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The information processing in the large scale network of the human brain is related to its

cognitive functions. Due to requirements for adaptation to changing environments under

biological constraints, these processes in the brain can be hypothesized to be optimized.

The principles based on the information optimization are expected to play a central

role in affecting the dynamics and topological structure of the brain network. Recent

studies on the functional connectivity between brain regions, referred to as the functional

connectome, reveal characteristics of their networks, such as self-organized criticality

of brain dynamics and small-world topology. However, these important attributes are

established separately, and their relations to the principle of the information optimization

are unclear. Here, we show that the maximization principle of the mutual information

entropy induces the optimal state, at which the small-world network topology and

the criticality in the activation dynamics emerge. Our findings, based on the functional

connectome analyses, show that according to the increasing mutual information entropy,

the coactivation pattern converges to the state of self-organized criticality, and a phase

transition of the network topology, which is responsible for the small-world topology,

arises simultaneously at the same point. The coincidence of these phase transitions

at the same critical point indicates that the criticality of the dynamics and the phase

transition of the network topology are essentially rooted in the same phenomenon driven

by the mutual information maximization. As a consequence, the two different attributes

of the brain, self-organized criticality and small-world topology, can be understood within

a unified perspective under the information-based principle. Thus, our study provides an

insight into the mechanism underlying the information processing in the brain.

Keywords: functional connectome, information processing, mutual information, phase transition, self-organized

criticality, small-world network

INTRODUCTION

The human brain maintains its performance during perception, cognition, and behavior through
information processing in the neuronal networks (Linsker, 1988; Gray et al., 1989; Sporns, 2002;
Womelsdorf et al., 2007). Information processing is one of central functions of the brain, which
organizes the hierarchical structure of neuronal networks. In particular, integrative processing in
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the large scale network, which interconnects segregated and
functionally specialized regions in the brain (Tononi et al.,
1994; Hilgetag and Grant, 2000; Sporns, 2013), is related to
cognitive functions such as decision making (Friston, 2010;
Clark, 2013; Park and Friston, 2013). In order to achieve
efficient performance despite the requirements for rapid and
flexible adaptation to changing environments (Bassett et al.,
2006; Kitzbichler et al., 2009; Clark, 2013; Park and Friston,
2013; Mnih et al., 2015), information processing in the brain
might be optimized (Friston, 2010). Since the brain is spatially
limited in its finite volume, it is natural to assume that physical
constraints, such as the biological costs, require the brain to
optimize its function based on the limited resources (Achard
and Bullmore, 2006; Chen et al., 2006; Bassett et al., 2010;
Bullmore and Sporns, 2012). Due to this issue, the principles
based on the information theoretic quantities, such as free-energy
(Friston, 2010) and mutual information (Linsker, 1990), provide
formulations, which account for the mechanism underlying the
function and structure of the brain. However, understanding the
details of the mechanism, and the effect of these principles on
structural and functional aspects of the brain networks remains
an open issue.

Small-world topology and self-organized criticality are major
attributes which facilitate information processing in the brain,
yet their relations to the principle of information optimization
are still unclear. Recent advances in neuroimaging techniques
allow noninvasive observation of anatomical and functional
pathways in the brain, leading to elucidation of the network
structures and dynamics pattern referred to as the connectome
(Sporns et al., 2005; Achard et al., 2006; Bassett and Bullmore,
2006; Shmuel et al., 2006; Hagmann et al., 2008; Greicius
et al., 2009; Bullmore and Bassett, 2010; Biswal et al., 2010;
Brown et al., 2012). Small-world topology is one of common
characteristics of the complex networks that appear in a wide
range of phenomena (Watts and Strogatz, 1998; Newmann
and Watts, 1999), including the functional connectivity in the
brain (Achard et al., 2006; Bassett and Bullmore, 2006; van den
Heuvel et al., 2008; van den Heuvel and Sporns, 2011). Due
to the abundant existence of hubs and highly connected nodes
in the small-world network, it generally achieves robust and
efficient information transfer (Albert et al., 2000; Latora and
Marchiori, 2001). On the other hand, self-organized criticality
provides one attractive hypothesis describing the dynamics state
in the brain (Bak et al., 1987; Beggs and Plenz, 2003; Beggs,
2008). Self-organized criticality is described as an emergent
property of the system. Specifically, the dynamic systems of
interconnected nonlinear elements naturally evolve into a self-
organized critical state without any external tuning. Due to
successive signal propagation at the large scale observed in the
brain, the dynamics of individual units can induce rapid adaptive
responses to external stimuli (Kitzbichler et al., 2009; Chialvo,
2010; Tagliazucchi et al., 2012). Based on the fact that small-
world topology is an attribute arising in the critical state between
random networks and ordered ones, the criticality is considered
a major cause of this network attribute. However, the relation
between these attributes, which are usually established separately,
is not yet clearly understood.

In this study, we show a direct evidence that small-world
network topology and self-organized criticality are related
by the maximization principle of the mutual information
entropy. Targeting the large scale brain network, we investigated
the functional connectome constructed from the resting-state
functional MRI (fMRI) data, which records activation patterns
in brain regions during the resting state, and is expected to
describe a common architecture of the human brain (Achard
et al., 2006; Bassett and Bullmore, 2006; Fox and Raichle, 2007;
Hagmann et al., 2008; van den Heuvel et al., 2008; Greicius
et al., 2009; Honey et al., 2009; Biswal et al., 2010; Honey,
2010; van den Heuvel and Hulshoff Pol, 2010; Van Dijk et al.,
2010; Hlinka et al., 2011). When conceptualizing the brain
as an information processing system, successive patterns of
activation and deactivation in different brain regions provide
a representation of the processing associated with information
transfer. Historically, studies based on measurements of the
brain’s responses to tasks or stimuli have been successful in
mapping specific cognitive functions onto distinct brain regions
(e.g., Kanwisher et al., 1997). However, accumulated evidence
in recent studies indicates that various cognitive functions
arise from the more complex dynamics of interactions between
distributed brain regions, rather than from activities localized
to specific regions (Ghazanfar and Schroeder, 2006; Bressler
and Menon, 2010). Further evidences indicates that these
activities are efficiently modulated by brain regions that are
negatively correlated to tasks and are active and demonstrate
spontaneous neural activity even in the resting state (Fox
et al., 2005; Menon and Uddin, 2010). Then optimization
of information processing is accomplished by coordinating
activation and deactivation in different brain regions. Thus,
activation correlations and anti-correlations between regions,
which are calculated based on resting-state fMRI observations,
provide basic information useful in understanding the above
processes (Fox et al., 2005; Fox and Raichle, 2007; Uddin et al.,
2009).

In our study, we use the preprocessed functional connectome
data consisting of a matrix, each element of which represents
the connectivity strength between regions (Biswal et al., 2010;
Brown et al., 2012). We analyze these data using topological
and statistical methods (Barrat et al., 2004; Achard et al., 2006;
Clauset et al., 2009; Takagi, 2010, 2017; Klaus et al., 2011). Based
on the information transfer model reflecting the topological
and functional aspects, we show that the requirement for the
maximization of the mutual information entropy drives the
network to the critical state. We then show that the phase
transition, with respect to the topological structure, appears
according to this maximization. Further, we show that, at
this critical point, the distribution of the connectivity strength
converges to the model, indicating the self-organized criticality
(Takagi, 2010, 2017). These evidences describe their relations
explicitly, and indicate that they are essentially rooted in the
single phenomenon driven by the maximization of the mutual
information entropy. Thus, according to our results, the two
different attributes of the brain, self-organized criticality and
small-world topology, can be understood within a unified
perspective, under the information-based principle.
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MATERIALS AND METHOD

Functional Connectome Datasets
The functional connectome provides a description of the large
scale network structure in the brain with the connectivity matrix,
whose (i, j) element represents the connection weight wij. The
weight wij was evaluated from the fMRI data by the correlation
coefficient, where each node, i or j, corresponds to the single
region segmented in the brain (Achard and Bullmore, 2006;
Achard et al., 2006). In this study, we used preprocessed datasets
of the connectivity matrix, which are directly available at the USC
Multimodal Connectivity Database (Brown et al., 2012) from the
web page (http://umcd.humanconnectomeproject.org/). These
matrix datasets have N × N elements (wij), which correspond to
the connectivity strengths between N = 177 brain regions in this
case, which are sufficiently large to cover the entire brain (Brown
et al., 2012). The matrix datasets used in this study thus contain
986 matrices constructed from data from different individual
subjects. They are constructed from the datasets of the functional
connectome of “1,000 connectome project” (Biswal et al., 2010),
which collects the data obtained by resting-state fMRI (R-fMRI)
of the brain. They reveal that, while individual differences can be
observed, the connectome datasets share a common architecture.

Because the correlation coefficient indicates a linear
relationship between variables, there would be limitations
in applying this quantity to brain activity, which is nonlinear.
However, it has been reported that resting-state fMRI data are
almost Gaussian. As such, the loss in connectivity information
due to the use of linear correlation is relatively small (Hlinka
et al., 2011). We thus use this quantity, which approximately
represents the brain network.

Network Description

The connectivity matrix contains the noise and artifacts (Eguiluz
et al., 2005; Brown et al., 2012; Takagi, 2017), and subsequent
noise reduction procedures are required to depict the network
structure accurately. During usual analysis, these noises were
removed by applying the threshold value to the matrix (wij).
In this process, connections with small connectivity weights
are removed, and the network was constructed by the residual
connections. Further, this procedure is relevant to the brain
network analysis, because it extracts core structures consisting of
strongly connected pathways (Hagmann et al., 2008).

Introducing the thresholdwt for the connection weightwij, we
obtained the network description consisting of the connections
corresponding to the |wij| > wt elements. Since responses of
neuronal activity can be categorized as positive and negative ones
(Shmuel et al., 2006), wij takes its value in the positive and the
negative range accordingly, and then we adapted the threshold to
the absolute value |wij|.

This process simultaneously produces the topological
description, which was defined by the adjacency matrix (Eguiluz
et al., 2005; Bullmore and Bassett, 2010; Honey, 2010). In this
matrix, each element aij was assigned the binarized value, 0 or 1,
according to the absence or presence of the connection between
nodes i and j. For the introduced threshold, the adjacency matrix
takes aij = 1 for the (i, j) element with |wij| > wt and aij = 0
otherwise.

We use the largest connected component and the clustering
coefficient, which are basic measures of the topological network,
to characterize the structure of the topological network. For a
given graph description, such as that presented above, which is
an undirected topological graph based on the adjacency matrix,
connected components are defined by connected subgraphs. In
each of these subgraphs, all of the vertices are connected to
each other by paths. We measure the size of each connected
component using the number of vertices in the subgraph.
We then determine the largest connected component. In this
paper, we measure this quantity using R-package igraph (Barrat
et al., 2004). However, the clustering coefficient C, which is
also known as transitivity, is used to measure the probability
that the adjacent vertices of a vertex are connected (Watts and
Strogatz, 1998). This quantity provides an important indicator
of the small-world network. Unlike networks such as random
or regular networks, small-world topology is defined as a
network that can be highly clustered into regular lattices, yet
have small characteristic path lengths, as in random graphs
(Watts and Strogatz, 1998). In our previous work (Takagi, 2017),
simultaneous emergence of a small average minimum path
length and a large clustering coefficient were observed in the
datasets, which we also use in this study. We thus measure
the clustering coefficient C in this paper as an indicator of
small-world topology using R-package igraph (Barrat et al.,
2004).

Information Transfer Model
On the brain connectivity map represented by the connectivity
matrix (wij) and the corresponding adjacent matrix (aij),
information processing was represented by the signal
transmission. Information transfer in the brain can be described
by successive propagation of the signal represented by the
activated state of each site (Bak et al., 1987; Beggs and Plenz,
2003; Beggs, 2008). In order to model the information transfer,
we defined the stimulus signals S = (s1, . . . , sN) and the
responses R = (r1, . . . , rN), assigning the three states for
each i-th node si, rj ∈ {1,−1, 0} for the network size N. The
inactivated regions were assigned the 0 state, while the two states
at±1 for si, rj were considered to represent positive and negative
activations, respectively, in accordance with the empirical fact
that responses of neuronal activity can be categorized as positive
and negative (Shmuel et al., 2006).

In our simulation, where we use the same probability for
positive and negative activation, we assigned 1 and −1 to each
input signal si with the probability p, respectively. This value
was set to 0 otherwise. This parameter indicates the strength
of activity, which is related to energy consumption in the
brain. Because brain activity fluctuates, the activation density is
variously taken.

For a given set of signals S = (s1, . . . , sN) with randomly
assigned values of si, we estimated the response rj using the total
input signals received by each j-th node as

rs,j =
∑

i∈N

aijwijsi, (rj = 1(rs,j > wt), rj = −1(rs,j < −wt),

rj = 0(wt ≥ |rs,j|)) (1)
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where wij is the connectivity between i and j, given by the
connectivity matrix, and aij is the adjacency matrix. The state of
each responding node rj was determined according to rs,j and the
threshold wt .

Mutual Information Entropy
Themutual information entropy is one indicator whichmeasures
the information transfer from imposed stimuli to responses. It is
frequently used to evaluate the information transfer in networks,
including the neural network models and the real brain regions
(Bak et al., 1987; Beggs and Plenz, 2003; Beggs, 2008). Therefore,
we used this quantity to assess the efficiency of the information
transfer in our model.

For the set of stimulus signals S and the corresponding
responses R, the mutual information was defined as H(R) −

H(R|S), whereH(R) is the information entropy of the response R
and H(R|S) is the conditional entropy. Especially for the transfer
between i and j nodes, the mutual information entropy was
estimated by the following equation

m(i, j) = H(si)+H(rj)−H(si, rj), (2)

where the entropy, H(si) and H(rj), and joint entropy, H(si, rj),
were calculated using the probabilities for each state si, rj ∈

{±1, 0}. Specifically the entropy H(si) is defined as H(si) =

−
∑

si=±1,0 p(si) ln p(si) for p(si), which indicates the probability
of the state ±1, 0 at the i-th node. H(rj) is thus defined by
substituting rj into si. In addition,H(si, rj) can be calculated using
H(si, rj) = −

∑
si=±1,0,rj=±1,0 p(si, rj) ln p(si, rj) for p(si, rj), which

represents the joint probability for the combination of si and rj
states.

This definition, Equation (2), provides the mutual
information entropy for each node, with averaging, as
< m(j) >= (

∑
im(i, j))/(N − 1) for all the possible connections.

Finally, this quantity for the whole network was estimated as
m =

∑
j < m(j)) > /N. In this study, we estimated the mutual

information entropy according to this definition of the average.
The optimal state with respect to information transfer is thus
obtained by maximizing this quantity.

RESULT

Mutual Information Entropy
We calculated the mutual information entropy according to
the model represented by Equation (1) and the definition
Equation (2). In order to reduce noise and define the weight
matrix (wij) and adjacent matrix (aij), we introduced the cut-off
threshold wt . Considering the differences between individuals,
we defined the threshold value wt based on the average of the
connectivity < |w| > and the standard deviation σ|w| for each
connectivity matrix.We calculated< |w| > and σ|w|, and defined
the cut-off threshold by

wt =< |w| > +n · σ|w| (3)

with a parameter n. Further, as explained in the previous section,
in order to control the activation density of the input stimuli S, we

introduced the activation probability p, due to which each node
is randomly activated.

As shown in Figure 1, for each activation probability
p = 0.1, 0.01, 0.001, we estimated the average of the mutual
information entropy for different cut-off threshold values, which
were defined as Equation (3). Comparing the peak values for
these p-values, the maximum value was recorded in the case of
p = 0.01, with the medium density, while for other cases lower
peak maximum values were recorded. The result in Figure 1,
showing the three different conditions, indicates that the density
of the signal activation is one of the major factors that determine
the efficiency of the information processing.

Largest Component Size and Phase
Transition
In order to determine other factors which contribute to the
increase in the mutual information entropy, we evaluated one
of the basic measures of the network, the size of the largest
connected component. It is expected that the decomposition
of the connected network decreases the mutual information
entropy, because the information transfer between separated
components is completely prohibited.

We then evaluated the largest component size against
the threshold (Figure 2) for whole individual datasets of the
functional connectome. In this figure, the size was normalized by
the total number of the nodes, and 1 indicates that the network
is fully connected. For the adjacent matrix obtained by adapting
these threshold values defined as Equation (3), we measured the
size of the largest connected component.

In order to identify the relation between the maximization in
Figure 1 and the largest component size, we plotted the mutual
information values against the corresponding largest component

FIGURE 1 | Mutual information. We calculated the average value of the mutual

information Equation (2) using whole 986 datasets of the functional

connectivity matrices (Biswal et al., 2010; Brown et al., 2012). The threshold

value was considered as Equation (3) parameterized by n with the standard

deviation. We used three different values of the activation probability,

p = 0.001, 0.01, 0.1, corresponding to the dashed line, solid line, and dotted

line on the plot, respectively. Each simulation, was repeated 1, 000 times, with

random input signals.
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sizes for each cut-off threshold in Figure 3. A sharp peak with
a discontinuous curve was observed for the p = 0.01 case
(Figure 3B), whereas gradual changes appeared in the other
cases with p = 0.001 and p = 0.1 (Figures 3A,C). This
behavior in Figure 3B indicates that the largest component size
is the other major factor which affects the mutual information
entropy. Further, it implies that the maximization of the mutual
information is related to the occurrence of the phase transition
with respect to the topological structure. The existence of the
phase transition observed in Figure 3B might agree with the
argument that the brain operates near the critical state (Bak et al.,
1987; Beggs and Plenz, 2003; Beggs, 2008; Kitzbichler et al., 2009;
Chialvo, 2010; Tagliazucchi et al., 2012).

This maximization might be explained by the criticality
hypothesis (Bak et al., 1987; Beggs and Plenz, 2003; Beggs,

FIGURE 2 | Largest component size. we estimated the largest component

size of the topological network representation obtained for the threshold wt
values defined as Equation (3). The vertical axis indicates n, which

parameterizes the threshold as shown in the definition of Equation (3). The

largest component size in the horizontal axis was normalized by the total

number of the nodes, and then the value at 1 corresponded to the fully

connected network. The average of this value was considered for the whole

datasets, 986 datasets of the functional connectome (Biswal et al., 2010;

Brown et al., 2012).

2008), which states that the information transfer is maximized
in the critical state. This state is in contrast with the sub-
critical state with less activation and the super-critical state, in
which excess activation is saturated. In sub-critical state, due
to poor sensitivity to the stimulus, activations die out, and the
signal transfer is terminated quickly. On the other hand, in the
super-critical state, the system reaches the runaway excitation
due to uncontrolled chain reactions. Therefore, the information
transmission is expected to be maximized in the critical state.
The result in Figure 3, showing the three different conditions,
indicates that the medium density with p = 0.01 (Figure 3B)
represents the critical state.

Small-World Topology and Phase
Transition
In the above results, we showed that network topology is one
of the factors which contribute toward maximization of the
mutual information entropy, and this is accompanied by its
phase transition. In order to specify the relation between the
mutual information maximization and the network topology, we
investigated the behavior of the network topology around the
critical point in greater detail.

The small-world topology is one of common characteristics
of the complex network which arises in the critical state between
random networks and ordered ones (Watts and Strogatz, 1998;
Newmann and Watts, 1999). Generally, it contributes to the
robustness and efficiency in the information transfer in various
types of complex networks. It is considered that the small-
world architecture is relevant for understanding the function of
the brain, and the empirical evidences support this argument
(Achard et al., 2006; Bassett and Bullmore, 2006; van den Heuvel
et al., 2008; van den Heuvel and Sporns, 2011).

In order to characterize the behavior of the network topology
around the critical point, we evaluated the clustering coefficient
C. As explained in the previous section, this basic quantity is
frequently used to characterize the small-world network, which
exhibits relatively large clustering coefficient values (Watts and
Strogatz, 1998). In Figure 4A we show the result of measuring
the clustering coefficient. For different threshold values, the
clustering coefficient remains almost constant at its value around

FIGURE 3 | Mutual information and the largest component sizes. We plotted the mutual information value against the corresponding value of the largest component

sizes. The mutual information data is the same as that in Figure 1, and the largest component sizes were taken from Figure 2 for each corresponding threshold

value, where the largest component size was divided by the total number of nodes. (A) The estimated values for a high signal density (p = 0.1) are shown. (B) The

estimated values for a medium signal density (p = 0.01) are shown. (C) The estimated values for a low signal density (p = 0.001) are shown.
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FIGURE 4 | The clustering coefficient and the threshold. (A) We measured the clustering coefficient for each threshold value considered as Equation (3). The average

was calculated for the whole datasets, 986 datasets of the functional connectome (Biswal et al., 2010; Brown et al., 2012). (B) We plotted the changes in the

clustering coefficient, 1C, against the corresponding value of the largest component sizes same as shown in Figure 3. The difference in the clustering coefficient 1C

was defined as 1C = C(i)− C(i + 1), where i indicates the i-th value of the threshold in the panel (A), which is calculated from the minimum value n = −2 as (i = 0).

the critical point specified in Figure 3B. This stability agrees with
the observation in the Watts-Strogatz model that the clustering
coefficient is stable near the state of the small-world topology
(Watts and Strogatz, 1998). The small change in the clustering
coefficient around the critical point shows that it has relatively
large values during this transition. This explains why the small-
world topology appears around this critical point.

In order to provide the further evidence for the relation
between small-world topology and phase transition, wemeasured
the changes in this value 1C, and plotted these values against
the corresponding largest component size, same as in the case
of Figure 3B. 1C was defined by the difference of C between
the values for neighboring thresholds, 1C(i) = C(i) − C(i +
1) for the i-th threshold value in our calculation. Exhibiting
similar behavior to Figure 3B, the plot in Figure 4 specifies the
critical point with a sharp peak at the same critical point of the
mutual information entropy. Thus, there exists a phase transition
regarding the network topology, which is responsible for the
small-world feature, and we suggest that this phase transition
contributes to the maximization of the mutual information
entropy.

Activation Pattern and the Self-Organized
Criticality
In our model Equation (1), the other factor, which mainly
contributes to the information transfer, is the connectivity
strength wij. The distribution of wij is important for controlling
the response, especially for hub nodes. On these nodes, the
response to signals received from multiple sites is determined
according to the combination of wij, (wi1j,wi2j, . . . ) for i1, i2, . . . .
In these responses, highly weighted connections, which organize
the core network in the brain, are dominant. The distribution
of the connectivity strength is another important factor which
determines the efficiency of the information transfer.

In order to describe the contribution of wij to the
maximization of the mutual information entropy, we identified
the statistical characteristics of wij around the critical point,
and clarified its relation to the criticality observed with the

mutual information entropy. For this purpose, we assessed the
distribution of wij, whether it obeys the prediction of the self-
organized criticality. In this state, it is predicted that characteristic
scales will disappear, and the systems will behave independently
of the scale (Bak et al., 1987). The emergence of the power law
distribution is considered a typical characteristic observed in this
state.

However, when we adapted the power law to the distribution
of wij, the straightforward application was prohibited due to
the upper and lower limits of its definition of the correlation
coefficient.We then used the distributionmodel derived from the
power law, adapting it to the restricted variable range (Takagi,
2010, 2017). In accordance with the restricted region |w| ≤ 1,
we applied the power law to the variable w̃ = (1 − |w|), and
obtained the expression p(|w|) ∝ (w̃)γ = (1 − |w|)γ , with a

constant γ . Normalizing
∫ 1
0 drp(|w|) = 1 yields the expression

of our distribution model,

p(|w|) = (γ + 1)(1− |w|)γ . (4)

In order to verify that the distribution follows this model, we
assessed the performance of the distribution fitting using the
Kolmogorov-Smirnov (KS) distance (Clauset et al., 2009; Klaus
et al., 2011). For the cumulative distribution Pe(w), which is
experimentally given, and the model distribution P(w) fitted to
the data, the KS distance D is defined as

D = max
w

|Pe(w)− P(w)| (5)

which measures the maximum distance of the model from the
experimental data.

In Figure 5, we show the KS distance values for the noise-
reduced weight matrix (wij), applying the cut-off threshold
Equation (3). In the distribution fitting, the parameters of each
distribution model were estimated by the maximum likelihood
method. This was compared to the truncated power law, which
is applied instead of the power law in most cases when the
distribution has the upper limit (Achard et al., 2006). The
exponentially truncated power law is described as p(x) ∝
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FIGURE 5 | Kolmogorov-Smirnov distance of the distribution models. We

estimated the Kolmogorov-Smirnov (KS) distance for each cut-off threshold

value. For the cumulative distribution P(|w|) of the experimental data wij which

satisfies |wij | > wt, the parameters of the truncated power law and our models

were estimated by the maximum likelihood method for each model. We then

estimated the values of the KS distance for the whole datasets (Biswal et al.,

2010; Brown et al., 2012), according to the Equation (5), and calculated the

averages.

xα−1ex/xc , where α is a constant exponent, and xc is the
truncation value or the cut-off. For the truncated power law, the
maximum likelihood was estimated using R and the R-package
brainwaver (http://cran.r-project.org/web/packages/brainwaver)
(Achard et al., 2006).

As indicated by the plot of Figure 5, our model yields more
stable lower values stably than the truncated power law model.
Consequently, our model Equation (4) provides a good fit for the
distribution of (wij). Further, the convergence to this distribution
model is indicated by the sufficiently small value of its minimum
distance.

In order to correlate to the phase transitions shown in
Figures 3B, 4B, we combined Figures 2, 5 into Figure 6,
plotting the KS distance value against the corresponding
largest component size for each cut-off threshold. The resulting
distribution model (Figure 6A) exhibits a similar behavior to the
cases of Figures 3B, 4B. The plot shows a sharp peak around the
critical point, at which point the phase transitions observed with
the mutual information entropy and the topology appear.

In comparison with the results of the truncated power law
distribution (Figure 6B), the behavior of our model (Figure 6A)
clearly exhibits the characteristics of the phase transition with
a sharp peak, and depicts its difference with the case of the
truncated power law, in which such a peak is absent. In this
figure, the distance of the truncated power law increases with
that of wt , indicating that the difference from the experimental
data becomes significant almost monotonically with decreasing
noise. On the other hand, our model shows a decrease toward
its minimum peak around the critical point. The presence of
the sharp peak is a characteristic behavior observed only in our
distribution model.

DISCUSSION

Topology and Dynamics Patterns Under
the Maximization of the Mutual Information
Entropy
In this paper, we showed that, due to the maximization
of the mutual information entropy in the large scale brain
network, small-world network topology and criticality in the
activation dynamics are induced. Our simulation results shown
in Figure 3B indicate that the requirement for this maximization
drives the network state to the critical point specified by the peak
of this entropy.

Similar behavior was observed with the clustering coefficient
(Figure 4B), indicating that the same mechanism induces
the phase transition of the topological structure. This phase
transition is responsible for the small-world topology, because
this feature emerges during the phase transition between random
and ordered networks. Further, the relation to the small-world
topology is supported by our result (Figure 4A) showing the
small change of the clustering coefficient around this point,
indicating that the network has relatively high transitivity at this
point.

In addition, this accompanies the emergence of self-organized
criticality in the dynamics. This is shown by the convergence
of the coactivation pattern distribution to the model, indicating
self-organized criticality (Figure 6A). Toward the critical point
specified in Figures 3B, 4B, the separation distance between
the empirical data and the distribution model measured by the
KS distance rapidly decreased. The criticality of this state was
confirmed by the fact that this distribution model was directly
derived from the power law, one of the characteristic features of
self-organized criticality.

These results provide evidence to support that the principle of
the mutual information maximization predominantly affects the
structural and functional aspects of the brain network. Thus, our
results explain the origin of the important attributes of topology
and dynamics of the functional connectome.

Criticality
Our results provide a unified perspective of the topological and
functional aspects of the connectome, under the concept of
criticality. In Figure 1, we showed three different state, which
corresponded to the sub-critical state with low signals (p =

0.001), the critical state with the medium signals (p = 0.01),
and the super-critical state with high signals (p = 0.1). The
criticality is explicitly shown by the result Figure 3B, in which the
phase transition exhibited a sharp maximum peak of the mutual
information. At this point, the mutual information entropy was
maximized, and subsequently the optimal state, with respect to
information transfer, appeared.

This criticality observed with the mutual information entropy
explains the origin of the small-world topology and the criticality
of the coactivation patterns. As represented in Equation (1),
the information transfer depends on the topological structure
represented by the adjacent matrix (aij) and the weight matrix
of the connectivity strength (wij). As indicated by Figure 4B,
the critical point of the clustering coefficient, one of the
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FIGURE 6 | Kolmogorov-Smirnov Distance and phase transition. The Kolmogorov-Smirnov (KS) distance was plotted against the largest component size, same as

shown in Figures 3, 4B. (A) The KS distance and the largest component size for our distribution model, for wij , are shown. (B) The KS distance and the largest

component size for truncated power law distribution are shown.

representative topology measures, coincides with that of the
information entropy shown in Figure 3B. The maximization of
the mutual information entropy induces the phase transition in
the network topology. This small-world network contributes to
the efficiency of the information transfer, because it contains
hubs or highly connected nodes, which have the advantage of
shortening the path length between the nodes.

These hubs, which have relatively large number of
connections, have an opposite effect of inhibiting efficient
communication. The signal transfer model Equation (1) implies
that excess signals, which simultaneously reach a single hub
node, confuse the transfer and produce noises. It is expected
that, for these noises, the connectivity weight extracts the
important signals, and then controls the information transfer,
while avoiding confusions. The similar behaviors observed in
Figures 3B, 6A imply that the requirement for the maximization
of the mutual information entropy affects the distribution of
the connectivity strength wij, which converges to the model,
indicating the critical state. These results support the argument
that the criticality of the connectivity strength has its origin in
that of the information transfer.

Thus, the maximization of the mutual information entropy
explains the origin of the phase transition in the topology and
the criticality in the coactivation patterns. Although these two
important attributes of the brain are established separately, they
are directly related by themaximization. These findings provide a
unified perspective for self-organized criticality and small-world
topology, under the mechanism driven by the maximization of
the mutual information entropy.

Biological Constraint
Our findings also reveal the contribution of the biological
constraints to the mechanism regulating the information
transfer. We had specified the critical point by the sharp peaks in
Figures 3B, 4, and 6B. In these figures, the vertical axis, the largest
component size ratio in the network, indicates that, at this point,
the network structure shows the phase transition from the fully

connected state to the fragmented one, which contains isolated
components (Takagi, 2017). This state is relevant for maintaining
the brain activity, because the fully connected structure might
allow the integration of the signals (Tononi et al., 1994; Bassett
and Bullmore, 2006; Bassett et al., 2006; Kitzbichler et al., 2009;
Sporns, 2013) from functionally specialized regions in the brain
(Tononi et al., 1994; Hilgetag and Grant, 2000; Sporns, 2013).
Therefore, this state, the fully connected network, might be a
minimum requirement for the integrated function of the brain
(Tononi et al., 1994; Bassett and Bullmore, 2006; Hagmann
et al., 2008; Sporns, 2013), and our result suggests that the brain
network satisfies this constraint.

On the other hand, the same set of Figures 3B, 4, and 6B,
indicate that this criticality is obtained by reducing the excess
connections under the above constraint of integration. At this
critical point, the integrated structure with the fully connected
topology is preserved with the minimal connections, because the
lower threshold allows excess connections. From the point of
view of economic expenditure of energy (Achard and Bullmore,
2006; Bassett and Bullmore, 2006; Chen et al., 2006; Bassett
et al., 2010; Bullmore and Sporns, 2012), suppressing excess
connections reduces the energy cost of the network wiring and
the biological energy consumption associated with the activity.
Our results imply that the cost-effective state, without losing
its function, is realized at this critical point (Takagi, 2017). We
suggest that requirements for reducing the energy consumption
and preserving the integrated state in the brain network work as
the biological constraints to determine the optimal state of the
brain network.

Concluding Remarks
The results from this study provide evidence to support the
argument that the brain network is optimized with regard
to information processing. This study suggests the principle
and the constraint required for the mechanism underlying
the information transfer in the brain network. Our results
specifically suggest that, under the constraint of preserving
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the fully connected network structure, reducing the energy
consumption and maximizing the information transfer are the
principles governing the topological and functional aspects of
the brain network. Thus, our results provide an insight into the
mechanism of information processing in the brain.

Based on the simulation presented here, we describe the
dynamics of the brain network in response to activation
probability and the connectivity threshold, which are the major
factors affecting mutual information entropy. Our conclusion is
consistent with empirical data, such as those obtained regarding
small-world topology and the criticality of the brain network.
These findings are widely supported by various experimental and
simulation results. Yet, how the requirement for optimization

in information processing affects network developments in real
brains remains unknown.
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