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Abstract: The aim of this study was to investigate the inherent bacteria that contribute to expressing
the angiotensin I-converting enzyme (ACE) inhibitory activity and the antioxidant activity of dry-
cured meat products without a bacterial starter. Among the ten dry-cured meat product samples,
Coppa and Milano salami exhibited high ACE inhibitory activity, 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radical scavenging ability, and oxygen radical absorbance capacity (ORAC). No consistent
trend was observed in the pH values or the total peptide and imidazole dipeptide concentration
of the products that exhibited high ACE inhibitory and antioxidant activities in the tested samples.
To investigate the bacteria contributing to the ACE inhibitory and antioxidant activities of the
product, 16S rRNA sequencing analysis, isolation, and identification of bacteria were performed
using not only Coppa and Milano salami but also the Jamon Serrano and Parma prosciutto products
that had low functional activities. Results suggest the Lactobacillales order, particularly the species
Latilactobacillus sakei and Pediococcus pentosaceus, were the main inherent bacteria in Coppa and Milano
salami, respectively, compared with the Jamon Serrano and Parma prosciutto products. Therefore,
the inherent lactic acid bacteria in dry-cured meat products without bacterial starter is important for
ACE inhibitory and antioxidant activities of the products.

Keywords: dry-cured sausage; dry-cured ham; bioactivity; microflora; ACE inhibition; antioxidant
activity; lactic acid bacteria

1. Introduction

Meat is generally considered to have high nutritional value; it is a good source of
protein and contains B-vitamins, minerals, and trace elements. Given the increasing con-
cern for human health, functional foods with health-promoting activity have garnered
attention. The angiotensin I-converting enzyme (ACE) inhibitory activity and the antiox-
idant activities of meat and meat products have featured in many studies as potential
bioactivities that can support human physiological functions. For example, ACE inhibition
is proposed to result in antihypertensive activity, and antioxidant activity is proposed to
control peroxidation reactions in the body; these functions can therefore contribute to the
maintenance of good human health [1,2]. The bioactive peptides in meat can often demon-
strate these activities. These bioactive peptides can be generated by cooking, depending
on the acid/base conditions in which the protein is hydrolyzed (repulsion caused by an
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imbalance in charges), enzymatic hydrolysis, and microbial activity such as fermentation
and ripening [3,4]. Thus, bioactivities such as ACE inhibition and antioxidant activity are
an important quality of meat and meat products alongside their nutrition value.

Dry-cured meat products, including dry-cured ham, dry-cured loins, and fermented
sausages, are well-known and highly appreciated products throughout Europe and many
countries worldwide [5]. These products are made primarily from pork and then cured with
salt and nitrite and/or nitrate. Some dry-fermented sausages have used a bacterial starter
to assist the fermentation process. Then, a drying, ripening, and fermentation process is
performed for several weeks, months, or even years. In some dry-cured meat products,
peptides responsible for bioactivities such as ACE inhibition and antioxidant activity
have been reported. There have been several reports on the effects of the LAB starter on
bioactivity [6–8]. Moreover, several dry-cured meat products without using bacterial starter
demonstrated bioactivities and their peptide and amino acid profiles were reported [9,10].
These profiles are thought to occur during meat processing. Since dry-cured meat products
do not undergo any cooking process, the bacteria that participate in the processes from
the environment or ingredients are naturally viable and present in the products. Thus, the
inherent microorganisms in dry-cured meat products without a bacterial starter are thought
to be particularly associated with the generation of bioactive peptides and bioactivities such
as ACE inhibition and antioxidant activity [11]. Moreover, most of the inherent bacteria
that contribute to the bioactivities of dry-cured meat products without using a starter
are expected to vary because of the global diversity of cured meat products owing to the
different manufacturing methods and ingredients used [12]. However, to the best of our
knowledge, few reports have performed a detailed study of the inherent microorganisms in
dry-cured meat products without a starter and investigated their effects on the expression
of bioactivity in the products.

In recent years, metagenomic analysis, in which genomes are purified and sequenced
directly from microbial communities, has been used to investigate microflora. Yang et al.
demonstrated the relationship between microorganisms’ flora and flavor compounds and
the nutrients in fermented meat products [13]. We hypothesized that differences in the
bioactivity of dry-cured meat products could be due to the bacterial flora present in the
products. Therefore, the aims of this study were to investigate the bacteria that contribute to
expressing the bioactivity of dry-cured meat products, using a metagenomic analysis with
16s RNA amplicon sequencing. In this study, we investigated the biological characteristics,
including ACE inhibition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (RS)
ability, and oxygen radical absorbance capacity (ORAC) in 10 dry-cured meat products
manufactured without a starter culture. Then, the bacterial flora in the products with and
without these bioactivities were analyzed by 16s RNA amplicon sequencing. In addition,
from the results of 16s RNA amplicon sequencing, several bacterial strains were isolated
from those tested products, and the species were identified.

2. Materials and Methods
2.1. Materials

The dry-cured meat products used in this study are listed in Table 1. These products
were manufactured without a bacterial starter culture. Each product was obtained through
the Japan Cured Ham Association. The products were prepared from the three individual
production lots. To maintain sample quality, they were stored at −20 ◦C before analysis,
and then thawed to 4 ◦C overnight.
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Table 1. Tested dry-cured meat products.

Meat Products Type Processes of Salting and
Post Salting

Ripening
Time

Water
Activity Origin

Jamon Serrano slice Dry cured ham Covered salting and drying 9 months 0.91 Spain
Black Forest ham slice Dry cured ham Soaked salting, drying, and smoking 3 months 0.91 German
Parma prosciutto slice Dry cured ham Covered salting and drying 24 months 0.91 Italy

Pancetta slice Dry cured belly Covered salting and drying 1 week 0.92 Italy
Coppa slice Dry cured ham Covered salting and drying 1 month 0.92 Italy

Milano salami slice Dry cured sausage Mixed salting and drying 2 weeks 0.91 Italy
Parma salami slice Dry cured sausage Mixed salting and drying 1 week 0.90 Italy

Salami with truffle slice Dry cured sausage Mixed salting and drying 2 weeks 0.92 Italy
Longaniza Dry cured sausage Mixed salting and drying 2 weeks 0.91 Spain

Salchichón slice Dry cured sausage Mixed salting and drying 2 weeks 0.89 Spain

All products are manufactured without a bacterial starter culture.

2.2. Assay of ACE Inhibitory Activity in the Products

Ten grams of each product was added to 40 mL of sterile distilled water, and the
water extract was aseptically homogenized and sterile filtered out from the meat residue.
The peptide concentration of the filtrates was measured by a reported method, with slight
modifications [14]. The sample concentration was then adjusted to a peptide concentration
of 10 mmol/L (Gly–Leu equivalent) (Gly–Leu, Tokyo Chemical Industry Co., Ltd., Tokyo,
Japan) and the ACE inhibitory activity was tested. The ACE inhibitory activity assay
utilized the fluorescence analysis method of Cheung et al. [15]. Briefly, 50 µL of sample
solution, 100 µL of ACE 0.01 U/mL (Sigma Chemical Co., MO, USA), and 20 µL of 25 mM
hippuryl-L-histidyl-L-leucine (Nacalai Tesque, Kyoto, Japan) were mixed in 96-well plate
and incubated at 37 ◦C for 40 min. Subsequently, 100 µL of 1 M NaOH, 15 µL of 3.6 M phos-
phoric acid, and 10 µL of 0.2% o-phthaldialdehyde (OPA) (Nacalai Tesque) were added, and
the sample fluorescence was measured under aseptic conditions using a POWERSCAN MX
plate reader (DS Pharma Biomedical Co., Ltd., Osaka, Japan) with an excitation wavelength
of 360 nm and emission wavelength of 460 nm. The inhibitory activity (%) was calcu-
lated using the following equation: Inhibitory activity (%) = ([Ac − As]/[Ac − Ab]) × 100,
where Ac is the intensity of the control, As is the intensity of the sample, and Ab is the
intensity of the blank. The data are presented as the inhibitory concentration 50 (IC50) for
each sample.

2.3. Assay of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging (RS) Activity in
the Products

First, 10 g of each product was added to 20 mL of sterile distilled water; then, the
water extract was aseptically homogenized and sanitarily filtered out from the meat residue.
The peptide content of the filtrates was determined [14] and the sample was adjusted to
a peptide concentration of 20 mM (Gly–Leu equivalent) in 50% ethanol. The adjusted
samples were subjected to a DPPH-RS activity assay in accordance with the method of
Takeda et al. [7]. The DPPH-RS activity of the samples was evaluated as the reduction
in absorbance of the DPPH radical (as detected at 520 nm) in the samples relative to
the absorbance in the blank control sample. Trolox was used as the positive control and
standard because it is a stable antioxidant that is widely used as an index of antioxidant
activity. The data are expressed in moles of Trolox equivalent per gram for each sample.

2.4. Hydrophilic Oxygen Radical Absorbance Capacity (H-ORAC) of the Products

The H-ORAC of the products was determined using reported methods [16,17] with
slight modification. Briefly, the samples were extracted in acetic acid–acidified aqueous
methanol (methanol:water:acetic acid = 90:9.5:0.5 volumes) (MWA), and the extracts were
diluted 10-fold with 75 mM potassium phosphate buffer (pH 7.4). The MWA-diluted
samples, 6.0 µM fluorescein solution, and 31.7 mM 2,2′-azobis(2-amidinopropane) dihy-
drochloride (AAPH) were incubated in the assay buffer at 37 ◦C in a 96-well plate. The



Foods 2022, 11, 2123 4 of 14

fluorescence (excitation at 485 nm, emission at 520 nm) was monitored every 2 min for
90 min using a POWERSCAN MX (DS Pharma Biomedical Co., Ltd.). The fluorescein
intensity net of the area under the curve (AUC) was calculated by subtracting the AUC
of the blank from the AUC of the sample or standard. The H-ORAC for each sample was
determined by comparing its net AUC with that of the Trolox standard. Data are expressed
as moles of Trolox equivalent per gram of sample.

2.5. Determination of pH, Free Peptides, and Imidazole Dipeptides in the Meat Products

The pH of products was directly measured by a pH meter (Testo K. K., Yokohama,
Japan). For peptide analysis, 10 g of each product was added to 20 mL of sterile distilled
water, and the water extract was aseptically homogenized and sanitarily filtered from
the meat residue. Free peptides were measured by OPA reagent [14]. To determine
the molecular weights of the components in the water extract, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) was performed on a 16% acrylamide gel
and the gels were stained with Coomassie Brilliant Blue solution (Bio-Rad, CA, USA).
Anserine and carnosine were measured as imidazole dipeptides by HPLC. Briefly, 0.5 mL
of the supernatant of each water extracted sample was filtered by ultracentrifugation at
12,000 × g for 20 min at 4 ◦C to obtain the <10 kDa fractions (Nanosep 10K OMEGA; Pall
Corp., NY, USA). Each of the obtained fractions was adjusted to 0.5 mL and analyzed
with the HPLC Agilent SERIES 1100 system (Agilent Technologies Inc., CA, USA). For the
analysis of anserine and carnosine, the test solution was injected into a reversed-phase
column (InertSustain AQ-C18; GL Sciences Inc., Tokyo, Japan). Elution was performed
at 30 ◦C with 0.2 M ammonium dihydrogen phosphate, 0.1 mM 1-pentanesulfonic acid
sodium salt, and 4% acetonitrile solution adjusted to pH 2.0 with HCl; the flow rate was
0.8 mL/min. Anserine and carnosine were detected at an absorbance of 220 nm. A solution
containing 5.0 mM L-anserine nitrate (Fujifilm Wako Pure Chemical) and 5.0 mM carnosine
(β-alanyl-L-histidine, Peptide Institute, Inc., Osaka, Japan) was used as the standard.

2.6. Bacterial Communities in the Products

To extract the bacterial DNA from the tested meat products, three different production
lots were prepared. Three slices from each lot of product were cut and ground individually
in a mortar. The paste (0.5 g) of paste and sterile water (1.0 mL) were placed in a tube filled
with glass beads (No. 2, Sansyo Co., Ltd., Tokyo, Japan) and shaken at 400 rpm for 30 s
using a Micro Smash MS-100 (Tomy Seiko Co., Ltd., Tokyo, Japan). Then, centrifugation
was performed at 1,000 rpm for 1 min. Finally, 200 µL of the supernatant was subjected
to a bacterial DNA extraction protocol using bead beating (Nippon Gene, Tokyo, Japan).
The concentration and purity of the extracted DNA solution were measured. The V3–V4
region of the 16S rRNA gene was amplified from the extracted DNA by two-step tailed
PCR and the sequencing library was prepared using a kit (Illumina K.K., Tokyo, Japan).
The purified amplicons were subjected to a paired-end sequencing using the MiSeq system
and MiSeq Reagent Kit (Illumina K.K.). Library sequencing was performed by Anicom
Specialty Medical Institute Inc. (Tokyo, Japan). The data were analyzed for microbial
diversity using the Quantitative Insights Into Microbial Ecology (QIIME) 2 (version 2021.2).
Sequence quality control and feature table construction were completed using the Divisive
Amplicon Denoising Algorithm 2 (DADA2) QIIME 2 plugin. After the denoising step,
a pretrained bacterial classifier was used to explore the taxonomic distribution of the
samples. This classifier was trained using SILVA database version 138. Alpha diversity was
calculated with the Shannon index. Beta diversity was estimated using the unweighted
UniFrac distance.

2.7. Bacterial Counts and Identification of the Colonies Formed from the Products

To count the microbes in the tested products, the meat products were cut using a
sterile knife and 1 g of sample and 9 mL of sterilized 0.85% saline were homogenized
in a homogenizer (Nihonseiki Kaisha Ltd., Tokyo, Japan) at 12,000 rpm for 5 min. Serial
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dilutions (10−1–10−8) were prepared and 100 µL was spread on the agar plates. For the
aerobic plate count, the standard agar method (Nissui Pharmaceutical Co., Ltd., Tokyo,
Japan) was used and the samples were incubated at 37 ◦C for 2 days. For the LAB count,
plate count agar with bromocresol purple (BCP) (Nissui Pharmaceutical Co.) was used
and incubated at 37 ◦C for 3 days. In addition, glucose yeast peptone (GYP) agar [18] was
used to count and isolate the LAB, which were incubated anaerobically at 37 ◦C for 3 days
with anaerobic packs and jars (Mitsubishi Gas Chemical, Tokyo, Japan). The colonies on
the GYP agar were purified by streak plating onto new plates of the same agar. Purified
bacterial strains were suspended in 10% glycerol solution and stored at −80 ◦C. The strains
were cultured with GYP broth and identified based on the 800 base pair (bp) sequences
of the 5′-end of the 16S ribosomal RNA gene. DNA was extracted from bacterial colonies
using bead beating (Nippon Gene). For DNA extraction, bead beating was performed at
5000 rpm using a Micro Smash MS-100 (Tomy Seiko Co., Ltd.). PCR was performed using
the Prime Taq DNA Polymerase kit (GENETBIO, Daejeon, Korea) in a thermal cycler (TP350,
TAKARA BIO INC., Kusatsu, Japan) in accordance with the manufacturers’ instructions.
The following primers were used: forward, 5′-GTTTGATCCTGGCTCA-3′; reverse: 5′-
TACCAGGGTATCTAATCC-3′. The cycling program consisted of initial denaturation
(50 ◦C for 2 min and 95 ◦C for 10 min), followed by 40 cycles of 95 ◦C for 1 min, 55 ◦C for
1 min, and 72 ◦C for 2 min, with a final extension at 72 ◦C for 5 min. Amplified and purified
16S rDNA was sequenced by DNA sequence analysis at Fasmac Co., Ltd. (Atsugi, Japan).
A homology search was performed using BLAST at the National Center for Biotechnology
Information (https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed on 10 June 2022). The LAB
species were identified using BLAST results and a score higher than 98%.

2.8. Statistical Analysis

The results of ACE inhibitory activity, DPPH-RS ability, ORAC, pH values, bacte-
rial relative frequency, and bacterial counts were analyzed by one-way ANOVA, with
the Tukey–Kramer test used for multiple comparisons. GraphPad Prism software was
used for the statistical analysis. The statistical analysis of microbial diversity was deter-
mined using the Kruskal–Wallis test and permutational multivariate analysis of variance
(PERMANOVA) in QIIME 2. In this study, differences with p-values less than 0.05 were
considered statistically significant.

3. Results
3.1. Bioactivities of the Dry-Cured Meat Products

The ACE inhibitory and antioxidant activities were reported to evaluate the bioactivity
of dry-cured meat products [1,2]. The IC50 values of the ACE activity of the tested dry-cured
meat products are shown in Figure 1a. The IC50 values of water-soluble extracts of Coppa
(No. 5: shown in Figure 1) and Milano salami (No. 6) were almost the same, and lower than
those of all the other products. In particular, they were significantly lower than those of the
Jamon Serrano (No. 1), Black Forest ham (No. 2), and Parma prosciutto (No. 3) (p < 0.05).
Thus, Coppa and Milano salami had the highest ACE inhibitory activities among the tested
dry-cured meat products in this study.

The DPPH-RS ability and H-ORAC were investigated as the antioxidation of the tested
samples; the results are shown in Figures 1b and 1c, respectively. These activities are used as
markers of the antioxidation activity of foods [19]. The DPPH-RS assay is a single electron
transfer-based method, in which antioxidants reduce substrates by providing one electron
to radicals and oxide; meanwhile, the ORAC assay is a hydrogen atom transfer-based
method in which antioxidants inhibit substrate oxidation by providing hydrogen atoms to
radicals and oxides [20]. The DPPH-RS ability of Milano salami was the highest among
the tested products. The DPPH-RS abilities for Coppa, Milano salami, and Salchichón
were significantly higher than those for Black Forest ham, Parma prosciutto, and Pancetta
(p < 0.05). The DPPH-RS abilities for Coppa, Milano salami, and Salchichón were also
higher than those for Parma salami, Salami with truffle, and Longaniza, but the difference

https://blast.ncbi.nlm.nih.gov/Blast.cgi


Foods 2022, 11, 2123 6 of 14

was not significant. The H-ORAC of Coppa was the highest and the activity of Milano
salami was the second highest among the tested samples; these values were significantly
higher than the others (p < 0.05). Thus, Coppa and Milano salami had high antioxidant
activity among the tested dry-cured meat products in this study.

Figure 1. ACE inhibitory and antioxidant activities of the tested dry-cured meat products. (a) ACE
inhibitory activity; (b) DPPH-RS ability, and (c) ORAC of the tested dry-cured meat products. Sample
IDs: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 represent Jamon Serrano, Black Forest ham, Parma prosciutto,
Pancetta, Coppa, Milano salami, Parma salami, Salami with truffle, Longaniza, and Salchichón,
respectively. Values with different lowercase letters indicate significant differences in each test
(p < 0.05). ND, not detected.

3.2. pH and Peptide Content of the Dry-Cured Meat Products

The pH values for each tested dry-cured meat product are shown in Table 2, which
ranged from pH 5.74 (Milano salami) to pH 6.70 (Coppa). There was a significant difference
between the pH of Milano salami and that of Coppa (p < 0.05). The water extracts of
the individual lots of the tested products were pooled and analyzed for peptides and by
SDS-PAGE. As shown in Table 2, the total peptide concentrations were higher in Parma
prosciutto and Jamon Serrano, and those in Pancetta and Salchichón tended to be lower
among the tested products. In addition, the imidazole peptides anserine and carnosine
were measured. Anserine was below the limit of detection in the tested products, whereas
carnosine was detected in all products, except for Salchichón slice (Table 2). The carnosine
concentration in Parma prosciutto slice and Pancetta slice tended to be higher among the
tested products. The results indicated that the total peptide and carnosine concentrations
varied among the tested products. In the SDS-PAGE analysis of the dry-cured meat
products, almost all bands were observed below 66.4 kDa (Figure 2). Lower and higher
intensity bands at approximately 50 kDa and 14 kDa, respectively, were observed in Black
Forest ham, Coppa, Milano salami, Parma salami, and Salami with truffle, but not in other
products. Lower intensity bands were observed between 6.5 kDa and 29.0 kDa in each
product. The expression patterns and intensities of these bands differed for each tested
product, indicating that the rate of degradation of meat proteins by fermentation and/or
ripening was different among the tested products.
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Table 2. pH and peptide levels in the tested meat products.

Dry-Cured Meat Products

Jamon
Serrano

Black
Forest ham

Parma
Prosciutto Pancetta Coppa Milano

Salami
Parma
Salami

Salami
With Truffle Longaniza Salchichón

pH 6.05 ± 0.13 de 5.92 ± 0.10 def 6.07 ± 0.06 cd 6.32 ± 0.15 b 6.70 ± 0.12 a 5.74 ± 0.09 f 6.68 ± 0.07 a 5.87 ± 0.03 df 6.04 ± 0.04 de 6.16 ± 0.13 bc

Total peptide *
(mM) 21.25 8.12 27.71 4.96 10.37 8.26 6.86 6.75 6.05 5.21

Carnosine (mM) 0.12 0.19 0.20 0.21 0.18 0.15 0.17 0.17 0.14 ND
Anserine (mM) ND ND ND ND ND ND ND ND ND ND

* The values are shown as Gly-Leu relative conc. The pH represents the mean ± SD of three independent
experiments. Values with different superscript lowercase letters indicate significant differences between each
other (p < 0.05). Total peptide, carnosine, and anserine data are the triplicate averages of the measurements from
the water extracts pooled from three individual samples. ND means not detected by HPLC analysis.

Figure 2. SDS-PAGE analysis of the water extracts of the tested dry-cured meat products. (a) SDS-
PAGE analysis of Sample IDs 1, 2, 3, 4, and 5, which represent Jamon Serrano, Black Forest ham,
Parma prosciutto, Pancetta, and Coppa, respectively. (b) SDS-PAGE analysis of Sample IDs 6, 7, 8, 9,
and 10, which represent Milano salami, Parma salami, Salami with truffle, Longaniza, and Salchichón,
respectively. MK, marker lane.

3.3. Bacterial Communities in the Dry-Cured Meat Products

To investigate the major bacteria that contributed to the expression of bioactivity in
the product, 16S rRNA sequencing analysis was carried out using Coppa and Milano
salami, which showed the highest ACE inhibitory and antioxidant activities. In addition,
sequencing analysis was performed on Jamon Serrano and Parma prosciutto on behalf of the
products which showed low ACE inhibitory and antioxidant activities. After filtering in the
sequencing samples, the library for each sample contained from 9087 to 30,223 sequences,
and the amplicon sequence variants that were assigned as bacteria were yielded from 8467
to 30,025 sequences by applying DADA2 to the tested samples. Some samples were not
subjected to taxonomic analysis or bacterial diversity analysis owing to an increase in
nonchimeric reads after denoising.

The taxonomy analysis in the order of bacteria based on 16S rRNA gene sequencing is
shown in Figure 3a for the Jamon Serrano (n = 9), Parma prosciutto (n = 7), Coppa (n = 6),
and Milano salami (n = 9). Lactobacillales was clearly a major bacterial order, accounting for
the largest proportion in the Jamon Serrano sample, followed by Coppa and Milano salami.
However, the relative abundance of the Italian prosciutto was different from the Jamon
Serrano, Coppa, and Milano salami, which were detected in the other bacterial orders,
except for Lactobacillales. The Shannon index values for α-diversity for the samples were
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as follows: Jamon Serrano, 3.946 ± 0.249 (n = 9); Parma prosciutto, 5.914 ± 1.066 (n = 7);
Coppa, 3.760 ± 0.353 (n = 6); and Milano salami, 3.057 ± 0.229 (n = 9). The p-value in the
Kruskal–Wallis test for all groups was 9.46 × 10−6, which indicated a significant difference.
The significant differences were also observed in all pairs by the Kruskal–Wallis test for
pairwise, except for Jamon Serrano and Coppa pair (p < 0.05). Moreover, the comparison
between the product groups with high and low bioactivities: the Jamon Serrano and
Parma prosciutto group and the Coppa and Milano salami group, resulted in a p-value of
0.000205 by the Kruskal–Wallis pairwise test. Thus, the expression of bioactivities and the
α-diversity of bacterial flora differed significantly between the meat products. In addition,
significant differences were observed in the group significance plots in the PERMANOVA
analysis of β-diversity (p-value was 0.001). The pairwise PERMANOVA results showed
significant differences in all tested sample pairs (p < 0.05). Thus, it was suggested that
the bacterial diversities of the tested dry-cured meat products, Jamon Serrano, Parma
prosciutto, Coppa, and Milano salami, were remarkably different from each other. In
addition, Figure 3b shows the relative abundance of Lactobacillales in the samples Jamon
Serrano (n = 9), Parma prosciutto (n = 7), Coppa (n = 6), and Milano salami (n = 9). The
Lactobacillales abundance of Parma prosciutto was significantly lower than those of Jamon
Serrano, Coppa, and Milano salami (p < 0.05).

Figure 3. Bacterial community in the tested dry-cured meat products at the order level. (a) Bacterial
taxa in the tested products. (b) Relative abundance of Lactobacillales order in the tested products. Val-
ues represent the mean ± SD. The different lowercase letters indicate significant differences (p < 0.05).
Sample IDs 1, 3, 5, and 6 represent Jamon Serrano, Parma prosciutto, Coppa, and Milano salami.

The taxonomic analysis at the genus level in the samples Jamon Serrano (n = 9), Coppa
(n = 6), and Milano salami (n = 9) is shown in Figure 4a, demonstrating the Lactobacillales
levels determined by 16S rRNA gene sequencing. The major bacteria in the Jamon Serrano,
Coppa, and Milano salami samples were in Tetragenococcus, Lactobacillus, and Pediococcus
genera, respectively. The relative abundance of these genera in the Jamon Serrano, Coppa,
and Milano salami samples is shown in Figure 4b. The abundance of Tetragenococcus in
Jamon Serrano was significantly higher than in the other samples (p < 0.05). The abundance
of Lactobacillus in Coppa was significantly higher than that in the other samples (p < 0.05).
Moreover, the abundance of Pediococcus in Milano salami was significantly higher than in
the other samples (p < 0.05). Thus, the ratio of bacteria belonging to Lactobacillales, especially
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Lactobacillus and Pediococcus, was the major bacterial flora in Coppa and Milano salami
samples, which demonstrated high ACE inhibition and antioxidant activities.

Figure 4. Bacterial community in the tested dry-cured meat products at the genus level. (a) Bac-
terial taxa in the tested products. (b) Relative abundance of the Tetragenococcus, Pediococcus, and
Lactobacillus genera in the tested products. Values represent the mean ± SD. The different lowercase
and capital letters indicate significant differences in Tetragenococcus and Lactobacillus, respectively
(p < 0.05). The asterisks indicate significant difference in the level of Pediococcus, as compared to
Tetragenococcus (p < 0.05). Sample IDs 1, 5, and 6 represent Jamon Serrano, Coppa, and Milano salami.
ND, not detected.

3.4. LAB Count and Identification of the Forming Colony from the Dry-Cured Meat Products

The total viable bacterial count and viable LAB count of Jamon Serrano, Parma prosci-
utto, Coppa, and Milano salami were examined by culture method (Table 3). The total plate
counts of the Coppa and Milano salami samples were significantly higher than those of the
Jamon Serrano and Parma prosciutto samples (p < 0.05). In addition, the colony-forming
unit count for the Jamon Serrano sample was the lowest, and this was significantly lower
than the other samples (p < 0.05). For the LAB, the colony-forming unit count on the BCP
agar plates for the Coppa and Milano salami samples was significantly higher than those
for the Jamon Serrano and Parma prosciutto samples (p < 0.05). Moreover, colony formation
was detected on the GYP agar plates of the Coppa and Milano salami samples, but not in
the Jamon Serrano and Parma prosciutto samples. The number of viable LAB in the Coppa
and Milano salami samples was higher than in the Jamon Serrano and Parma prosciutto
samples. To determine the major LAB species isolated from the Coppa and Milano salami
products, 10 colonies formed on the GYP agar plate were randomly selected and their
species were analyzed. Eight of the ten strains in Coppa were identified as belonging to
Latilactobacillus (L.) sakei; the other two strains belonged to Enterococcus faecalis. L. sakei was
new-classified species from Lactobacillus sakei [21]. In contrast, in Milano salami, all 10 iso-
lates belonged to Pediococcus (P.) pentosaceus (Table 4). The results of these isolated species
were consistent with the trend in the genus-level analysis of 16S rRNA gene sequencing.
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Table 3. Bacterial counts in the tested dry-cured meat products.

Colony-Forming Count Dry-Cured Meat Products

(Log10 CFU/g) Jamon Serrano Parma Prosciutto Coppa Milano Salami

Total bacteria 2.21 ± 0.29 a 3.75 ± 0.04 b 4.61 ± 0.17 c 4.48 ± 0.36 c

Lactic acid bacteria
BCP agar plate 2.27 ± 0.14 a 3.95 ± 0.04 b 4.21 ± 0.31 c 4.66 ± 0.08 c

GYP agar plate ND ND 3.67 ± 0.70 a 4.63 ± 0.30 b

The bacterial numbers represent the mean ±SD of three independent experiments. Values with different super-
script lowercase letters indicate significant differences between each other in the rows (p < 0.05). BCP, bromocresol
purple; GYP, glucose yeast peptone; ND, not determined.

Table 4. Lactic acid bacteria species isolated from the Coppa and Milano salami samples.

Isolated Strain Number Coppa Milano Salami

1 Latilactobacillus sakei Pediococcus pentosaceus
2 Latilactobacillus sakei Pediococcus pentosaceus
3 Enterococcus faecalis Pediococcus pentosaceus
4 Enterococcus faecalis Pediococcus pentosaceus
5 Latilactobacillus sakei Pediococcus pentosaceus
6 Latilactobacillus sakei Pediococcus pentosaceus
7 Latilactobacillus sakei Pediococcus pentosaceus
8 Latilactobacillus sakei Pediococcus pentosaceus
9 Latilactobacillus sakei Pediococcus pentosaceus
10 Latilactobacillus sakei Pediococcus pentosaceus

Ten colonies formed on the glucose yeast peptone agar were randomly selected and identified their species by 16S
rDNA sequences.

4. Discussion

Dry-cured meat products include dry-cured ham, dry-cured loin, and dry-fermented
sausage [5]. To prepare the end products, the meats are not pasteurized by cooking but
instead prepared by salting, smoking, and drying the meat. Consequently, they contain
microbial communities of individual bacteria and fungi species [22]. Those microbes
contribute to fermentation, proteolysis, lipolysis, and flavor formation of the individual
products. Moreover, some products are reported to have various bioactivities, including
ACE inhibition and antioxidant activity, which are expected to contribute to the promotion
of human health and the improved quality of meat products.

We investigated the bioactivities in the ten dry-cured meat products without a bacterial
starter (Table 1 and Figure 1). As shown in Figure 1, the bioactivities were measured,
including ACE inhibitory activity, DPPH-RS ability, and ORAC. ACE plays an important
role in the regulation of blood pressure in humans [1,2]. The antioxidant activities such as
DPPH-RS ability and ORAC in meat products inhibit color deterioration, microbial growth,
and lipid oxidation [23,24]. The ingestion of food with antioxidant activity is also thought
to control peroxidative reactions in the body and contribute to the maintenance of good
human health [25,26]. Coppa and Milano salami displayed the highest level of all tested
biological activities in this study. The ACE inhibitory activity and antioxidant activity of
dry-cured ham and dry-fermented sausages were reported previously [7,9,10], and our
results were consistent with these reports. Thus, as shown by the results in this study, the
extracts of Coppa and Milano salami have the potential to exert good antihypertensive and
antioxidant activities.

As shown in Table 2, the pH value of the tested dry-cured meat products and the
total peptides in the water-soluble extracts were measured. The pH of the Coppa was the
highest (6.70 ± 0.12) and that of the Milano salami was the lowest (5.74 ± 0.09). According
to the reference in a previous report, the pH of the meat products used in this study is
consistent with most traditional meat products [27]. The ripening process leads to the
hydrolysis of certain compounds, such as proteins and lipids, as well as the formation
and release of low-molecular-weight compounds [5]. Moreover, because dry-cured meat
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products are not cooked, the natural microbes tend to live in the products. Thus, they
affect the hydrolysis of the meat components and the generation of products, such as
peptides. As shown in Table 2, the peptide concentrations in the water extracts of tested
products were investigated, and Parma prosciutto was the highest (27.71 mM) and that of
Pancetta was the lowest (4.96 mM). The total peptide concentrations in the Jamon Serrano
and Parma prosciutto, whose ripening times were longer, tended to be higher among the
tested product samples. The peptide concentrations of the Coppa (10.37 mM) and Milano
salami (8.26 mM) samples, which demonstrated promising bioactivities, were in the middle
range. In addition, the expression patterns and intensities of the SDS-PAGE bands were
different for each of the tested products (Figure 2). In this study, the concentration of
peptides extracted from the products tended to be dependent on the aging period. Then,
the high bioactivities of the dry-cured meat products did not appear to correlate with
the ripening period and the concentration of peptides released. Imidazole dipeptides,
including anserine and carnosine, are known bioactive components of meat and display
ACE inhibitory and antioxidant activities [28,29]. Carnosine was detectable in the tested
products, but anserine was not (Table 2). The carnosine levels in the extracts of Coppa and
Milano salami were low among the tested products, whereas the levels in Parma prosciutto
and Pancetta slices were slightly higher. Overall, there were no consistent trends in the pH
value, total peptide concentration, and imidazole dipeptide concentration of the products
that demonstrated high ACE inhibitory activity and antioxidant activity in the current
study. Many studies have shown that the ACE inhibitory activity and antioxidant activity
of meat products are related to peptides derived from meat proteins that are generated
during the fermentation and ripening processes [4]. Although we could not investigate the
bioactive substances of the Coppa and Milano salami samples used in this study in detail,
their potential activities might be affected by the differences in the constituent bioactive
peptides that were generated by the fermentation and ripening processes.

The microbial communities were investigated in the samples of not only Coppa and
Milano salami slices that showed bioactivities but also Jamon Serrano and Parma prosciutto
that were low activities. According to the α diversity and β diversity determined by 16S
rRNA gene sequencing, the bacterial diversity of the tested dry-cured meat products clearly
differed from each other. The relationship between the expressed bioactivities and the
α-diversity of bacterial flora significantly varied among the meat products. Coppa and
Milano salami ripened faster than Jamon Serrano and Parma prosciutto (Table 1), which
might influence the expression of bioactivities and their bacterial flora. Water activity is
known to be an important intrinsic parameter that affects the viability of food microbes.
However, as shown in Table 1, the water activities of the tested products, Jamon Serrano,
Parma prosciutto, Coppa, and Milano salami, were almost the same, which seemed that
water activity did not directly influence the bacterial flora composition of meat products
in the present study. Dry-cured or cured meat products are globally diverse in terms of
manufacturing methods and ingredients [12]. Thus, it was estimated that the bacterial
flora in the tested products would also differ. The comparison of the major bacterial orders
showed that the relative abundance of Lactobacillales in Parma prosciutto was significantly
lower than that of Jamon Serrano, Coppa, and Milano salami (Figure 3). Parma prosciutto
is the product with the longest ripening period in this study (Table 1), which is potentially
caused to the low relative abundance of Lactobacillales. Lactobacillales is an order of bacteria
in the Firmicutes phylum that mainly comprises LAB. Moreover, LABs are one of the
typical types of bacteria in the European dry-cured meat products and they have been
described to be the most active microbe in the acidification and denitrification processes,
lipolysis, and proteolysis [10,30]. Hereby, the LABs in cured meat products would be
important bacteria for acidification and denitrification processes, lipolysis, and proteolysis,
as well as for the expression of bioactivities. Furthermore, the major bacterial genera in
the Jamon Serrano, Coppa, and Milano salami samples were Tetragenococcus, Lactobacillus,
and Pediococcus, respectively (Figure 4). The LAB counts in Coppa and Milano salami were
significantly higher than in Jamon Serrano and Parma prosciutto, which was suggested to
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be a large number of LAB; notably, Lactobacillus and Pediococcus were the main inherent
bacterial species, respectively (Tables 3 and 4). The LAB count of dry-cured meat products
that are inoculated with a LAB starter is approximately 8 log10 CFU/g [7,31]. The LAB
count in the Coppa and Milano salami products used in this study was low because these
products were processed without using a bacterial starter. The traditional production of
fermented meat products is mostly based on spontaneous fermentation resulting from
microbiota present naturally in the environment and raw materials, especially LAB [12,32].
For example, the production of traditional fermented sausages in Europe is based mainly
on Lactobacillus sakei, Lactobacillus curvatus, and Lactobacillus plantarum [32–34]. In addition,
Pediococcus was found in European dry-fermented meat products [35,36]. As shown in
Table 4, the main LAB isolates from the Coppa and Milano salami samples were in L. sakei
and P. pentosaceus, which confirmed the suggested results from 16S rRNA gene sequencing.
Therefore, in this study, L. sakei and P. pentosaceus are suggested to be the main inherent LAB
species in Coppa and Milano salami, and they would be important contributors toward
the ACE inhibitory and antioxidant activities. The expressions of ACE inhibitory activities
and/or antioxidation activity in meat products inoculated with LAB strains belonging to
L. sakei and P. pentosaceus were reported in the previous studies [7,8,10]. In addition, L. sakei
and P. pentosaceus have been used as a starter for processing fermented meat products [37].
Thus, as shown in this study, the isolates from Coppa and Milano salami in this study
might be useful for processing the fermented meat products that demonstrated high ACE
inhibitory activities and antioxidation activities. Further studies are required to investigate
the application of LAB isolates in the current study for meat processing. Besides bacteria,
yeasts and molds are involved in the fermentation and ripening of meat products, and
their proteolytic enzyme activities are known to affect meat quality, such as its flavor and
aroma [38]. Thus, further studies on the effects of inherent yeasts and molds on bioactivities
are also warranted.

In conclusion, the ACE inhibitory activity, DPPH-RS ability, and ORAC, which are
used to characterize the bioactivities of meat products, were investigated among the ten
dry-cured meat products. The water-soluble extracts of Coppa and Milano salami were
demonstrated to have low IC50 values for ACE inhibitory activity and high DPPH-RS
ability and ORAC as antioxidant activity among the tested products. The total peptide
and imidazole peptide concentrations of each sample were examined and found that the
extracts of Coppa and Milano salami had neither particularly high nor low concentrations.
In addition, the SDS-PAGE results showed that the expression patterns and intensities
differed in each extract from the tested product. To investigate the correlation between the
expression of bioactivity and the bacterial flora in the product, 16S rRNA gene sequencing
was performed on the Coppa and Milano salami that exhibited high ACE inhibitory and
antioxidant activities, and also on the Jamon Serrano and Parma prosciutto that had low
ACE inhibitory and antioxidant activities. Then, the bacterial diversities of those products
were clearly different from each other. In addition, the Lactobacillales order, in particular the
Lactobacillus and Pediococcus genera, were the main inherent bacteria in the tested Coppa and
Milano salami, respectively, and the LAB counts were higher than in the Jamon Serrano and
Parma prosciutto. Moreover, LAB isolates from Coppa and Milano salami were frequently
identified in L. sakei and P. pentosaceus. Therefore, the bioactivity levels in dry-cured meat
products are different, and that variation might occur as a result of the unique bioactive
peptides generated. In addition, the presence of bacteria belonging to the Lactobacillales
order would be important for dry-cured meat products to express bioactivities, such as ACE
inhibitory activity and antioxidant activity. In this study, the isolates belonging to L. sake and
P. pentosaceus were thought to contribute to the ACE inhibitory and antioxidant activities.
The production of cured meat products is diverse worldwide in terms of manufacturing
methods and ingredients. For a more detailed identification of the inherent bacterial species
associated with the expression of bioactivity in meat products, further studies are required
to investigate the relationship between the levels of bioactivity and the major bacteria in
more cured meat products.
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antimicrobial activity of Kitaibelia vitifolia extract as alternative to the added nitrite in fermented dry sausage. Meat Sci. 2014, 97,
459–467. [CrossRef] [PubMed]

25. Dávalos, A.; Miguel, M.; Bartolomé, B.; López-Fandiño, R. Antioxidant activity of peptides derived from egg white proteins by
enzymatic hydrolysis. J. Food Prot. 2004, 67, 1939–1944. [CrossRef] [PubMed]

26. Dimitrios, B. Sources of natural phenolic antioxidants. Trends Foods Sci. Technol. 2006, 17, 505–512.
27. Ambrosiadis, J.; Soultos, N.; Abrahim, A.; Bloukas, J.G. Physicochemical, microbiological and sensory attributes for the character-

ization of Greek traditional sausages. Meat Sci. 2004, 66, 279–287.
28. Han, Y.; Gao, B.; Zhao, S.; Wang, M.; Jian, L.; Han, L.; Liu, X. Simultaneous detection of carnosine and anserine by UHPLC-MS/MS

and its application on biomarker analysis for differentiation of meat and bone meal. Molecules 2019, 24, 217. [CrossRef]
29. Gil-Agustí, M.; Esteve-Romero, J.; Carda-Broch, S. Anserine and carnosine determination in meat samples by pure micellar liquid

chromatography. J. Chromatogr. A 2008, 1189, 444–450. [CrossRef]
30. Flores, M.; Toldrá, F. Microbial enzymatic activities for improved fermented meats. Trend. Food Sci. Technol. 2011, 22, 81–90.

[CrossRef]
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