total synthesis
rate of the captured fraction by the relative synthesis rate inferred by fitting
the light peptide accumulation in pSILAC:

kpi = kp *normalized  protein  synthesis  rate  pi.

To infer absolute densities of ribosomes per codon, we determined the first
principal component of the absolute ribosome densities from ref. 19 relative
to our estimates based on RPFs (Fig. 2A). We used this first principal com-
ponent to map relative densities we obtained based on RPF and mRNA-seq
reads to ribosomes densities per codon for each ORF.

Absolute abundances of mRNA molecules per cell were obtained by
rescaling the relative numbers inferred from RNA-seq to obtain a total of
40,000 transcripts per cell, as found in previous work (23, 24).

Computation of mRNA/Protein Features. Protein features used in the analysis
of translation elongation rate have been downloaded from the yeast genome
database at the following link: https://downloads.yeastgenome.org/curation/
calculated_protein_info/protein_properties.tab.

The tRNA adaptation index (tAI) and normalized tAI (ntAI) have been
computed as in refs. 26 and 27 with a custom Python script. The RNAplfold
tool from ViennaRNA package (65) (version 2.1.8) was used with default
parameters to estimate structural accessibility along ORFs. For each ORF, the
average accessibility of windows of a specified size has been calculated.
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We analyzed the following features:

• Molecular weight (Mw) of the protein in daltons;
• Isoelectric point (pI): the pH at which the protein does not carry net

electric charge;
• Grand average of hydropathicity (GRAVY score): the average of hydrop-

athy values of all amino acids in the protein (31);
• Aromaticity score: the frequency of aromatic amino acids, Phe, Tyr, and Trp;
• Codon adaptation index (CAI): measure of the bias of codon usage in a

coding sequence with respect to a reference set of genes (29). It is defined
as the geometric mean of the weights over all codons in the sequence ðLÞ:

CAI=
�
∏L

i=1wi

�1
L
,

where the weight of each of codon is computed from the reference sequence
set, as the ratio between the observed frequency of the codon fi and the
frequency of the most frequent synonymous codon fj for that amino acid:

wi =
fi

max
�
fj
�,

with i, j synonymous codons.

• tRNA adaptation index (tAI): measure of the adaptation of each transcript
to the pool of tRNAs (26). Similarly to CAI, tAI is the geometric mean of
weights associated to each codon:

tAI=
�
∏L

i=1wi

�1
L
,

where

wi =
�

Wi

Wmax
 if Wi ≠ 0,wmean else

	
,

and

Wi =
Xni

j=1

�
1− sij

�
tGCNij ,

with ni as number of tRNA isoacceptors, tGCNij as gene copy number of
tRNA jth recognizing ith codon, and sij as a selective constraint of codon–
anticodon coupling.

• Normalized tRNA adaptation index (ntAI): normalized version of tAI
based on the codon usage in the transcriptome (27), it has a similar form
to tAI, but with Wi being scaled by the normalized codon expression in
the following way: Ui is the usage of codon i taking into account the
abundance of individual transcripts:

Ui =
Xg
j=1

ajcij ,

with aj being the transcript abundance of gene j and cij as the number of
occurrences of codon i within the ORF of the gene j. The usage of codon i
is then defined as follows:

cui =Ui=Umax,

and finally the weights that used in the calculation of the tAI are defined
as follows:

Wi ’=Wi=cui ,

Wi ’’=Wi ’


Wmax

i .

The factor Wi ’’ substitutes Wi in the formula for tAI.

• Fraction of optimal codons (FOP): fraction of optimal codons in the
ORF (28). The optimal codon for an amino acid is the codon most used
to encode the amino acid in the ORFs encoding the top expressed
proteins;

• Instability index: measure of protein half-life estimated based on the di-
peptide composition of the protein (32);

• Domain coverage: fraction of protein covered by Pfam domains predicted
by InterPROScan (66);

• α-Helix, β-sheet, coil: fraction of the protein sequence involved in the
indicated types of secondary structures predicted by PSIPRED (67);

• Accessibility, 5 nt: average probability of finding a window of size 5 nt
in an open conformation predicted with RNAplfold from ViennaRNA
package (65).

Enrichment Tests. Gene ontology and KEGG pathway enrichments have been
performed through the STRING database (68).
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