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INTRODUCTION
Fibroblasts are the cells responsible for producing 

extracellular matrix (ECM), the scaffolding that surrounds 
cells throughout the body. Fibroblasts are a major compo-
nent of the stroma, the body’s supportive connective tis-
sue. These cells are indispensable in tissue development 
and homeostasis, playing an integral role in supporting 
other cell types and defining the architecture of tissues 
and organs.1 However, fibroblasts can also contribute 

substantially to disease.2–4 In particular, fibroblasts play a 
critical role in fibrosis, which can affect any organ in the 
body and lead to impaired function.4 Fibrosis is the final 
common pathway in many forms of tissue damage in both 
skin and viscera. States of fibrosis are defined by patho-
logic fibroblast activity, in which cells produce excessive 
amounts of abnormally organized ECM, leading to the 
replacement of functional native tissue with dense, non-
functional connective tissue.5 Fibrosis causes an enormous 
burden of morbidity and mortality worldwide and is esti-
mated to be responsible for 45% of all deaths in the United 
States.4 Skin scarring from surgery alone affects over 100 
million patients per year in the developing world.6

Fibroblasts were historically thought to be a very 
primitive cell type. However, basic science research has 
progressively shown that fibroblasts are active in intercel-
lular signaling and play a critical role in many develop-
mental processes, physiologic functions, and pathologies.7 
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Summary: Fibroblasts’ integral role in tissue development, maintenance, and dis-
ease represents a fast-growing field of basic science research. Although fibroblasts 
were long thought to be a homogeneous cell population, recent research has illu-
minated the unforeseen complexity of these cells, giving rise to the rapidly expand-
ing research field of “fibroblast heterogeneity.” Fibroblasts play a critical role in 
states of tissue fibrosis such as skin scarring, which affects hundreds of millions of 
patients annually and causes severe aesthetic, developmental, and functional mor-
bidity. Beyond scarring, major organ fibrosis is an enormous public health con-
cern responsible for nearly half of all deaths in the United States. Because fibrosis 
is a conserved response to tissue damage in all organs, the study of fibroblasts 
throughout the body may help us to understand their role in the conditions most 
relevant to plastic and reconstructive surgery—for instance, skin scarring (eg, from 
burns, traumatic lacerations, or surgical incisions), “pathological” scarring (hyper-
trophic scars, keloids), and capsular contracture. Here, we present a basic science 
review of fibroblast heterogeneity in wound healing, cancer, organ fibrosis, and 
human dermal architecture. The field of fibroblast heterogeneity is young, and 
many of the insights discussed have yet to be translated clinically. However, plastic 
surgeons stand in a unique position to bridge these discoveries into clinical reali-
ties. We hope this information can spur readers to consider both what questions 
in plastic surgery can be studied from the lens of fibroblast heterogeneity, and 
how these preclinical insights can be translated to improving care of our patients. 
(Plast Reconstr Surg Glob Open 2020;8:e2927; doi: 10.1097/GOX.0000000000002927; 
Published online 23 June 2020.)
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In particular, scientific interest in fibroblasts has grown 
rapidly in recent years due to work illuminating the con-
cept of “fibroblast heterogeneity.”2,8 Although fibroblasts 
were long believed to be a homogeneous cell population, 
recent work has shown fibroblasts to be a strikingly diverse 
family of cells with wide-ranging functions throughout 
different anatomical sites, organs, physiologic processes, 
and disease states.2,8–12 The importance of fibroblasts 
in numerous processes central to the practice of plastic 
surgery—wound healing and scarring, skin development 
and maintenance, and cancer, among others—makes the 
expanding field of fibroblast heterogeneity of particular 
interest to our specialty.

The pace of research into fibroblasts and fibroses is 
accelerating, and although exciting developments have 
been made in recent years, much remains to be explored in 
the field of fibroblast heterogeneity. Although key aspects of 
fibroblast biology have begun to inform novel clinical direc-
tions in plastic surgery,13–15 most of the basic science insights 
that have defined the field of fibroblast heterogeneity have 
yet to be translated to clinical practice. However, plastic and 
reconstructive surgeons offer a unique firsthand under-
standing of soft-tissue biology and fibrosis. This places plas-
tic and reconstructive surgeons in an ideal position to both 
advance the field of fibroblast biology and bridge the gap 
between preclinical research and novel clinical solutions.

This article aims to provide an overview of the current 
state of knowledge in fibroblast biology in a range of physi-
ologic and disease states: wound healing, cancer, organ fibro-
sis, and human dermal physiology. Improved understanding 
of the different types of fibroblasts within the skin and other 
tissues could not only expand our understanding of fibrotic 
diseases and their underlying pathophysiologic mechanisms, 
but also yield novel insights into the treatment and preven-
tion of fibrosis. Given that fibrosis is a conserved response to 
tissue damage throughout the body, insights into fibroblast 
heterogeneity in the diverse settings discussed here may 
inform potential therapeutic directions for treating those 
fibrotic conditions most relevant to plastic and reconstruc-
tive surgery. It is the authors’ hope that this review will pro-
vide our readers with a broad foundation to consider novel 
ways to leverage fibroblast heterogeneity for the benefit of 
plastic and reconstructive surgeons and our patients.

FIBROBLASTS IN WOUND HEALING
Wound healing is one of the most well-researched 

examples of fibrosis in the body. As plastic surgeons are 
well aware, any injury involving the dermis—whether a 
burn, surgical incision, or other tissue trauma—will yield 
a fibrotic scar. Skin scars affect hundreds of millions of 
patients every year,6 resulting in an over $12 billion annual 
market for treatments.16 Fibroblasts, the cellular culprits of 
scarring, mediate ECM deposition in both dermal develop-
ment and wound repair. Although the specific fibroblast 
subpopulations and intrinsic and extrinsic cues governing 
wound repair remain to be fully elucidated, several key 
discoveries in the field of dermal fibroblast heterogeneity 
have been made in recent years. An overview of mouse der-
mal fibroblast subsets and their defining surface markers is 

shown in Figure 1; the contributions of these cell popula-
tions to wound healing are discussed below.

A 2013 study by Driskell et al12 reported that 
unwounded mouse skin comprises 2 distinct fibroblast lin-
eages defined by unique surface marker profiles: one that 
contributes to the papillary (superficial) dermis and one 
that forms the reticular (deep) dermis. The reticular lin-
eage, which is characterized by active ECM production, is 
primarily responsible for dermal wound repair, potentially 
explaining the dense ECM-rich nature of scar tissue. In 
2015, Rinkevich et al10 further defined the role of dermal 
fibroblast subpopulations in wound repair, reporting that 
a specific fibroblast lineage defined by En1 expression and 
expression of the surface marker dipeptidyl peptidase-4 
(Dpp4; also known as cluster of differentiation 26, CD26) 
is responsible for the vast majority of dorsal scarring in 
mice. Single-cell methods have also demonstrated striking 
heterogeneity among murine wound fibroblasts; one study 
found 12 separate clusters based on transcriptional pro-
files.9 The full diversity of fibroblast contributors to wound 
healing and scarring continues to be actively explored.

Further investigation of fibroblast contributions to scar-
ring has been facilitated by comparing fibroblasts in differ-
ent wound healing outcomes—ie, “normal” scarring versus 
decreased or increased fibrosis. For example, several studies 
have contrasted fibroblasts from the dermis (which heals via 
scarring) and oral mucosa (which is minimally scarring).17 In 
their 2015 article, Rinkevich et al10 demonstrated via recip-
rocal fibroblast transplantation that the fibroblasts respon-
sible for tissue repair in the mouse oral mucosa (defined 
by Wnt1 expression) are intrinsically nonfibrotic, whereas 
En1-positive fibroblasts from the dorsal dermis are intrinsi-
cally scar producing. This finding suggested that cell-intrin-
sic fibroblast differences may contribute to distinct healing 
outcomes between these sites. The profibrotic dermal fibro-
blast phenotype has also been correlated to increased CD26 
expression compared with gingival fibroblasts in humans.18 
Oral mucosal fibroblasts (which are neural crest-derived10,19) 
also demonstrate multipotential capacity19 and diminished 
propensity to differentiate into an activated myofibroblast 
phenotype in vitro,20 potentially explaining their increased 
regenerative capacity and decreased fibrosis. In addition, 
decreased myofibroblast contractility and responsiveness to 
mechanical stress (an important factor in wound fibroblast 
activation) have also been observed in fibroblasts derived 
from pig oral mucosa,21 Acomys mice,22 and mammalian fetal 
dermis,23 all of which represent examples of regenerative 
healing. An overview of regenerative, or “scarless,” healing 
is shown in Figure 2.

FIBROBLASTS IN KELOID AND 
HYPERTROPHIC SCARS

On the other end of the spectrum, fibroblast differ-
ences have also been demonstrated to contribute to 
pathologic (hyperproliferative/hyperfibrotic) healing 
outcomes in the human skin. Fibroblasts from hypertro-
phic scars exhibit alterations in connective tissue deposi-
tion and related molecular signaling in response to wound 
molecular cues.24,25 Further, one study demonstrated  
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phenotypic variation in fibroblasts from different dermal 
layers, and specifically implicated fibroblasts localized 
within the deep dermis in hypertrophic scarring.26 This 
finding is consistent with the observation in mice that 
the deeper dermal layers contain more profibrotic fibro-
blast subpopulations12 and suggests that in humans, like 
in mice, functional variation may exist between fibroblasts 
derived from different regions of the dermis.

Keloid-derived fibroblasts are functionally distinct 
from hypertrophic scar fibroblasts. Although these 
pathologies share key features (notably the excess con-
nective tissue deposition characteristic of hyperprolif-
erative scarring), keloids differ from both normal and 
hypertrophic scars in that they extend beyond the borders 
of the initial wound and never stop growing. Consistent 
with the fact that keloids grow continually and are in fact 
thought to be benign tumors, keloid-derived fibroblasts 
exhibit decreased apoptosis and p53 expression, fea-
tures commonly associated with tumors.27 Interestingly, 
mutations in the p53 gene have also been identified in 
hypertrophic scar fibroblasts by one study; however, these 
mutations were rarer and less functionally significant, 

as phenotypically, hypertrophic scar fibroblasts did not 
exhibit the decreased rates of apoptosis seen in keloid 
fibroblasts.28 The distinctions between keloid and hyper-
trophic scar fibroblasts likely reflect the fact that these 
two scar outcomes are not merely different points on the 
same spectrum; rather, they have fundamentally different 
underlying pathophysiology, and as such may require dis-
tinct therapeutic approaches.

Interestingly, although fibroblasts are classically 
thought to be a completely differentiated cell type, 
recent research has shown that wound myofibroblasts 
may be less terminally differentiated and more “plastic” 
than previously believed. In 2017, Plikus et al29 reported 
that in murine wound healing, myofibroblasts are repro-
grammed to become adipocytes by hair follicle–related 
signaling, a finding that was replicated in vitro in human 
keloid fibroblasts. The authors suggested that this tran-
sition of profibrotic fibroblasts into adipocytes may be a 
useful therapeutic target for reducing fibrosis in the set-
ting of hyperproliferative scarring. Given the lack of effec-
tive treatment options for skin scarring and particularly 
for pathologic scarring, such as hypertrophic scars and 

Fig. 1. Dermal fibroblast heterogeneity. Hierarchy of murine dermal fibroblast subpopulations and their identifying 
molecular markers over the course of development and differentiation. lineage/cell surface markers shown in this figure 
are based on data presented in the following publications: Driskell and Watt,7 Driskell et al,12 Borrelli et al 2020 (unpub-
lished), and Rinkevich et al.10 pDGFRa, platelet-derived growth factor receptor alpha; Sox2, SRY-box transcription fac-
tor 2; lrig1, leucine-rich repeats and immunoglobulin-like domains 1; FSp1, fibroblast-specific protein 1; col1, collagen 
type 1; en-1, engrailed homeobox 1; prrx-1, paired related homeobox 1; Dlk1, delta-like non-canonical notch ligand 1; 
Dermo1=Twist2, Twist-related protein 2; col1a2, collagen type 1 alpha 2 chain; Sca1, stem cell antigen 1
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keloids, a study of fibroblast heterogeneity across differ-
ent healing outcomes may illuminate novel directions for 
therapeutic development.

FIBROBLASTS IN CANCER
Similar to their function in dermal wound healing, 

fibroblasts comprising the stroma of solid tumors play 
an integral role in supporting tumor cell proliferation 
and regulating the tumor microenvironment.3,30,31 In 
fact, in a process known as the “serum response,” which 
is conserved between different tissue and tumor types, 
these cancer-associated fibroblasts (CAFs) recapitulate 
wound-healing gene expression pathways.32 However, as 
in wound healing and fibrosis, significant heterogeneity 

also exists between fibroblasts from different tumor types 
and sites as well as between species. As a result, despite 
their critical role in disease progression, fibroblasts are 
particularly challenging to target therapeutically in the 
setting of cancer.

Striking fibroblast heterogeneity can be seen in skin 
cancers. In melanoma, for example, fibroblasts expressing 
the cell surface marker CD26 are an important subpopu-
lation of cells contributing to tumor stroma ECM deposi-
tion; in a mouse xenograft model of melanoma, depletion 
of the CD26-positive fibroblast subpopulation decreased 
tumor growth.10 In basal cell carcinoma, CAFs are known 
to express a variety of chemokines associated with both 
local immunosuppression and tumor progression. 
Interestingly, even fibroblasts in cancer-free, sun-damaged 

Fig. 2. Scarless versus scarring healing. early gestation fetal wound repair represents a 
paradigm for regenerative/scarless healing. Fetal skin (left) exhibits minimal inflamma-
tion following wounding (middle row left) and heals in a scarless fashion by regenerat-
ing normal skin; fetal fibroblasts produce ecM indistinguishable from that of unwounded 
skin (bottom row left). Relative to fetal skin, adult skin (right) exhibits markedly increased 
inflammation upon wounding (middle row right). in response to injury, postnatal fibro-
blasts produce scar tissue distinguished by dense, fibrotic ecM and a grossly raised 
appearance (bottom row right).
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areas near patients’ tumors show cancer-associated gene 
expression patterns, suggesting that these cells might pro-
mote tumor formation.33

In breast carcinoma, 4 unique subpopulation of CAFs 
have been identified based on cell surface markers in 
humans.34 However, such delineation by cell surface mark-
ers alone is likely insufficient to capture the full extent of 
fibroblast heterogeneity because subtle changes in gene 
expression can yield distinct functional outcomes that 
may or may not be significantly reflected at the cell surface 
level.35 The complexity of CAFs may further be understood 
with regard to how these cells regulate other cell types, 
both cancer cells and immune cells, in the tumor micro-
environment. For instance, melanoma cells co-cultured 
with fibroblasts exhibit decreased apoptosis in response to 
cisplatin, indicating that fibroblasts may support the devel-
opment of melanoma cell drug resistance.36 CAFs in mela-
noma have also been shown in vitro to decrease natural 
killer (NK) cell-killing efficacy by their secretion of matrix 
metalloproteinases, suggesting an immune-modulatory 
role for CAFs.37

Expression of α smooth muscle actin (αSMA) is associ-
ated with subsets of “activated” (ie, profibrotic) fibroblasts 
in a variety of fibrotic pathologies and cancer types.38–40 
Interestingly, in oral carcinoma, a subtype of CAFs with low 
αSMA expression was recently found to have an inhibitory 
effect on tumor proliferation and cancer cell self-renewal 
in vitro.41 Such results suggest a dual role for fibroblasts in 
tumors, with certain subpopulations encouraging tumor 
proliferation and other subpopulations involved in limit-
ing it, both of which may be clinically targetable. Further 
investigation of CAF diversity within different tumor types 
is an active area of current research in the field. Given 
the increasing recognition of the important roles CAFs 
play in tumor development, progression, and treatment 
response, a deeper comprehension of these cells is imper-
ative for identifying novel treatments and improving ther-
apeutic management of cancer.

PARENCHYMAL FIBROBLASTS AND ORGAN 
FIBROSES

Distinct fibroblast subpopulations also exist within 
organ fibroses (Fig.  3), which often precede cancer. 
Studying fibroblast contributions in these organs may rep-
resent a paradigm from which we can gain insights into 
other fibroblast-driven pathologies.

In the lungs, mesenchymal myofibroblasts are known 
to be the primary cellular culprit of pulmonary fibrosis, 
but the subtypes and contributions of these cells remain 
poorly defined.40,42 Using single-cell RNA sequencing 
(scRNA-seq) of mouse lungs, Zepp et al43 revealed that 
alveolar niche cells mediate alveolar growth/regenera-
tion, whereas distinct mesenchymal progenitor cells give 
rise to the myofibroblasts in pulmonary fibrosis. Xie et 
al44 further clustered mouse pulmonary mesenchymal 
cells into 7 distinct populations based on gene expression; 
these included myofibroblasts, lipofibroblasts, and mul-
tiple matrix fibroblast types, and PdgfrbHigh fibroblasts were 
specifically implicated in lung fibrogenesis.

In the liver, it is classically believed that during injury, 
hepatic stellate cells and portal fibroblasts transition to pro-
fibrotic myofibroblasts.45 One study suggested that mouse 
Wt1+ mesothelial cells differentiate into myofibroblasts dur-
ing fibrogenesis, and that this transition can be prevented 
via transforming growth factor beta (TGFβ) antagonism.46 
Great interest also exists regarding fibroblasts’ role in peri-
toneal adhesions, an extremely common postoperative 
sequela with a high readmission risk47 affecting over half of 
all abdominal/pelvic surgical patients.48 Tsai et al49 identi-
fied PDPN+MSLN+ (PDPN, podoplanin; MSLN, mesothe-
lin) mesothelial cells as culprits of adhesion formation in 
a mouse surgical model. These cells upregulated hypoxia-
inducible factor 1-alpha (HIF1α) expression; HIF1α  
inhibition significantly reduced adhesions.

The study of fibroblast heterogeneity may also yield 
insights into fibroses in other tissues commonly encoun-
tered in plastic surgery, such as the skin and breast. 
Capsular contracture is a fibrotic process frequently 
observed following a breast implant placement; although 
its mechanisms are poorly understood, the role of fibro-
blasts is an active topic of research.50 Studies have found 
that estrogen receptor expression by capsular myofibro-
blasts in patients is associated with an increased αSMA 
expression and capsular thickness,51,52 while clinically, 
antiestrogenic therapy is associated with a less-severe con-
tracture,52 suggesting a potential therapeutic strategy for 
targeting capsular myofibroblasts.

Fibroblasts also play a critical role in chronic dermal 
fibroses, such as scleroderma (systemic sclerosis). However, 
although significant research has explored the molecular 
signaling governing both normal and pathologic dermal 
fibroblast behavior53—for example, it is evident that fibro-
blasts are regulated by TGFβ and Wnt signaling in states 
of fibrosis54—precise determinants of the fibroblast transi-
tion to a profibrotic phenotype, as well as the specific cell 
populations involved, remain to be elucidated. Further 
investigation into cellular culprits of fibrosis through-
out the body, as well as interactions among different cell 
types (eg, fibroblasts and immune cells), may reveal con-
served mechanisms relevant to treating diverse fibroses. 
Continued research may ultimately enable targeting of 
specific profibrotic fibroblast subpopulations to prevent/
treat fibroses.

HUMAN DERMAL FIBROBLAST DIVERSITY
The skin is the most well-researched example of fibro-

blast heterogeneity, and the most relevant to plastic and 
reconstructive surgery. To translate experimental work to 
novel regenerative medicine therapies, we must directly 
study fibroblast diversity in the human skin. Although fate-
mapping experiments in mice are facilitated by transgenic 
animal models, such strategies cannot be translated to 
humans. In vitro methods have a limited utility, as cell cul-
ture significantly changes fibroblasts’ genetic signature.55 
As such, the study of human dermal fibroblast subpopula-
tions has relied on alternative strategies (Fig. 4).

One hypothesis-driven approach has been to exploit 
knowledge of murine fibroblast subpopulations to screen for 
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analogous populations in the human skin. Shook et al56 iden-
tified a population of CD9+CD26High myofibroblasts that were 
increased in mouse wounds and were also present in the 
human skin. However, key differences exist between mouse 
and human skin physiology and wound healing.57,58 These 
differences may be reflected in divergent surface markers, 
as observed in other tissues.59,60 For example, while Sca-1 
expression has been used to distinguish fibroblast subsets in 
mice,2 no human ortholog of this surface marker exists.61

Another popular approach to exploring human 
fibroblast heterogeneity has been interrogation of fibro-
blast subpopulations by spatial segregation within the 

dermis. The mammalian dermis is divided into the papil-
lary (superficial) dermis (which is highly cellular) and 
the reticular (deep) dermis (which is rich in collagen and 
connective tissue).62 In mice, these regions harbor distinct 
fibroblast subpopulations.63,64 In humans, gene expression 
analyses revealed a higher expression of immune- and 
angiogenesis-related genes in papillary fibroblasts, and a 
higher expression of genes associated with cytoskeleton 
organization and connective tissue formation in reticu-
lar fibroblasts.65,66 Korosec et al67 identified 2 cell surface 
markers distinguishing papillary and reticular fibroblasts:  
papillary fibroblasts (FAP+CD90−  - FAP, fibroblast activation 

Fig. 3. organ fibrosis throughout the body. Representative histology of healthy tissue 
from the skin (a), breast (B), heart (c), and lung (D), compared with fibrotic tissue from 
those organs. Fibrotic tissue histology (e–H) demonstrates typical “hallmarks” of fibrosis, 
including densely aligned ecM fibers, decreased cellularity, and altered tissue architec-
ture. Scale bars, 200 μm. individual histology images were obtained from the pathology 
education instructional Resource (peiR) Digital library and used with permission from Dr. 
peter anderson.
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protein; CD90, cluster of differentiation 90) expressed 
PDPN, NTN1 (netrin 1), and higher CD26 levels  
(consistent with findings in mice10,12,63), whereas reticular 
fibroblasts (CD90+) expressed ACTA2 (actin alpha 2, smooth 
muscle; also known as α-SMA, alpha smooth muscle actin), 
MGP (matrix Gla protein), PPARy (peroxisome prolifera-
tor-activated receptor gamma), and CD36. Interestingly, 
papillary fibroblasts had increased proliferative potential 
but could not give rise to adipocytes, whereas CD90+CD36+ 
reticular fibroblasts readily underwent adipogenic differ-
entiation.68,69 It should be noted that these distinctions are 
not comprehensive; for example, 10% of reticular dermal 
cells express CD36, whereas a subset of papillary fibroblasts 
express the endothelial marker CD146, suggesting a peri-
vascular fibroblast subpopulation. Further, it is possible that 
“intermediate” layers between the reticular and papillary 
dermis harbor additional fibroblast lineages.70,71

Single-cell sequencing promises an unbiased approach 
for studying human fibroblast heterogeneity. Philippeos 
et al72 performed scRNA-seq on CD90+ and CD90− cells 

(96 each) isolated from abdominal skin of a single donor. 
Hierarchical clustering defined 4 fibroblast subpopula-
tions—1 upper dermal, 1 lower dermal, and 2 reticular 
dermal clusters—with distinct gene expression profiles. 
Tabib et al73 conducted scRNA-seq on full-thickness fore-
arm skin biopsies from 4 patients. Gene expression hier-
archical clustering of fibroblasts (COL1A1+) identified 
2 major subpopulations (expressing SFRP2/DPP4 and 
FMO1/LSP1, respectively) and 5 minor subpopulations. 
However, the fact that these markers identified by RNA-
seq are largely intracellular impedes prospective cell iso-
lation and complicates comparisons to work describing 
fibroblast subpopulations only by surface markers (eg, 
Philippeos et al72).

The initial findings concerning fibroblast heteroge-
neity in the human skin are promising. However, many 
areas of further exploration remain uninitiated, including 
whether these transcriptionally heterogeneous fibroblast 
subpopulations represent different cellular states or truly 
distinct cell lineages. A critical direction of research will 
be how these fibroblast subsets change in different physi-
ologic and disease states, such as aging.74 As our under-
standing of human dermal fibroblasts progresses, these 
findings will be critical in informing treatment for a broad 
range of skin conditions and pathologies.

DISCUSSION
Fibroblasts are a diverse collection of cells that are inte-

gral for tissue homeostasis and maintenance as well as for 
response to damage (eg, wound healing).75 Key discover-
ies have been made in recent years with regard to differ-
ent fibroblast subtypes, particularly within the skin, and 
their contributions to both physiologic and pathologic 
processes. For example, as discussed earlier, recent studies 
have identified distinct profibrotic and proregenerative 
fibroblast subtypes within different tissues, highlighting 
fibroblasts’ functional diversity.17 These discoveries have 
the potential to inform novel therapeutic directions; for 
instance, basic science discoveries of mechanical signaling 
pathways driving profibrotic fibroblast behavior have been 
translated into therapies to reduce scarring by targeting 
wound tension.13–15 Additional insights into fibroblast het-
erogeneity, signaling, and lineage hierarchies may allow 
researchers to target specific fibroblast populations and 
cell signaling pathways to prevent fibrosis in the dermis 
and other tissues, with the potential to expand therapeutic 
strategies available to plastic and reconstructive surgeons.

However, important limitations remain with regard to 
our knowledge of fibroblast heterogeneity. Lack of consen-
sus regarding specific subpopulations, lineage restriction, 
and cell signaling among fibroblasts has a complicated 
definition of their precise roles in fibrotic pathophysiology. 
Additionally, given the fact that fibroblasts’ interactions 
with other cell types (eg, keratinocytes) influence their biol-
ogy,76 it will be critical to characterize fibroblasts’ intercel-
lular signaling and roles within their in vivo niche. Finally, 
and most importantly, much of our knowledge of fibroblast 
heterogeneity has yet to be translated into clinical solu-
tions that improve patient care. Plastic and reconstructive 

Fig. 4. Defining human dermal fibroblast heterogeneity. The study 
of fibroblast heterogeneity in humans, as well as the identification of 
distinct dermal fibroblast subpopulations, has largely relied on sin-
gle-cell molecular profiling. Generally, fibroblasts are isolated from 
either whole dermis or skin layers that have been anatomically sepa-
rated (eg, using a dermatome) (a). These fibroblasts are then sub-
jected to single-cell sequencing (B). Based on comparison of gene 
expression levels (c), fibroblasts can be clustered into subgroups 
that share similar transcriptional profiles (D), which may represent 
distinct fibroblast subpopulations (e).
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surgeons have an unparalleled ability to guide this transla-
tion. As practitioners of a uniquely innovative and creative 
medical specialty, plastic surgeons are no strangers to the 
interface where cutting-edge preclinical research and novel 
clinical solutions meet. In addition, plastic and reconstruc-
tive surgeons have an intimate firsthand familiarity with the 
biology of soft tissue and the macroscopic bodily processes 
that are fundamentally driven by fibroblasts. The value of 
such surgical intuition should not be overlooked: plastic 
surgeons are ideally positioned to develop creative applica-
tions of these basic science discoveries to surgical practice. 
We envision several broad lenses through which the knowl-
edge of fibroblast heterogeneity may be used to inform 
novel treatments; these are illustrated in Figure 5.

CONCLUSIONS
Herein we have reviewed the wide-ranging functionality 

of fibroblasts in numerous physiologic and pathologic pro-
cesses such as dermal wound healing, cancer, and internal 
organ fibrosis. Although many questions remain unanswered 
regarding the cellular identity of fibroblast subpopulations 
and the mechanisms governing their behavior, advance-
ments made in the study of fibroblast heterogeneity have 
already revealed valuable insights into fibrosis. Although 
fibroblasts in other tissues remain less well-explored com-
pared with those in the dermis, the principles that dictate 
dermal fibroblast heterogeneity and pathologic contribu-
tions may yield knowledge applicable to other tissue types, 
and vice versa. Investigation of the cellular basis of fibrotic 

disease represents a step toward developing novel treatment 
regimens for combating fibrosis not only in the skin, but 
throughout the body. We hope that this article can inspire 
our readers to consider what unanswered questions remain 
in fibroblast heterogeneity, and how preclinical research in 
this field can be adapted to drive innovative clinical solu-
tions in plastic and reconstructive surgery.

Michael T. Longaker, MD, MBA, FACS
Hagey Laboratory for Pediatric Regenerative Medicine

257 Campus Drive
Stanford, CA 94305

E-mail: longaker@stanford.edu
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