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Abstract

Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heteroge-

neous set of behavioral signs and symptoms. There are no laboratory tests that provide

direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable

genome-wide transcriptome profiling at low costs and provide an opportunity to identify bio-

markers to facilitate diagnosis, prognosis, and treatment of patients. However, access to

brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs

that provide disease-relevant information for some brain diseases. We hypothesized that

blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal

cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice

using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model

of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67])

between blood and brain transcript levels. There was small overlap between blood and

brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-

cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., anti-

gen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination,

oxidative phosphorylation). Blood gene expression data were used to train classifiers (logis-

tic regression, random forest, and partial least squares discriminant analysis), which were

highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These

results suggest that gene expression profiles from peripheral blood samples contain a bio-

logical signature of alcohol dependence that can discriminate between CIE and Air subjects.

Author summary

Recent evidence in mice suggests that brain gene expression profiles can predict disease

status as well as predict drugs effective for treating alcoholism. However, it is not possible
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to obtain brain specimens from human patients which limits the usefulness of this

approach. This study investigated the extent to which blood can act as a surrogate for

brain tissue and predict CIE-induced alcohol dependence status. This information lays

critical groundwork for developing molecular-based diagnosis and treatment options for

alcoholic patients and provides insights into the biological mechanisms that might con-

tribute to the transition from recreational alcohol use to excessive drinking.

Introduction

Alcohol Use Disorder (AUD) is a highly prevalent and costly syndrome with few effective

treatments [1–3]. AUD like other psychiatric disorders is diagnosed by evaluating a patient’s

symptoms and behaviors over time as described in the Diagnostic and Statistical Manual of

Mental Disorders (DSM5) [4]. Patients meeting two or more criteria within the last year are

considered to have AUD with different degrees of severity. Adding molecular-based criteria

would provide useful objective data to refine diagnosis and possibly afford earlier detection of

problematic drinking before detrimental medical, legal, or social consequences of AUD

appear. There are currently three FDA-approved treatments for AUD: disulfiram, acampro-

sate, and naltrexone, none of which are effective for all patients. Moreover, there are no reliable

prognostic indicators that predict responses to therapeutic intervention.

Improvements in molecular technologies, computing power, and bioinformatics have revo-

lutionized many fields of science and are beginning to impact medicine by harnessing vast

amounts of data to inform diagnosis, prognosis, and treatment. Many genome-wide gene

expression datasets are available from different brain regions, multiple species, and alcohol-

related phenotypes. Studies examining these datasets have revealed that alcohol use (or the

genetic risk for excessive alcohol use) alters brain gene expression, and these alterations can

distinguish alcohol dependent subjects from healthy individuals, as well as predict therapeutic

compounds. To discriminate between AUD and control subjects, application of partial least

squares discriminative analysis (PLSDA) to gene expression patterns from postmortem pre-

frontal cortex tissue [5] has revealed a consistent re-programming of gene expression by years

of having AUD that reliably discriminates AUD from non-AUD individuals. Our group

recently identified a gene expression signature of risk for binge drinking from the brains of

HDID-1 mice selected for high levels of binge alcohol drinking, and then used the Library of

Integrated Network-Based Cellular Signatures (L1000) database from the Broad Institute to

identify drugs with opposing patterns of gene expression, hypothesizing that drugs that pro-

duce anti-correlated patterns of gene expression might reduce alcohol drinking. The top-rank-

ing drug candidates, terreic-acid and pergolide, both reduced ethanol consumption and blood

alcohol levels in HDID-1 mice [6]. While these examples are promising, they have relied on

brain gene expression data, and it is not possible to get brain tissue from AUD patients. Thus,

applying advanced computational approaches to diagnose AUD and personalize AUD treat-

ment will require noninvasive access to biological samples, such as blood. To this end, it is

important to understand the extent to which blood can be used as a surrogate tissue for brain.

Although AUD is primarily considered a brain disease, alcohol use affects multiple other

tissues and systems including gut, liver, lung, muscle, bone, heart, blood vessels, pancreas, and

the immune system [7]. Whole blood is readily available and is routinely obtained in the clinic.

We hypothesized that blood could be a useful surrogate for brain tissue, because it contacts

every organ in the body, including the brain. Blood expresses ~80% of the genes that are

expressed in brain, most of which are responsive to physiological or environmental

PLOS COMPUTATIONAL BIOLOGY Comparing blood and brain transcriptomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009800 February 17, 2022 2 / 32

voom-transformed normalized data) are publicly

available on Gene Expression Omnibus

GSE176122. R code used to analyze data can be

found at https://github.com/zeavin-ferguson/

blood_brain. Data can be explored at https://

lauraferguson.shinyapps.io/blood_brain/.

Funding: This work was supported by National

Institute on Alcohol Abuse and Alcoholism grants

F32AA028148 (LBF), R01AA012404 (RDM),

U01AA020926 (RDM), U01AA013520 (ROM), and

R01AA026075 (ROM). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009800
https://github.com/zeavin-ferguson/blood_brain
https://github.com/zeavin-ferguson/blood_brain
https://lauraferguson.shinyapps.io/blood_brain/
https://lauraferguson.shinyapps.io/blood_brain/


adaptations [8]. These genes include most of those that have been linked to AUD through

genome-wide association studies or to alcohol-related behaviors in preclinical rodent studies

[9, 10]. Blood and brain genome-wide gene expression profiles have been compared for several

brain diseases including, schizophrenia [11], bipolar disorder [12], depression, [13, 14] Hun-

tington’s disease [15] and other neurodegenerative disorders [16], autism [17], and PTSD [18,

19]. These profiles have not been compared for AUD. To fill this knowledge gap, we compared

gene expression levels in whole blood to those in the amygdala, prefrontal cortex, and hypo-

thalamus from CIE mice undergoing withdrawal. We chose these brain areas because of their

importance in reward signaling and alcohol dependence [20, 21] and because gene expression

responses in these brain areas have been shown to parallel those in blood under other condi-

tions [11, 15, 19, 22–24]. We used the chronic intermittent ethanol (CIE) procedure [25] to

induce alcohol dependence in male and female C57BL/6J mice. We used this strain of mice

because they show significant increases in alcohol drinking after being made alcohol depen-

dent through CIE exposure [26–28]. CIE is thought to model the alcoholic individual’s experi-

ence of episodic patterns of excessive ethanol consumption with repeated withdrawals [27]. It

is postulated that alcohol is initially ingested for its rewarding effects, but repeated use leads to

a negative emotional state experienced in alcohol’s absence (the “dark side” of addiction) [29];

this state promotes excessive alcohol drinking through negative reinforcement, and treatments

targeted against this state are postulated to help prevent relapse [30]. After CIE, rodents exhibit

increased stress-responsiveness, depression-like behavior, and anxiety-like behavior [31–35],

and they show a persistent increase in voluntary alcohol consumption that results in high

blood alcohol levels (BALs) [26, 27, 36, 37]. We assessed gene expression profiles after 1 week

of alcohol withdrawal because this is when increased voluntary alcohol intake is highest [27].

Additionally, the assessment of longer-term gene expression effects of ethanol avoided the

confounds of acute ethanol intoxication and the volatile gene expression changes observed in

early withdrawal [38, 39]. The within-subjects design we used to compare blood and brain

gene expression enabled the detection of correlated responses across both tissues during

withdrawal.

Results

Chronic intermittent ethanol (CIE) effects on voluntary ethanol drinking

To induce alcohol dependence, C57BL/6J mice underwent chronic intermittent ethanol (CIE)

exposure interspersed with voluntary drinking sessions as described in the Materials and

Methods section. For male mice, there was a main effect of treatment (F (1, 16) = 6.463,

p = 0.0217) and time (F (4, 64) = 12.73, p< 0.0001), and a time x treatment interaction (F (4,

64) = 4.830, p = 0.0018). Planned Dunnett’s comparisons revealed that CIE significantly

increased voluntary intake of 15% ethanol over baseline after CIE cycles 2, 3, and 4 (Fig 1).

Ethanol consumption in mice exposed to air did not differ from baseline drinking levels

throughout the study, except for a slight decrease in ethanol intake after the first air exposure

(Fig 1).

For female mice, a two-way ANOVA showed a main effect of time (F (4, 68) = 5.882,

p = 0.0004), but not of treatment (F (1, 17) = 2.745, p = 0.1159) and no time x treatment inter-

action (F (4, 68) = 1.436, p = 0.2317). A one-way ANOVA revealed a main effect of time for

the mice receiving ethanol vapor (F (4, 45) = 3.677, P = 0.0113) but not air (F (4, 40) = 1.466,

P = 0.2306). Planned Dunnett’s comparisons revealed that CIE significantly increased volun-

tary intake of 15% ethanol over baseline after CIE cycles 2, 3, and 4 for the ethanol treatment

group (Fig 1). Ethanol consumption in mice exposed to air did not differ from baseline drink-

ing levels throughout the study.
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Comparison of blood and brain gene expression

A major goal of this study was to determine the correspondence between peripheral blood and

brain transcriptomes. We addressed this in several complimentary ways. First, to determine if

the transcriptional response to CIE in blood are reflective of those in brain, we assessed the

overlap of the genes and gene networks affected by CIE exposure across tissues. Next, to deter-

mine whether blood transcript levels can predict those in brain irrespective of treatment, we

included all subjects and calculated the correlation coefficient between blood and brain gene

expression levels.

CIE-responsive genes conserved between blood and brain

We found that CIE exposure dysregulated the expression levels of hundreds of genes in brain

and blood (Fig 2A and S1 Table). The number of DEGs in brain was greater in males than

females, while females showed a greater number of DEGs in blood relative to males (Fig 2A).

To gain insight into the cellular specificity of gene expression perturbations, we determined

whether any cell type-specific genes were over-represented in each of the gene sets. In females,

microglial genes were up-regulated in all brain areas, endothelial genes up-regulated in amyg-

dala and hypothalamus, and neuronal, T cell, and macrophage genes up-regulated in hypothal-

amus (Fig 2A and S2 Table). Neuronal and oligodendrocyte genes were down-regulated in

female amygdala and hypothalamus (Fig 2A and S2 Table). In males, there were no cell type

specific genes enriched in any of the up-regulated gene sets (Fig 2A and S2 Table). Astrocytic

genes were down-regulated in male amygdala and hypothalamus, oligodendrocyte genes were

down-regulated in amygdala, and microglial and endothelial cell genes were down-regulated

in PFC (Fig 2A and S2 Table). In whole blood, T cell and B cell genes were down-regulated in

females, while macrophage, neutrophil, and monocyte genes were down-regulated in males

(Fig 2A and S2 Table).

We compared the DEGs in whole blood to those in each brain region. Depending on the

brain region and sex, there were 45 to 88 overlapping DEGs between blood and brain. This

overlap was statistically significant between whole blood and hypothalamus and PFC in male

mice, and borderline significant between whole blood and hypothalamus (p = 0.064) and

amygdala (p = 0.046) in female mice (Fig 2B).

Fig 1. Effects of CIE on voluntary drinking in C57Bl/6J mice. Chronic intermittent ethanol (CIE) exposure significantly increased voluntary

ethanol (15%) intake in male (but not female) mice as revealed by a two-way ANOVA. For female mice a one-way ANOVA revealed an effect of

time on voluntary ethanol consumption in only the ethanol vapor group (EtOH) and not the control group (CTL). Results of Dunnett’s planned

comparisons are indicated above the SEM bars. �p< 0.05, ��p< 0.01, ���p< 0.001, and ���p< 0.0001 vs the baseline group. Values represent

mean±SEM (n = 8-10/sex/group).

https://doi.org/10.1371/journal.pcbi.1009800.g001
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To gain functional insight into these gene perturbations, we performed a core analysis on

the DEGs in each tissue using Ingenuity Pathway Analysis software. The full results are

reported in S3 Table. Graphical Summaries of the IPA Core Analysis provided an overview of

the major biological themes in the DEGs (Fig 2C). The Graphical Summaries depict a subset of

the most significant entities predicted in the analysis (including canonical pathways, upstream

Fig 2. Differentially expressed Genes between CIE and Air C57BL/6J mice. (A) Chronic intermittent ethanol (CIE) exposure affected gene

expression levels one week after the last air or ethanol vapor exposure in brain and whole blood in male (blue) and female (pink) mice. The bar plot

shows the number of up-regulated and down-regulated genes in each tissue for each sex. Males show more differentially expressed genes in brain,

while females show more differentially expressed genes in blood. If there were any significantly enriched cell type specific genes in the datasets

(hypergeometric test; Bonferroni-corrected p< 0.05), these are indicated adjacent to the respective dataset. No label indicates that there were no cell

type specific genes enriched in the dataset. Cell type specific datasets were derived from the literature [122, 123]. (B) The overlap between the

differentially expressed genes (DEGs) in blood and brain. DEGs between CIE versus Air mice were identified using the limma moderated t statistic

in R (nominal p< 0.05). Overlap significance was assessed with the hypergeometric test (the p-value is shown beneath the Venn diagram). (C)

Graphical Summaries of the IPA Core Analysis provide an overview of the major biological themes in the DEGs and illustrate how these concepts

relate to one another. This feature selects and connects a subset of the most significant entities predicted in the analysis, including canonical

pathways, upstream regulators, diseases and biological functions. The algorithm constructs the summary using machine learning techniques to

prioritize and connect entities and infers relationships to connect entities not yet connected by findings in the QIAGEN Knowledge Graph. These

inferred relationships help to visualize related biological activities. To be included in the graph each entity must be significant (Fisher Exact test

p< 0.05). Diseases, functions, and upstream regulators must also include a z score magnitude of 2 or greater (the z score is the predicted direction

of effect on the pathway). Orange indicates a predicted activation and blue a predicted inhibition of the entity. The color intensity represents the

strength of the z score prediction. AMY = amygdala, PFC = prefrontal cortex, HYP = hypothalamus, BLD = blood, Mic = microglia, End = brain

endothelial cells, Neu = neurons, Oli = oligodendrocytes, Ast = astrocytes.

https://doi.org/10.1371/journal.pcbi.1009800.g002
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regulators, diseases, and biological functions) and their relationships between one another.

Immune-related entities were prominent in all the gene sets and were generally predicted to be

activated in brain and inhibited in blood (except in male PFC where immune-related entities

also were predicted to be inhibited). For example, Ifng and Stat1 were predicted to be activated

in all female brain regions but inhibited in blood, and Il33, Il17a, and Map3k1 were predicted

to be inhibited in male blood and PFC (Fig 2C). Irf7 was a “hub” entity predicted to be acti-

vated in the amygdala of both sexes (Fig 2C). There were also several categories related to leu-

kocyte extravasation and activation (e.g., recruitment of leukocytes, leukocyte migration, cell

movement of leukocytes) which followed a similar pattern as the immune-related entities (acti-

vated in brain and inhibited in blood and male PFC) (Fig 2C). In addition to the predicted

inhibition of immune-related entities in female blood, there were a number of entities that

have been traditionally been associated with brain that were predicted to be activated in female

blood, e.g., learning, cognition, Bdnf as “hub” entity (Fig 2C). Nuclear hormone signaling

(LXR/RXR Activation) was predicted to be activated in male brain and blood (Fig 2C).

CIE-responsive gene networks conserved between blood and brain

We identified conserved gene coexpression modules in blood and brain. We built gene coex-

pression networks for each tissue individually and determined whether the different tissues

had similar modules, i.e., were comprised of the same genes (if so, these modules were said to

be conserved between blood and brain and are referred to as blood-brain modules).

To link the blood-brain modules to CIE exposure, we identified modules enriched with

DEGs or with eigengenes correlated with alcohol preference or consumption levels in the final

drinking test, or group (CIE and Air). To gain functional insight into the blood-brain modules,

we performed an IPA Core Analysis on the genes within the blood-brain modules (S4 and S5

Tables). IPA analysis included predicted upstream regulators which are transcription factors,

chemical compounds, microRNAs, or other regulators that might explain the observed

changes in gene expression. If a predicted upstream regulator of a blood-brain module was

also a member of the blood-brain module, this might indicate a particularly important role for

that gene in regulating the transcriptional response to CIE-induced alcohol dependence. We

highlight these genes in the following sections as we describe each blood-brain module identi-

fied in the network analyses.

We found three main groups of alcohol dependence-related blood-brain modules for

female mice and four for male mice (boxes in Fig 3). The modules conserved between blood

and brain were similar in males and females as revealed by the categories that emerged from

IPA Core Analysis of the genes within the blood-brain modules. For example, there was a

“cell-cell signaling” module (Fig 3) (e.g., endocannabinoid signaling, GABA and glutamate

receptor signaling, synaptogenesis), an “immune response” module (Fig 3) (e.g., antigen pre-

sentation, communication between innate and adaptive immune systems, JAK/STAT signal-

ing), and a “protein processing / mitochondrial function” module (Fig 3) (e.g., ubiquitination,

unfolded protein responses, oxidative phosphorylation) for both males and females. Male mice

also exhibited a “fatty acid metabolism / peroxisome proliferator activated receptor (PPAR)”

blood-brain module (Fig 3).

Network analysis in female mice

The “cell-cell signaling” module was particularly highly conserved across blood and brain in

female mice (Fig 3; edge thickness reflects degree of overlap). The genes in these modules were

mostly up-regulated in blood and brain after CIE. Interestingly, this group of modules was

enriched with genes already associated with alcohol-related behavior [9, 10, 40] (via mutant
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mouse studies) including: Adcy1, Grin2a, Grm5, Hrh3, Npy1r, Adcy5, Cacna1b, Chrna4, Faah,

Gabrb2, Gabrd, Grm4, Hras, Prkar2b, Prkce, Bdnf, Cckbr, Cnr1, Gabra1, Pdyn, and Prkar1b.

The top five predicted upstream regulators for this preserved module were Rest, Hdac4, Snca,

Fmr1, Htt. Several of the predicted upstream regulators were also members of the module, sug-

gesting these genes may be particularly important regulators of the blood-brain “cell-cell sig-

naling” module in CIE-induced alcohol dependence (in decreasing order of significance):

Bdnf, Mapt, App, Tshz3, Slc30a3, Shank3, Nfasc, Kcnk9, Slitrk5, Fezf2, Gabra1, Ntrk3, Fbxo2,

Mapk8ip1, Lhx2, Dmd, Slc9a6, Agrn, Gabbr2, Htr2a, Akap5, Dpp10, Bhlhe22, Kcnd3, Scn1b,

Nptx1, Dlg3, Baiap2, Pdyn, Cacnb4, Elavl4, Grm3, Kif1b, Dab1, Dnm1. Of these, Bdnf, Gabra1,

and Pdyn are genes already associated with alcohol-related behavior.

The “immune response” module (Fig 3) was down-regulated in blood, PFC, and HYP and

up-regulated in AMY after CIE. The top five predicted upstream regulators were: Cst5, mir-17,

betulinic acid, Mmp3, miR-17-5p (and other miRNAs w/seed AAAGUGC). Several of the pre-

dicted upstream regulators were also members of the module, suggesting these genes may be

particularly important regulators of the blood-brain “immune response” module in CIE-

Fig 3. Blood/Brain Gene Coexpression Modules Affected by CIE-induced Alcohol Dependence. A meta-network of overlapping gene

coexpression modules in blood (BLD) and brain [prefrontal cortex (PFC), amygdala (AMY), hypothalamus (HYP)] in female (left) and male (right)

C57BL/6J mice. Each node represents a module of coexpressed genes. Nodes are labeled with tissue type and a module number. An edge between

two nodes indicates a significant overlap of genes between two modules of different tissues. Thickness of connecting edges is proportional to the

significance of the overlap. Module colors represent the direction and magnitude of regulation of CIE-induced alcohol dependence based on the

significance of the enrichment with differentially expressed genes (yellow, upregulation; blue, downregulation in CIE mice; intense colors,

p< 0.00001; light colors, p< 0.05). Only modules affected by CIE are shown. An overlap of a blood module and at least two modules from different

brain regions indicates a cluster of highly conserved coexpression modules regulated by CIE in blood and brain (termed blood-brain modules in the

text; represented by rectangular boxes in the figure). All overlapping modules within a blood-brain cluster were overrepresented with genes from a

major biological category. These were the same for male and female mice apart from a Fatty Acid Metabolism and PPAR Signaling cluster unique to

male mice. The top 5 enriched pathways and predicted upstream regulators from the IPA analysis for each of the broad categories (rectangular

boxes) are reported in the text, but examples include GABA and Glutamate Receptor Signaling for the Cell-Cell Signaling cluster, Inflammasome

Pathway and Th1 Pathway for the Immune Response cluster, Protein Ubiquitination Pathway and Oxidative Phosphorylation for the Protein

Processing / Mitochondrial Function cluster, and Fatty Acid Oxidation and PPARA for the Fatty Acid Metabolism and PPAR Signaling cluster. The

overlap between blood and brain modules was particularly strong for the Cell-Cell Signaling clusters in both male and female coexpression

networks. The Cell-Cell Signaling cluster also contained genes known to play a role in alcohol-related behaviors in rodents (e.g., Bdnf, Npy, Gabra1,

and Pdyn). Network visualization was performed using Cytoscape version 3.8.2.

https://doi.org/10.1371/journal.pcbi.1009800.g003
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induced alcohol dependence (in decreasing order of significance): Nup107, Rbm5, Tlr4, Ly96,

Sf3b1, Aim2, Tnrc6a, Abca1.

The “protein processing / mitochondrial function” module (Fig 3) was up-regulated in

blood and down-regulated in PFC and AMY after CIE. There was not a corresponding module

in the HYP. The top five predicted upstream regulators were: Abcb6, Hipk2, enterotoxin B,

Torin1, and Fancd2. Several of the predicted upstream regulators were also module members

suggesting these genes may be particularly important regulators of the blood-brain response to

CIE-induced alcohol dependence related to protein processing and mitochondrial function /

oxidative phosphorylation (in decreasing order of significance): Bnip3l, Gpx1, Irf7, Adipor1,

Uros, Mafg.

Network analysis in male mice

Similar to female mice, the overlap between blood and brain modules was strongest for the

“cell-cell signaling” blood-brain module. The genes in the “cell-cell signaling module” in males

(Fig 3) tended to be up-regulated in blood and AMY, and down-regulated in PFC after CIE.

There was not a corresponding module in the HYP. Similar to female mice, the blood module

was enriched with genes already associated with alcohol-related behavior including: Adcy1,

Adcy5, Adora2a, Bdnf, Cckbr, Cnr1, Gabra2, Gabra5, Gabrd, Grin2a, Homer2, Hrh3, Kcnj6,

Npy, Prkce, Prkg2. The top five predicted upstream regulators were Jak1/2, Snca, Hdac4, Fmr1,

Htt. Several of the predicted regulators were also in the cell-cell signaling module (in decreas-

ing order of significance): Bdnf, Tshz3, Slc30a3, Fezf2, Homer2, Bhlhe22, Prmt8, Grm2, Fkbp1b,

Baiap2, NpaS3, Grm3, Nfib, Chrm1, Gabbr2, Npy. Of these, Bdnf, Homer2, and Npy are genes

already associated with alcohol-related behavior.

The “immune response” module in males (Fig 3) was down-regulated in blood, PFC, HYP,

and both up- and down-regulated in AMY after CIE. The top five predicted upstream regula-

tors were: miR-124-3p (and other miRNAs with seed AAGGCAC), lipopolysaccharide, Pgr,
Rel, Btnl2. Several of the upstream regulators were also in the immune response module (in

decreasing order of significance): Csf1r, Stat3, Vcan, Spi1, and Notch1.

The “protein processing / mitochondrial function” module in males (Fig 3) was up-regu-

lated in blood and both up- and down-regulated in brain after CIE. The top five predicted

upstream regulators were: Abcb6, 1,2-dithiol-3-thione, Klf1, Rictor, St1926. Several upstream

regulators were also module members (in decreasing order of significance): Bnip3l, Fth1,

Cdc25b, Grp, Mrpl12, E2f1, Ola1, Tpm1, Fancd2, Ctsb, E2f2, Uba1, E2f3, Cul1, Rb1cc1, Fzr1,

Sub1, Stx2, Rb1, Gadd45a, Gsk3a.

The “fatty acid metabolism / peroxisome proliferator activated receptor (PPAR)” module in

males (Fig 3) was down-regulated in blood and up-regulated in AMY and HYP. There was not

a corresponding module in PFC. The top five predicted upstream regulators were: pirinixic

acid, bezafibrate, methotrexate, Ppara, Ehhadh. Three of the upstream regulators were also in

the fatty acid metabolism / PPAR” module: Adipor2, Acox1, Nrg4.

Correlation of blood and brain gene expression levels

Between-subjects analysis. We studied the preservation of mean gene expression levels of

the genes between brain and blood (irrespective of treatment). The pairwise scatterplots in S1

Fig related mean expression values in the three brain regions to mean expression values in

blood. We found significant correlations (rho range males: [0.67, 0.67], rho range females:

[0.50,0.51]) between mean expression in brain and mean expression in blood (S1 Fig). The

correlation between blood and brain expression levels was notably higher in males relative to

females (S6 Table).
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Within-subjects analysis. To determine the genes with expression levels that are corre-

lated between brain and blood, we calculated the within-subject correlation between gene lev-

els in blood and brain. Expression levels of hundreds of genes were significantly correlated

between blood and brain even after correcting for multiple comparisons (Tables 1 and S7).

Table 1 shows the top ten genes correlated between blood and brain for each brain region. To

gain insight into the cellular specificity of the correlated genes, we determined whether any

cell type-specific genes were over-represented in each of the gene sets. The enriched cell types

are noted in Table 1. The genes correlated between amygdala and blood in both males and

females were enriched with microglial markers, the majority of which were negatively corre-

lated between these tissues. The genes correlated between PFC and blood in both males and

females were enriched with endothelial markers, with most negatively correlated between

blood and PFC. Additionally, the genes correlated between PFC and blood in males were

enriched with microglial markers and the genes correlated between amygdala and blood in

males were enriched with T cell markers; all were negatively correlated between blood and

PFC.

To gain functional insight into the genes correlated between blood and brain, we performed

pathway enrichment analysis on each gene set (S8 Table). There was little overlap between the

enriched pathways across the correlated gene sets between blood and the different brain

regions. For example, cholesterol biosynthesis and ethanol degradation pathways were promi-

nent in genes correlated between female blood and PFC (but no other brain region). However,

there were some overlapping pathways between blood and multiple brain regions. Glucocorti-

coid receptor signaling and regulation pathways were among the most commonly enriched

pathways, found in the genes correlated between blood and all 3 brain regions for females and

between blood and hypothalamus for males. Interferon signaling and antiviral response path-

ways were commonly enriched in the genes correlated between blood and hypothalamus and

blood and PFC in both sexes. MIF Regulation of Innate Immunity was common to male hypo-

thalamus and female amygdala. IL-17 production and signaling pathways were common to

female amygdala and hypothalamus. DNA methylation and transcriptional regulation path-

ways were common to female amygdala and PFC, and male amygdala. Pathways related to

DNA damage responses were common to in the correlated gene sets between blood and multi-

ple brain regions as well (e.g., base excision repair for male amygdala and female hypothala-

mus, nucleotide excision repair for female amygdala, and role of BRCA1 in DNA damage

response for male hypothalamus). Methionine Degradation was common to the PFC of both

sexes and female hypothalamus.

Some of the correlated genes were also differentially expressed between CIE and Air mice

in both blood and brain (Tables 2–4). For males, Hsp1a and Hsp1b were correlated between

Table 1. Genes Correlated Between Blood and Brain.

Females Males

Number of

Corr Genes

Enriched Cell

Type

Top 10 Corr Genes Number of

Corr Genes

Enriched Cell

Type

Top 10 Corr Genes

Amygdala 542 mic Pacrg, Hgf, Pofut1, Helb, Tmem131,

Hpgd, Card19, Clec12a, Setx, Rbm12b2

707 mic, T cells Zfp521, Gm4799, Ghr, Zfp385a, Kirrel3,

Ceacam1, Gm32647, Dcp1a, Zfp217,

Sema3f

PFC 634 endo Smarcc2, Kcnk3, Smim10l1, Agps,

Rdh11, Hivep2, Raver2, Gm42984,

Cbfa2t3, Cep57l1

656 endo, mic Lurap1l, Tenm4, Mdh1, Elf4, Pyurf,

Sod1, Ccdc166, Ube3b, Slc36a1, Snx20

Hypothalamus 649 None Dglucy, Hsp90aa1, Lnpep, Btaf1, Hmox2,

Usp6nl, R3hcc1l, Uap1l1, Jade1, Taf13

686 None Hdac11, Arf6, Sdk2, Scamp1, Gm46515,

Fgd1, Wwp2, Zscan18, Fam13c, Espn

Mic = microglia, endo = endothelial cells, PFC = prefrontal cortex

https://doi.org/10.1371/journal.pcbi.1009800.t001
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blood and each brain area and differentially expressed in blood and all brain regions, as was

Pygl (except for hypothalamus) (Fig 4). Blood and brain levels of Hspa1a and Hspa1b tended

to be negatively correlated with alcohol consumption in the last 2BC drinking test, while Pygl
had weak correlations with alcohol intake (S2 Fig). For females, Ccl5 was correlated between

blood and each brain area and differentially expressed in blood and all brain regions, as was

Vipr1 (except for hypothalamus) (Fig 4). Blood expression levels of Ccl5 were positively corre-

lated with alcohol intake, while blood expression levels of Vipr1 were negatively correlated

with alcohol intake (S2 Fig). We created an R Shiny app where interested readers can see the

correlation between voluntary ethanol intake levels and the expression level of any gene of

interest (https://lauraferguson.shinyapps.io/blood_brain/).

Whole blood gene expression signatures can distinguish CIE and Air

subjects

We determined whether CIE status could be predicted by blood gene expression profiles using

three different classification techniques: logistic regression (LR) with elastic net regularization,

Table 2. Genes Differentially Expressed between CIE and Air C57Bl/6J Mice in Amygdala with Expression Levels that are also Correlated between Blood and

Amygdala.

Male Female

Gene Symbol Gene Name Gene Symbol Gene Name

Acaa2 Acetyl-CoA acyltransferase 2 Ccl5 C-C Motif Chemokine Ligand 5

Ccp110 Centriolar Coiled-Coil Protein 110 Cdc42ep2 CDC42 Effector Protein 2

Dennd4b DENN/MADD domain containing 4B Dusp10 Dual Specificity Phosphatase 10

Galm Galactose Mutarotase Gabpb1 GA Binding Protein Transcription Factor Subunit Beta 1

Hspa1a Heat Shock Protein Family A (Hsp70) Member 1A Setx Senataxin

Hspa1b Heat Shock Protein Family A (Hsp70) Member 1B Trim25 Tripartite Motif Containing 25

Hspa5 Heat Shock Protein Family A (Hsp70) Member 5 Vipr1 Vasoactive Intestinal Peptide Receptor 1

Mgst1 Microsomal Glutathione S-Transferase 1

Pou6f1 POU Class 6 Homeobox 1

Pygl Glycogen Phosphorylase L

S100a6 S100 Calcium Binding Protein A6

Vav1 Vav Guanine Nucleotide Exchange Factor 1

https://doi.org/10.1371/journal.pcbi.1009800.t002

Table 3. Genes Differentially Expressed between CIE and Air C57Bl/6J Mice in Hypothalamus with Expression Levels that are also Correlated between Blood and

Hypothalamus.

Male Female

Gene Symbol Gene Name Gene Symbol Gene Name

Chsy1 Chondroitin Sulfate Synthase 1 Aacs Acetoacetyl-CoA Synthetase

Clec2d C-Type Lectin Domain Family 2 Member D Bcl2l11 BCL2 Like 11

Dnajb11 DnaJ Heat Shock Protein Family (Hsp40) Member B11 Caln1 Calneuron 1

Fam13c Family With Sequence Similarity 13 Member C Card6 Caspase Recruitment Domain Family Member 6

Gm46515 predicted gene, 46515 (lncRNA) Ccl5 C-C Motif Chemokine Ligand 5

Hspa1a Heat Shock Protein Family A (Hsp70) Member 1A Gpm6b Glycoprotein M6B

Hspa1b Heat Shock Protein Family A (Hsp70) Member 1B Gria1 Glutamate Ionotropic Receptor AMPA Type Subunit 1

Kdsr 3-Ketodihydrosphingosine Reductase Smyd1 SET And MYND Domain Containing 1

Parp9 Poly(ADP-Ribose) Polymerase Family Member 9 Vrk2 VRK Serine/Threonine Kinase

Spred2 Sprouty Related EVH1 Domain Containing 2 Zcchc3 Zinc Finger CCHC-Type Containing 3

Sptssa Serine Palmitoyltransferase Small Subunit A

https://doi.org/10.1371/journal.pcbi.1009800.t003
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random forest (RF), and partial least squares discriminant analysis (PLSDA). Ideally, in addi-

tion to being highly accurate at the classification task, a good model would also be interpret-

able. We chose these three techniques because they included measures of variable importance

which enabled interpretation of the models. Furthermore, because the dataset is small, we

wanted to use noncomplex models to avoid overfitting. We used all genes to train the classifi-

ers. Some of the coefficients in the regularized LR model go to zero and those features fall out

of the model. Some features in the RF model have zero Mean Decrease in Gini metric and are

not included in the final model. In this way the regularized LR and RF methods include

embedded feature selection. The PLSDA model includes variable importance measures but

does not include built-in feature selection and uses all genes for the model.

For female subjects, the logistic regression model performed best, and was highly accurate

at identifying CIE subjects from controls (AUC 90.1%) using only 32 genes (Gatad2a,

ENSMUSG00000096544.2, Plgrkt, E030030I06Rik, ENSMUSG00000085633.1, Ccdc85b,

Hsd11b1, Gzma, Utp14a, Zfp472, Foxq1, Cope, Saxo2, Ankle1, Med10, Gm4841, Ubn1, Sephs1,

Smarca4, Phf6, Eri1, Aldh7a1, Il4i1, Pigz, Apol11a, Chchd6, Lrrc8c, Mlec, Cenps, Cct5, Apba2,

ENSMUSG00000109006.2) (Fig 5A). The partial least squares and random forest techniques

were also able to identify CIE subjects from controls with a high degree of accuracy (PLSDA

AUC was 80.8% and random forest AUC was 79.2%) (Fig 5A). Random forest required 807

genes to achieve its high performance (Fig 5A).

For male subjects, partial least squares performed best at identifying CIE subjects from con-

trols (AUC 80.5%) (Fig 5C). Logistic regression also performed well (AUC 75.9%) and

required only 2 genes (Plet1 and Hspa5) (Fig 5C). The random forest model employed 382

genes. It was not able to distinguish between CIE and Air mice very well (AUC 58.2%) (Fig

5C).

To determine which genes were the most important for classifying the subjects as CIE and

Air mice, we examined the variable importance measures from random forest, partial least

squares discriminant analysis, and logistic regression. There was little overlap between the top

important genes between the different models. For females Gzma was common to logistic

regression and partial least squares discriminant analysis, Apol11a was common to random

forest and partial least squares discriminant analysis (Apol11a was also one of the 32 genes

with non-zero coefficients in the logistic regression model), and Gatad2a, Hsd11b1, and

Table 4. Genes Differentially Expressed between CIE and Air C57Bl/6J Mice in Blood and PFC with Expression Levels that are also Correlated between Blood and

PFC.

Male Female

Gene Symbol Gene Name Gene Symbol Gene Name

Ahsa2 Activator of heat shock 90kDa protein ATPase homolog 2 4930549G23Rik RIKEN cDNA 4930549G23 gene (lncRNA)

Cebpb CCAAT Enhancer Binding Protein Beta Atp6v0e2 ATPase H+ Transporting V0 Subunit E2

Dnajb1 DnaJ Heat Shock Protein Family (Hsp40) Member B1 Btbd8 BTB Domain Containing 8

Dnlz DNL-Type Zinc Finger Ccl5 C-C Motif Chemokine Ligand 5

Far1 Fatty Acyl-CoA Reductase 1 Efcab5 EF-Hand Calcium Binding Domain 5

Fkbp5 FKBP Prolyl Isomerase 5 Hnrnpf Heterogeneous Nuclear Ribonucleoprotein F

Hspa1a Heat Shock Protein Family A (Hsp70) Member 1A Vipr1 Vasoactive Intestinal Peptide Receptor 1

Hspa1b Heat Shock Protein Family A (Hsp70) Member 1B

Insig1 Insulin Induced Gene 1

Naaladl2 N-Acetylated Alpha-Linked Acidic Dipeptidase Like 2

Pygl Glycogen Phosphorylase L

Zfp329 Zinc finger protein 329

https://doi.org/10.1371/journal.pcbi.1009800.t004
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Fig 4. Genes with Expression Levels that are Correlated between Blood and Brain in C57BL/6J Mice. The

scatterplots show the relationship between gene expression levels in blood (y-axis) and each brain area (x-axis). Each

point in the scatterplot is a subject. Some correlated genes were also differentially expressed between CIE (V = ethanol

vapor) and Air (C = control) mice in both blood and brain, which could make them ideal biomarker candidates. For

females, Ccl5 was correlated and differentially expressed in blood and all brain regions. For males, Hsp1a and Hsp1b
were correlated and differentially expressed in blood and all brain regions. The correlation coefficient is shown under

the gene name. The boxplots show the normalized gene expression levels by group.

https://doi.org/10.1371/journal.pcbi.1009800.g004
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Fig 5. Classification Performance Using Blood Gene Expression. Machine learning classifiers were trained using peripheral whole

blood gene expression data to predict alcohol dependence status. Receiver Operating Characteristic (ROC) curves are shown for the

classification techniques indicated by the line type in the legend for (A) female and (C) male C57BL/6J mice. The ROC curve shows the

relationship between the True Positive Rate (y-axis) and the False Positive Rate (x-axis) resulting from a set of binary classification tests

based on each possible decision threshold value. The area under the curve (AUC) for each classifier is displayed in the graph in a

corresponding color. The diagonal represents chance levels which corresponds to an AUC of 0.50. A table below the ROC curve shows

different performance metrics of the classifiers. The top 20 important genes for the classification task are shown for (B) females and (D)

males for the separate models. RF = Random Forest, LR = Logistic Regression, PLSDA = Partial Least Squares Discriminant Analysis,

MCC = Matthews Correlation Coefficient.

https://doi.org/10.1371/journal.pcbi.1009800.g005
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Ankle1 were common the logistic regression and random forest (Fig 5B). For males, Plet1 was

common to all three classifiers, Hspa5 was common to logistic regression and random forest,

and Cebpb and Cxcr2 were common to random forest and partial least squares discriminant

analysis (Fig 5D).

Discussion

Routine blood testing has long been a part of medical care. Genomic profiles in blood could be

used to provide data-driven diagnosis of AUD, stratify the heterogeneous AUD patient popu-

lation for clinical trials, select optimal therapy, determine whether a patient has AUD risk, and

monitor the efficacy of the patient’s medications. Here we performed a well-controlled animal

model study to conduct whole genome profiling of brain and blood with ethanol treatment.

An important question this study addressed was whether blood gene expression signatures

could predict CIE and Air mice. The highly predictive performance of the classifiers suggests

that there is valuable diagnostic information in blood gene expression for CIE-induced alcohol

dependence, even one week since the last alcohol exposure. Different features were selected by

the different classification methods, which is consistent with the literature [41] and expected

because the methods employ different techniques for the classification task and the features in

gene expression datasets are highly correlated. These results confirm that good performance in

the classification task can be achieved using different sets of features. That (and the dynamic

nature of gene expression) might make it challenging to select a consistent panel of biomarkers

and it will likely be necessary to incorporate other sources of information into a diagnostics

screen. There were however several features ranked as highly important for achieving good

performance in multiple models. This included Gzma, Apol11a, Gatad2a, Hsd11b1, and

Ankle1 for females and Plet1, Hspa5, Cebpb, and Cxcr2 for males. Cebpb and Cxcr2 are espe-

cially interesting considering the importance of immune molecules in rewponses to alcohol

(discussed below). However, immune-responsive molecules may not be ideal biomarkers

given that immune responses can be initiated by infections or other environmental

perturbations.

AUROC measures the quality of the model’s predictions irrespective of what classification

threshold is chosen. The classification threshold strikes a balance between false positive and

false negative rates, and the optimal choice would likely depend on the setting and purpose

(e.g. primary care screening for problematic drinking versus criminal justice settings) [42].

Moreover, the predictive value of these classifiers will depend on the prevalence of the disorder

in the population tested. A population with low prevalence of the disorder (for example, in pri-

mary care screening for AUD) results in an increase in false positive tests, whereas a higher

prevalence rate (e.g., in an addiction clinic) yields more false-negative tests [42]. Here in the

controlled experimental conditions the prevalence was 50/50. Thus, our findings represent

important first steps in identifying novel biomarkers for AUD, but more research (including

human validation) will be required before genes selected as discriminatory features could

become viable biomarkers for AUD.

The mice in this study have been exposed to weeks of high dose ethanol vapor and would

likely represent severe cases of AUD. These cases are usually clinically evident by patient his-

tory and physical exam and would not necessitate a molecular diagnostic tool. However, social

stigma surrounding alcoholism (like most psychiatric disorders) remains a barrier to treat-

ment. An objective molecular diagnostic tool (e.g., a “blood test”) would potentially mitigate

stigma and encourage patients to seek diagnosis and treatment for this disorder. Additionally,

blood expression profiles might detect milder forms of AUD or those at high-risk for develop-

ing AUD. The former could be investigated in future studies that include an additional

PLOS COMPUTATIONAL BIOLOGY Comparing blood and brain transcriptomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009800 February 17, 2022 14 / 32

https://doi.org/10.1371/journal.pcbi.1009800


ethanol-naïve control group or a larger number of animals to allow analysis of low versus high

drinkers. The latter could be addressed in future studies by profiling the blood of ethanol-

naïve genetic rodent models of AUD-risk traits (e.g., high alcohol preference or consumption,

propensity for binge-like drinking), or by analyzing the blood transcriptome before and after

CIE treatment and correlating gene expression changes with the amount of drinking escalation

within subjects. The blood transcriptome varies between people, but it is relatively stable for

an individual across time [43] which is encouraging and suggests that repeated blood sampling

could be used for personalized medicine approaches. Studies that analyze gene expression pro-

files in blood sampled at multiple time points throughout the addiction cycle (including before

alcohol exposure) will be critical in exploring the clinical utility of blood gene expression pro-

files for AUD.

Another question that this study examined was whether expression levels of the genes

between brain and blood are preserved. While some studies have shown significant but weak

correlations between blood and brain (e.g., [44]), we found that blood and brain average gene

expression levels were highly correlated. The difference is likely attributable to the fact that we

compared blood and brain samples from the same subjects instead of comparing blood and

brain samples from different individuals. Strikingly, our within-subjects design revealed that

the expression levels of hundreds of genes were significantly correlated between blood and

brain. This was irrespective of treatment, which suggests that the blood might be useful for

gaining insight into brain functioning in general. Indeed, there are many compelling examples

from the literature that support the idea that whole blood transcriptomes can be informative

for a number of brain diseases [45–47].

The transcriptional response to alcohol dependence in brain showed stronger conservation

at the level of coexpression than at the level of individual genes. We identified an “immune

response” network similarly perturbed in blood and brain after CIE. Immune functions also

dominated the IPA Core Analysis results for blood and brain DEGs. This finding adds to the

importance of “neuroimmune” signaling in alcohol dependence and reflects the key role white

blood cells play in immune responses as they are the source for most of whole blood mRNA.

The relationship between alcohol and the immune system has been the subject of intensive

research, and much insight has emerged in the last 15 years pointing to a bi-directional rela-

tionship between alcohol consumption and immune signaling molecules, whereby alcohol

ingestion increases peripheral and central cytokine levels. Conversely, manipulation of cyto-

kines and other immune signaling molecules can increase alcohol consumption and craving

[48–52], leading to further increases in cytokine levels and emergence of an out-of-control,

positive-feedback cycle. This cycle demonstrates the systemic nature of AUD and the involve-

ment of peripheral and central immune signaling in AUD pathophysiology [7].

The details of peripheral-central immune signaling crosstalk involved in alcohol depen-

dence remain to be fully understood. One way alcohol triggers inflammatory responses is via

reactive oxygen species produced during ethanol metabolism, which can occur both peripher-

ally and centrally. Alcohol also increases intestinal permeability (“leaky gut”), which permits

gut-derived bacterial products to enter the circulation where they are recognized by immune

cells in blood or target organs, resulting in the release of pro-inflammatory cytokines [53].

Peripheral cytokines can trigger central “immune” responses via vagal afferents or by crossing

the blood brain barrier to enter the brain. Although these are plausible mechanisms, it remains

to be shown the exact peripheral-central communication that must occur, which likely

involves multiple mechanisms. Our IPA analysis predicted an increase in leukocyte migration

and number in brain and a decrease in blood. The cell type enrichment analysis of the DEGs

revealed an up-regulation of leukocyte genes in brain and a down-regulation in blood. Also,

the genes correlated between blood and brain were enriched with endothelial, microglia, and
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leukocyte genes and tended to be negatively correlated between blood and brain. Taken

together, these findings suggest that white blood cells could be recruited into the CNS during

alcohol dependence. Future studies are planned to study this novel hypothesis as an unex-

plored mechanism of peripheral-central immune crosstalk in alcohol dependence.

One of the most surprising findings of this study was that the most highly conserved coex-

pression networks for both sexes were related to cell-cell signaling and included such “brain-

related” categories as glutamate and GABA receptor signaling. The importance of these sys-

tems in the CNS has been long-known for alcohol dependence (reviewed in [54]), but our

results suggest that blood GABA and glutamatergic signaling are also perturbed in alcohol

dependence. This has been partially validated by previous studies that found that GABA serum

levels are lower and glutamate serum levels are higher in alcoholic patients compared with

non-dependent controls during alcohol withdrawal [55, 56]. GABA regulates the secretion of

cytokines from PBMCs in a concentration-dependent manner [57] providing another novel

potential link between alcohol and immune regulation suggested by this study. Moreover, glu-

tamate serum levels upon hospital admission are predictive of developing an alcohol with-

drawal syndrome 12 h later [55]. Glutamate serum levels are correlated with brain levels [58]

and are predictive of other brain diseases such as multiple sclerosis [59], schizophrenia [60],

and autism [61]. The cell-cell signaling blood-brain module also contained numerous genes

that modulate alcohol consumption (as determined by mutant mouse studies). Of these Adcy1,

Bdnf, Cckbr, Cnr1, Gabra5, Gabrd, Grin2a, and Hrh3 were common to both sexes and Bdnf
was also a hub in the Graphical Summary for the female blood DEGs in Fig 2C. Because most

of the mutant mouse studies were global knockouts and these genes are ubiquitously

expressed, this result calls into question the brain-specificity of the knockout findings. Perhaps

there is a larger peripheral component to the causal effects of these genes on alcohol consum-

matory behavior than previously appreciated.

We identified a “protein processing / mitochondrial function” blood-brain module in both

sexes. This included genes involved in protein ubiquitination (including ubiquitin B, numer-

ous ubiquitin conjugating enzymes, ubiquitin specific peptidase, heat shock factors), mito-

chondrial dysfunction (including Pink1, Fis1, and many NADH:ubiquinone oxidoreductase

subunits), and ethanol degradation (Cat, Aldh1a1). It is possible that this conserved coexpres-

sion network represents a response to ethanol-induced cellular stress. For males, genes coding

for the Heat Shock Protein Family A (Hsp70) subunits, Hspa1a and Hspa1b, were upregulated

and correlated between blood and all three brain areas tested. Another Hsp70 member, Hspa5,

was downregulated in all male tissues, correlated between blood and brain, and also an impor-

tant gene for the classification tasks as discussed above. Hspa1a, Hspa1b, and Hspa5 code for

potent anti-inflammatory proteins that can initiate protective responses to stress. It has been

postulated that the cardioprotective effect of alcohol consumption is due in part to increased

intracellular HSPA1A [62]. Acute alcohol exposure induces Hspa1a in human monocytes and

is required for inhibition of TLR4/MyD88 (but not TLR4/TRIF) signaling in macrophages

[63]. Hspa1a and Hspa1b transcripts are also dysregulated after ethanol exposure in rodent in

total brain homogenates [64–66], astrocytes [67, 68], and microglia [68]. Depending on the

time point at which gene expression was assayed and perhaps other differences between the

protocols employed, these studies have shown increases or decreases in their transcript abun-

dance. Patients with alcoholic hepatitis exhibit lower gene expression levels of HSPA1A in

liver compared with healthy controls [69]. In utero exposure to ethanol increases Hspa1a in

cortical tissue from humans and mice [70]. Hspa5 is linked to alcohol consumption and with-

drawal in rodents [71–75] and induced by chronic alcohol in cell lines [76]. In addition to

their roles as protein chaperones, Hspa1a and Hspa1b are known splicing factors [77]. Another

splicing factor in the Hsp70 family, Hspa6, is drastically increased in postmortem frontal
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cortex and amygdala samples from AUD patients and thought to be important for the

observed genome-wide changes in splicing observed in these brain regions with AUD [77].

From these examples, it is clear that Hsp70 subunits are responsive to ethanol in both brain

and blood, and our analysis suggests that levels in blood are reflective of those in brain and

might be useful biomarkers of alcohol dependence.

In females, transcripts for C-C Motif Chemokine Ligand 5 (Ccl5) were increased with CIE

and levels of expression were correlated between blood and brain in all three brain regions.

Ccl5 transcripts are also increased in total homogenate and astrocytes in male mouse cortex

after ethanol vapor exposure [68]. CCL5 transcripts are reduced in the central amygdala of

human alcoholic subjects compared with controls [78] as well as in the brains of ethanol-naïve

rodent lines that drink high amounts of alcohol [79]. In females, transcripts for the Vasoactive

Intestinal Peptide Receptor 1, Vipr1, were reduced in blood and increased in the amygdala and

PFC, with Vipr1 expression levels negatively correlated between blood and these brain regions.

VIPR1 transcripts are also increased in the frontal cortex of human alcoholic subjects com-

pared with controls [78] and reduced in microglia from mouse PFC after CIE [68]. There is a

single nucleotide polymorphism in VIPR1 that is associated with bipolar disorder [80]. VIPR1
is also a hub gene that acts as a prognosis and progression biomarker for hepatocellular carci-

noma [81].

Consistent with previous studies of female mice and rats [82–87], we found a less robust

escalation of voluntary ethanol intake after CIE in females compared with males. This finding

could be partially due to a ceiling effect (the female mice begin drinking at levels about three

times higher than males before CIE). Nevertheless, our study revealed that female mice display

a strong molecular phenotype after CIE. Notably, the transcriptome signature in female

peripheral blood was able to discriminate between CIE and Air female mice with very high

accuracy, even more-so than in male mice. Therefore, although female mice did not exhibit a

robust escalation in voluntary drinking after CIE, they showed transcriptional changes that

were particularly strong. Network analysis and IPA analysis showed that females and males

had similar blood-brain coexpression modules affected by alcohol dependence, suggesting that

this molecular phenotype could be comparable between the sexes, at least at the level of gene

networks. One exception was the nuclear hormone receptor signaling pathways and blood-

brain modules we observed to be affected by CIE across all male tissues which was not

observed in female mice. There have been very few studies investigating the transcriptional

response to alcohol dependence in females [88–90], and while the focus of these studies as well

as the present study is not on sex differences, further investigation into the sex-specific

responses to CIE is warranted.

There were a number of methodological choices we made for this study, such as the tissue

type (whole blood), molecular measurement (mRNA), and model of alcohol dependence

(C57BL/6J mice undergoing CIE) that impose limitations and should be considered. There are

several accessible tissues that have been compared to brain in previous studies that we could

have assessed, including saliva [91] and blood fractions (e.g., exosomes [92, 93], PBMCs [94,

95], or plasma/serum [96–98]). We chose to measure whole blood because it has been shown

to contain disease-relevant information for other brain diseases, has less processing steps than

for blood fractions, and contains both cellular and extracellular RNAs so would likely capture

a signal from each of the aforementioned blood fractions. However, the various blood cell

types could have differential responses to alcohol dependence which could be explored using

single cell RNA-seq. We chose to measure mRNA, but there are other molecular measure-

ments, including other RNAs such as miRNAs [91, 92, 97, 99, 100], histone modifications (epi-

genome) [101, 102], microbiome [103, 104], and the metabolome [105–108]. Furthermore, we

assayed the transcriptome at a single time point, and gene expression is a highly dynamic
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process. Future studies that profile other molecular responses and at different time points will

undoubtedly contribute to our understanding of alcohol dependence and incorporating these

additional molecular markers into the machine learning models could further improve their

predictive ability. In this study we subjected C57BL/6J mice to CIE which is a commonly used

animal model of alcohol dependence. There are also genetic rodent models of behavioral char-

acteristics that put one at risk for developing AUD (such as binge-like drinking, or high alco-

hol preference), that could be analyzed to determine whether blood and brain responses are

conserved in those models and if blood could be used to as an objective molecular tool to pre-

dict individuals at risk of developing AUD. We employed an animal model in this study to

enable the comparison of blood and brain samples from the same subjects (which is not possi-

ble in humans). This study established a link between blood and brain responses in an animal

model of alcohol dependence. Going forward, we will investigate whether there is a similar sig-

nature of alcohol dependence in the blood of human patients with AUD.

Our data indicate that a molecular signature of CIE-induced alcohol dependence can be

detected in peripheral blood at least one week after the last alcohol exposure. This signature

partially reflects brain pathophysiology and can be used to discriminate CIE and Air mice with

a high degree of accuracy. Although it is not possible to draw any clinical conclusions from

this dataset, our study establishes a link between blood and brain responses to CIE exposure

and demonstrates that blood profiles can distinguish CIE and Air animals, which suggests that

blood samples could contain information relevant to alcohol use. These findings represent

important first steps in identifying novel biomarkers for AUD and provide critical context for

future blood-based biomarker studies. However, more research, including human validation,

will be required before genes selected as discriminatory features could become viable biomark-

ers. We hope this information helps drive objective diagnosis, medication development, and

personalized medicine approaches for AUD and other diseases where brain is the primary

affected tissue.

Materials and methods

Ethics statement

All procedures were IACUC approved and met the guidelines of the National Institute of

Health detailed in the Guide for the Care and Use of Laboratory Animals.

Animals

Adult male and female C57BL/6J mice (Jackson Laboratories, ME) were used in this study

(N = 10/sex/group; 40 mice total). One female mouse in the control group and two male mice

in the ethanol vapor group died during the experiment leaving N = 19 female mice and N = 18

male mice as the final subjects. Mice were housed at The Scripps Research Institute, four per

cage (except during the 2-hr drinking sessions), separated by sex in standard plastic cages

under a reversed 12-h light/dark period (lights on at 8:00 PM), with food (Teklad Global 18%

Protein Rodent Diet, Envigo) and water available ad libitum.

Chronic Intermittent Ethanol (CIE) model of alcohol dependence-induced

escalation of drinking

CIE was implemented as described in previous studies [25–27, 32, 36, 37, 109–112]. Thirty

minutes before the dark cycle, mice were singly housed for two hours with access to two drink-

ing tubes, one containing 15% ethanol and the other containing water. Ethanol and water con-

sumption during these 2-hour periods was recorded. Following this baseline period of two-
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bottle choice (2BC) drinking, which lasted 20 days (5 days per week for 4 weeks), mice were

divided into two balanced groups with similar distributions of ethanol and water consump-

tion. One group was exposed to intermittent ethanol vapor and the other to control air in iden-

tical chambers. The ethanol vapor group was administered 1.75 g/kg ethanol plus 68.1 mg/kg

pyrazole to inhibit alcohol dehydrogenase, and then was placed in the chambers to receive

intermittent vapor for 4 days (16 hours vapor on, 8 hours vapor off). Once per week, immedi-

ately following a 16-hour bout of vapor, mice were removed, and tail blood was sampled for

blood alcohol determination. Target blood alcohol levels were 175–250 mg%. Following the

fourth day of exposure, mice were allowed 72 hours of undisturbed time. The mice were then

given 5 days of 2BC drinking. The control group was injected with 68.1 mg/kg pyrazole in

saline and placed in chambers delivering air for the same periods as the ethanol vapor group

and then received 2BC testing at the same time as the vapor groups. Mice were subjected to

four cycles of vapor or air exposure followed by 5 days of 2BC drinking. All mice then received

one final 4-day vapor or air exposure (without 2BC testing). One week later, mice were eutha-

nized and tissue collected for RNA sequencing.

Blood ethanol analysis for vapor-exposed mice

Approximately 40 μl blood was obtained by cutting 0.5 mm from the tip of each mouse’s tail

with a clean surgical blade. Blood was collected in capillary tubes and emptied into Eppendorf

tubes containing evaporated heparin and kept on ice. Samples were centrifuged and plasma

decanted into fresh Eppendorf tubes. Plasma (5 μL) was injected into an Agilent 7820A GC

coupled to a 7697A (headspace-flame-ionization). Results were compared with and calibrated

using a 6-point serial diluted calibration curve of 300 mg/dl ethanol (Cerilliant E-033).

Statistical analysis of 2-bottle choice drinking

Average ethanol intake (g/kg) was calculated across 5 drinking days of each week during the

baseline-drinking period. During the testing cycles, mice also drank for 5 days; therefore, aver-

age drinking across these 5 days was used to represent drinking during each CIE cycle. Differ-

ences in drinking were determined by Two Way ANOVA (treatment x time (i.e., cycle))

followed by planned Dunnett’s tests to determine whether drinking during each testing cycle

was different from baseline drinking levels. We also used a One Way ANOVA (time (i.e.,

cycle)) for the ethanol vapor group and air group separately followed by planned Dunnett’s

tests to determine whether drinking during each testing cycle was different from baseline

drinking levels. Statistical analysis was implemented with GraphPad Prism 8.3.0 (GraphPad

Software, San Diego, CA, USA).

Tissue collection

Tissue was collected one week following the final vapor/air exposure between 10 AM and

12:30 PM. Mice were anesthetized with isoflurane and approximately 200–250 μl blood was

collected from the retroorbital sinus in capillary tubes and emptied into Eppendorf tubes con-

taining 3x volume DNA/RNA Shield (Zymo Research, Irvine, CA, USA). Tubes were immedi-

ately vortexed on the highest speed for 30 seconds and remained at room temperature for

about one hour before being placed at -80˚C until further processing. Mice were transcardially

perfused with ice-cold phosphate buffered saline (40 mL over 15 min). The mice were then

decapitated, and the brains removed and flash frozen in liquid nitrogen. Brain and blood sam-

ples were kept at -80˚C before being placed on dry ice and shipped to the Dell Medical School

(Austin, TX) for further processing.
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Dissection of brain areas

Brain samples were frozen in Optimal Cutting Temperature (OCT) media in isopentane on dry ice and were

stored at−80˚C until sectioning. On the day of sectioning, brains were transferred to a cryostat set at−6 to

−10˚C for at least 2 h. Sections (300μm) were collected from +3.00 to -4.00 mm (AP) relative to bregma and

transferred to glass slides that had been pre-cooled on dry ice. The slices between the following coordinates, rel-

ative to bregma, were used for prefrontal cortex (PFC): +3.0 mm to +1.70 mm (AP), amygdala (AMY): -1.00

mm to -2.30 mm (AP), hypothalamus (HYP): -1.30 mm to -2.30 mm (AP). We performed bilateral micro-

punch sampling on a frozen stage (−20 to−25˚ C) using a 1.00 mm diameter punch (Stoelting Co., item

#57397, Wood Dale, IL, USA) to include all sub-regions of the brain areas according to the stereotaxic atlas of

Paxinos and Franklin [113]. Punches were stored at−80˚C until RNA extraction.

RNA extraction

Total RNA was extracted from the whole blood samples using the Quick-RNA Whole Blood

kit according to manufacturer instructions (Zymo, Irvine, CA, USA). Total RNA was extracted

from the brain micropunches using the PureLink RNA Mini Kit (Thermo Fisher Scientific,

Waltham, MA, USA) according to manufacturer instructions except that 2-mercaptoethanol

was not added to the lysis buffer as this was found to reduce reads in downstream analyses dur-

ing optimization tests. RNA purity, concentration, and integrity were determined using a

NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), Qubit 4

(Thermo Fisher Scientific, Waltham, MA, USA), and Tapestation 4150 (Agilent Technologies,

Santa Clara, CA, USA). For quantitative assessment of RNA sequencing, External RNA Con-

trols Consortium (ERCC) RNA Spike-In Mix 1 (Thermo Fisher) were added to samples. We

submitted 300 ng total RNA/sample for brain samples and 2000 ng total RNA/sample for

whole blood samples to the Genomic Sequencing and Analysis Facility at UT Austin for

sequencing. The extracted RNA was of sufficient amount and quality (S9 Table), and subse-

quent sequencing accurately quantified the RNA as assessed by strong correlations between

the actual concentration and observed counts of the ERCC spike-in control (R2 = .90 (PFC),

0.91 (HYP), 0.92 (AMY), 0.85 (blood)).

RNA sequencing

We surveyed gene expression using TagSeq by constructing libraries directed at the 3’ ends of

mRNA according to established protocols [114]. About 70% of mRNA from whole blood is

globin mRNA, which limits the ability to detect other genes. Therefore, we depleted globin

mRNA in the whole blood samples before library construction using the QIAseq Fast Select

RNA removal kit (Qiagen, Germantown, MD, USA) according to manufacturer instructions.

Before globin depletion, the blood samples were purified using an AMPure XP (Agencourt)

bead clean-up as our optimization tests revealed this improved the blood library concentra-

tions. Purified libraries were size-selected to obtain 350–550 bp target cDNA and pooled in

equal proportions following relative quantification using a qPCR assay. Pooled sets of libraries

were sequenced using an Illumina NovaSeq 6000 generating 1x100 bp single-end reads. Illu-

mina adapters were removed, and lane pools were de-multiplexed according to the barcode

assignments by the sequencing facility prior to return of raw data.

Bioinformatics analysis

The mean read count was approximately 5 million reads per sample. This read depth provides

full-coverage detection with TagSeq (which is ~12,000–15,000 unique genes, depending on the

tissue). The reads were trimmed, de-duplicated, and quality filtered using custom Perl scripts
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from https://github.com/z0on/tag-based_RNAseq. The data were mapped to the GRCm38/

mm10 mus musculus reference transcriptome supplemented with the sequences of the ERCC

spike-in control mRNAs using bowtie2 [115]. Then samtools [116] and htseq-count [117]

were used to sort the mapped reads and convert mapped reads to counts. Read distributions

were characterized using the read_distribution.py program from RSeQC package v2.6.2. The

genome annotations for the analyses were taken from GENCODE using the main file contain-

ing comprehensive gene annotation on the reference chromosomes only. Raw counts were

converted to log 2-counts per million (log-CPM) to account for library size differences and

then transformed using the voom function from the limma package (version 3.42.2) to account

for the heteroscedastic nature of count data [118].

Differentially expressed genes (DEGs) between CIE and Air mice were identified using the

limma package (version 3.42.2) [118]. Next the transcriptional responses were parsed into

groups of genes whose expression patterns are highly correlated (modules) using the Weighted

Gene Coexpression Network Analysis (WGCNA) package (version 1.69) [119]. We built coex-

pression networks for each tissue individually as we have done previously (e.g., [40, 120, 121].

All detected genes within a tissue were used for network construction. The Pearson correlation

coefficient between all pairs of probes across all samples was calculated, and a signed gene

coexpression similarity matrix between genes was generated: Sij = (1 + cor(xi,xj)) / 2. Then, an

adjacency matrix, aij = Sij
β, was used to assess gene connections. Power (β) was chosen so that

the resulting network exhibited approximate scale-free topology (for male PFC, AMY, HYP,

and blood β = 6, 8, 7, and 10, and for female PFC, AMY, HYP, and blood β = 5, 9, 11, and 6).

Next, the topological overlap measure (TOM) was used to calculate the relative interconnec-

tedness of a gene pair. Average linkage hierarchical clustering was applied to produce a den-

drogram based on the topological overlap dissimilarity (1 − TOM). Branches of the tree were

cut using a dynamic tree cut algorithm to detect modules (deepSplit = T, minimum module

size = 100, cut height = 0.99). Similar modules were merged together (cutHeight = 0.25). The

terms “modules,” “clusters,” and “gene networks” are used interchangeably in the manuscript

and refer to groups of genes with highly correlated expression levels across samples.

Coexpression modules were said to be related to alcohol dependence if: (1) the module con-

tained more DEGs than expected by chance (hypergeometric test p< 0.05); or (2) the module

eigengene was correlated with alcohol dependence status, alcohol consumption, or alcohol

preference during the voluntary drinking sessions. The module eigengene is defined as the

first principal component of the expression matrix of the corresponding module and can be

thought of as the summary of gene expression within each module.

Blood and brain are heterogenous tissues comprised of multiple cell types. To gain insight

into functional roles for particular cell types, we determined whether cell type-specific genes

were enriched in the DEGs and alcohol-related modules using cell type signatures from the lit-

erature and the userListEnrichment function from the WGCNA package in R. The brain cell

type markers included six major cell types in the brain: astrocytes, endothelial cells, microglia,

neurons, oligodendrocytes, and oligodendrocyte progenitor cells (OPCs) [122]. The immune

cell type markers included seven immune populations: B cells, plasma cells, monocytes, mac-

rophages, neutrophils, NK cells, and T cells [123]. Terms with Bonferroni-corrected hypergeo-

metric p< 0.05 were considered significantly enriched within the dataset.

To determine what functional impact the observed transcriptional responses might have,

we performed enrichment analysis on the DEGs and alcohol-related modules using the Inge-

nuity Pathways Analysis knowledgebase (IPA, Ingenuity Systems, www.ingenuity.com), a

web-based software application. We performed a core analysis for the DEGs and modules of

interest in IPA using default settings, except that expressed transcripts were used as the
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background population for the right-tailed Fisher exact test (FET) calculations. Terms with

FET p< 0.05 were considered significantly enriched within the dataset.

Blood and brain gene expression comparisons

A major goal of this study was to compare the transcriptional response to CIE-induced alcohol

dependence between blood and brain. We compared DEGs in whole blood and each brain

area and identified overlapping DEGs between tissues. We determined whether a greater num-

ber of DEGs were shared between blood and brain than expected by chance using the hyper-

geometric test (hypergeometric p< 0.05 was considered significant). In addition to

comparing the DEGs, we also compared the gene coexpression modules that were related to

CIE between blood and brain following previously described approaches [78, 120, 121, 124,

125]. Briefly, for each pair of networks, the overlap between all possible pairs of modules was

calculated, and the significance of module overlap was assessed using a one-sided hypergeo-

metric test. Blood and brain modules sharing a significant number of genes (hypergeometric

p< 0.05), were considered conserved and we refer to them as blood-brain modules through-

out the manuscript. The software Cytoscape (http://www.cytoscape.org/) was used to visualize

the comparisons and create a meta-network of highly overlapping CIE modules.

Another goal of the study was to determine whether blood gene expression levels are corre-

lated with (i.e., predictive of) brain gene expression levels. Most previous studies comparing

blood and brain gene expression in humans have used blood and brain data from different

individuals (brain samples collected postmortem and blood samples collected from living

patients). To make our results more comparable to previous studies, we analyzed our data in a

similar manner (between-subjects design). For the between-subjects correlation, each point in

the scatterplot represented a gene, and we plotted the normalized expression level of the gene

averaged across subjects. We then calculated the Spearman correlation coefficient between

blood and brain normalized gene expression levels using the corr.test function from the psych

package (version 2.0.7) in R Studio. We compared the correlations between brain and blood

for males and females using the cocor package (version 1.1–3) in R Studio [126].

We measured gene expression levels for brain and blood for the same animal which permits

a within-subjects comparison. For the within-subjects analysis, we plotted the normalized

expression level for a gene in brain and blood for the same subject, where each point in the

scatterplot represented a subject. We then calculated the Spearman correlation coefficient

between blood and brain normalized gene expression levels for each gene using the corr.test

function from the psych package (version 2.0.7) in R Studio. There were over 10,000 correla-

tion calculations performed, one for each gene. To account for multiple comparisons, we used

Holm-Bonferroni correction, and corrected p< 0.05 was considered significant [127].

Classification algorithms and parameter selection

We determined how well blood gene expression levels could discriminate between CIE and

Air subjects using three classification models that are exemplary at identifying patterns or

trends in ‘omic’ data and include measures of variable importance to enable interpretation of

the models: logistic regression (LR) with elastic net regularization, random forest (RF), and

partial least squares discriminant analysis (PLSDA). Repeated cross validation was used to

choose the optimal hyperparameters (5-fold cross validation repeated 10 times) for each

model. The optimal value for the RF parameter mtry (the number of variables available for

splitting at each tree node) was chosen to be 638 for males and 197 for females. The LR regular-

ization parameters are alpha (this parameter balances the amount of emphasis given to mini-

mizing Residual Sum of Squares versus minimizing sum of square of coefficients) and lambda
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(regularization penalty). Alpha was 0.1 and lambda was 0.135 for males. Alpha was 1 and

lambda was 0.341 for females. The PLS parameter ncomp (number of components to include

in the model) was three for males and four for females. Model training and evaluation was

implemented with the MLSeq package (version 2.8.0) in R version 4.0.3 [128].

Classifier performance evaluation

To evaluate the performance of the classifiers in assigning the correct label to each subject

(CIE versus Air) we used 5-fold cross validation. MLSeq takes a matrix of raw counts as the

input and performs normalization within-fold so that the normalization of the test fold is per-

formed using coefficients estimated from the training folds. The process of randomly splitting

samples into training/test folds, training the models, and then testing performance was

repeated 10 times to obtain estimates of model performance. The performance metrics were

averaged across the repeated folds. The performance metrics we calculated were accuracy (per-

centage of correct assignments), area under the Receiver Operating Characteristic curve

(AUROC), and Matthews correlation coefficient (MCC). Given a test set and a specific classi-

fier, each decision can be categorized as one of the following: (1) a positive example classified

as positive (true positive; TP), (2) a positive example misclassified as negative (false negative;

FN), (3) a negative example classified as negative (true negative; TN), (4) a negative example

misclassified as positive (false positive; FP). After creating a Contingency Table, a 2×2 matrix

with the columns as true classes and the rows as the hypothesized classes, we calculated accu-

racy (the fraction of predictions the model assigned correctly) as follows: TPþTN
TPþTNþFPþFN, sensitiv-

ity (the True Positive Rate, or the proportion of positives that are correctly identified): TP
TPþFN,

specificity (the True Negative Rate, or the proportion of negatives that are correctly identified):
TN

TNþFP, and the False Positive Rate: 1 � TN
TNþFP. To plot the ROC curve, we calculated the False

Positive Rate and True Positive Rate under different classification thresholds, then quantified

the performance of the classifiers by calculating the area under the ROC curves (AUROC)

using the roc function from the pROC package (version 1.16.2) in R. The higher the AUROC,

the better the classifier performance. AUROC of 0.5 is random, 1.0 is perfect, and 0.7–0.8 is

generally considered high performance [129].

We also calculated the Matthews correlation coefficient (MCC) as: TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p .

MCC is essentially a correlation coefficient between the observed and predicted binary classifica-

tions; it returns a value between −1 and +1. A coefficient of +1 represents a perfect prediction, 0

no better than random prediction and −1 indicates total disagreement between prediction and

observation.

Variable importance measures

Logistic regression, random forest, and partial least squares discriminant analysis provide

measures of feature importance, which enable the identification of which genes were the most

useful for discriminating between the CIE and Air subjects. When building a random forest,

useful genes will split the mixed labeled nodes into pure single class nodes. This measure is

termed Gini importance. In PLSDA, the loading vectors (which are coefficients assigned to

each gene to define each component) are obtained so that the covariance between a linear

combination of the genes and the class label is maximized. The variable importance measure

for PLSDA is based on the weighted sums of the absolute regression coefficients (the loading

vectors). The weights are proportional to the reduction in the sums of squares. For LR, the

importance measure is the regression coefficient. Importance measures were extracted from

the final models using the varImp function from the caret package (version 6.0–86).
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Supporting information

S1 Fig. Comparison of blood and brain mean gene expression levels. The scatterplots display

the relationship between blood (x-axis) and brain (y-axis) mean gene expression levels for

male (left) and female (right) mice. Each point in the scatterplot represented a gene, and the

normalized expression level of the gene averaged across subjects (irrespective of treatment) are

plotted. We then calculated the Spearman correlation coefficient between blood and brain nor-

malized gene expression levels, and this value is displayed in the plots (rho).

(TIF)

S2 Fig. Correlation of blood and brain gene expression levels with alcohol consumption.

The scatterplots display the relationship between alcohol consumption in the final limited

access two bottle choice drinking test (y-axis) and blood or brain gene expression levels (x-

axis) for the genes presented in Fig 4 for female (A) and male (B) mice. Each point in the scat-

terplot represented a subject. We then calculated the Pearson correlation coefficient between

the normalized gene expression levels and alcohol intake and this value and associated p-value

is displayed under the x-axis.

(TIF)

S1 Table. The full differential expression results.

(XLSX)

S2 Table. The cell type enrichment analysis results of the DEGs.

(XLSX)

S3 Table. The full IPA pathway enrichment analysis and upstream regulator analysis for

the differentially expressed genes (CIE versus Air, p< 0.05).

(XLSX)

S4 Table. The full IPA upstream regulator results for the genes in the blood-brain mod-

ules.

(XLSX)

S5 Table. The full IPA pathway enrichment results for the genes in the blood-brain mod-

ules.

(XLSX)

S6 Table. Comparison of the correlation coefficients between blood and brain mean gene

expression levels in females and males.

(XLSX)

S7 Table. List of genes whose expression levels are correlated between brain and blood

(Holm-corrected p<0.05).

(XLSX)

S8 Table. The full IPA upstream regulator results for the genes whose expression levels are

correlated between brain and blood.

(XLSX)

S9 Table. RNA quality and quantity assessments.

(XLSX)
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