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Long-term exposure to air pollution is considered a major public health concern and has been related to
overall mortality and various diseases such as respiratory and cardiovascular disease. Due to the spatial
variability of air pollution concentrations, assessment of individual exposure to air pollution requires spatial
datasets at high resolution. Combining detailed air pollution maps with personal mobility and activity
patterns allows for an improved exposure assessment. We present high-resolution datasets for the
Netherlands providing average ambient air pollution concentration values for the year 2009 for NO2, NOx,
PM2.5, PM2.5absorbance and PM10. The raster datasets on 5 × 5 m grid cover the entire Netherlands and were
calculated using the land use regression models originating from the European Study of Cohorts for Air
Pollution Effects (ESCAPE) project. Additional datasets with nationwide and regional measurements were
used to evaluate the generated concentration maps. The presented datasets allow for spatial aggregations
on different scales, nationwide individual exposure assessment, and the integration of activity patterns in
the exposure estimation of individuals.
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Background & Summary
Air pollution negatively affects health. Epidemiological studies have shown that long-term exposure to
gaseous (e.g. NO2, NOx) or particle pollutants (e.g. PM2.5, PM10) may contribute to the development of
asthma, lung cancer, diabetes, and cardiovascular diseases1–6. For an improved assessment of exposure to
air pollution, capturing the spatial variation of street level air pollution concentrations is relevant. Land
Use Regression (LUR) models based on measurements from monitoring stations and predictor variables
such as traffic or land use have been shown to be suitable to explain the spatial variation in air pollution
concentrations7–10. LUR models estimating individual exposure to air pollution have for instance been
developed for the United States11, China12, metropolitan areas in Australia13,14 and within the European
Study of Cohorts for Air Pollution Effects (ESCAPE)10,15.

Previous studies of health effects of long-term exposure used LUR models to calculate air pollution at
selected locations, mostly front door locations of home addresses. This approach neglects human activity
patterns which may be a fundamental omission as important air pollutants strongly vary in space and
time. In case information is available for multiple locations such as home and work locations with
associated residence times, or on activity patterns like commuting, estimating individual exposures to air
pollution can be improved16–18. To enable this, concentration values at virtually any location and
consequently air pollution data at a high spatial resolution and national coverage are required to calculate
exposure for each individual within a cohort. In addition, such map data would enable calculating
exposure for the entire population in a country.

We present a new consistent data set consisting of 5 metre resolution air pollution concentration maps
covering the entire land surface of the Netherlands, an area of about 33 680 km2. We created these maps
using the LUR models developed within the ESCAPE project10,15 for the Netherlands and Belgium, here
only used for the Netherlands. The maps provide annual average concentration values for nitrogen (di)
oxides (NO2, NO2background and NOx, respectively), particulate matter with less than 10 μm or 2.5 μm
(PM10 and PM2.5, respectively), and a proxy for elemental carbon (PM2.5absorbance). The concentration
values calculated by the ESCAPE LUR models can be considered as long term average values as the
models were identified using mean air pollution in 2009 and spatial contrasts are stable for multiple years.
The LUR models were based on land use, traffic infrastructure, traffic intensity and population density.
Predictor variables included aggregated values of these attributes calculated within circular buffers with
radii between 25 m and 5 km.

To verify our mapping approach we compared the values of predictor variables calculated using our
nationwide mapping techniques with those used to identify the ESCAPE LUR models10,15. To validate the
maps, we used independent measurements of air pollution to assess the new concentration maps. A
comparison with measurements obtained in the RUPIOH study19 for the municipality of Amsterdam
resulted in an r2 of 0.22 for PM2.5, 0.38 for PM2.5absorbance and 0.2 for PM10. A nationwide measurement
dataset for NO2 from the TRACHEA study20 resulted in an r2 of 0.75. We also validated against air
quality measurement data from the National Institute for Public Health and the Environment (https://
www.rivm.nl/en/) obtained from stations across the Netherlands. The resulting r2 for NO2 is 0.85 and for
PM10 is 0.57.

The spatially detailed air pollution concentration datasets enable health researchers to improve the
assessment of the effects of spatial variability on human exposure and health. The data can be used to
enrich cohorts with air pollution data either to assess the relation between air pollution and health or to
take air pollution into account as a confounding factor. Feasibility of this method has been shown in
studies investigating the relation between air pollution exposure and diabetes prevalence6 and lifestyle21.
Concentration values can be obtained from the maps for cohorts of any size. Spatial aggregations over
tracks followed by individuals, their close surrounding or over administrative areas can be
straightforwardly computed with standard Geographic Information System (GIS) software.

Methods
To generate high-resolution air pollution concentration maps we built upon the LUR models and datasets
initially developed in the ESCAPE project10,15. First, we briefly describe the ESCAPE project and the
therein developed LUR models covering the Netherlands. Then, the data preparation in the spatio-
temporal modelling environment PCRaster22 and the application of the six air pollution concentration
models over the Netherlands are described. The required software to calculate predictor variables and air
pollution concentration maps is described in the ‘Code Availability’ section.

The ESCAPE Land Use Regression models
After epidemiological studies established exposure response relationships in North America23 and
European exposure estimates at that time were based on these results, the European Study of Cohorts for
Air Pollution Effects (http://escapeproject.eu/) was initiated to investigate the contribution of long-term
traffic-related air pollution to the state of health. The ESCAPE study covered 36 study areas in 15
European countries and was performed between 2008 and 2012. Standard operating procedures for
measurements (http://www.escapeproject.eu/manuals/) and a standardised methodology for the
assessment of long-term population exposure to air pollution were developed to investigate exposure-
response relationships for e.g. respiratory and cardiovascular diseases.

www.nature.com/sdata/

SCIENTIFIC DATA | 6:190035 | https://doi.org/10.1038/sdata.2019.35 2

https://www.rivm.nl/en/
https://www.rivm.nl/en/
http://escapeproject.eu/
http://www.escapeproject.eu/manuals/


For all European study areas, LUR models were developed based upon measured annual average
concentrations. In the Netherlands, simultaneous measurements took place at 80 monitoring sites for
NO2 and NOx, and 40 sites for PM. Regional background, urban background and traffic sites were
selected. The Netherlands are located in the temperate climate zone of Western Europe (Cfb according to
the Köppen-Geiger classification24,25) with a mean temperature of 10.1 °C and a mean amount of 851 mm
precipitation. Three two-week measurement campaigns were performed in different seasons over the year
2009 (cold, warm and intermediate season) to capture seasonality. In addition, an ESCAPE background
reference monitoring site was measuring pollutant concentrations the entire year. The data obtained from
the three measurement campaigns were then averaged, adjusting for temporal trends using the
continuous data from the reference monitoring site15,26. PM10-2.5 was not measured but calculated as
difference between PM10 and PM2.5.

Geographic datasets of land use, traffic infrastructure and population density were available for all
study sites and used to derive the predictor variables. Datasets presumably improving LUR models, such
as street configuration or traffic speed27, were not available at European scale and therefore not
considered. In the Netherlands, however, information on light-duty and heavy-duty traffic intensities
were available and used in the model development.

For each monitoring site and geographic dataset, potential predictor variables were then computed
using circular zones and various buffer sizes. Afterwards, for each pollutant the predictor variables
explaining best the spatial variation in measured annual average air pollution concentrations were
identified. The LUR models were then used to assess air pollution exposure for individual cohort
participants, by calculating predictor variables and evaluating the LUR models at the front-door home
address locations.

In the Netherlands, the ESCAPE LUR models explained 68% variability in the annual PM10

concentrations, 67% in the PM2.5 concentrations, 51% in the PM10-2.5 concentrations, 92% in the
absorbance concentrations, and 86% in the NO2 concentrations. The lower model r2 for PM2.5 and PM10

compared to NO2 and PM2.5absorbance is likely due to the smaller impact of local (traffic) sources on these
pollutants. The variation related to large source areas and the transformation process in the atmosphere
are more difficult to characterize with the empirical modelling approach. Certain sources such as
agriculture or shipping were not evaluated in detail. The lower r2 for coarse PM is due to missing sources
and lower precision of the measurements: coarse was calculated as the difference between PM10

and PM2.5.
The development of the LUR models and the evaluation of the model performance are explained in

more detail for nitrogen (di)oxides10 and particular matter15. Table 1 shows the six LUR models for the
Netherlands and Belgium study area that were also used to calculate the datasets presented here.

Data sources for the ESCAPE project
The ESCAPE project used several geographic data sources to derive the predictor variables for the LUR
models. Datasets in the project were available for all study areas in Europe, and supplemented with
national data.

Traffic related predictor variables were calculated using the digital road network based on Eurostreets
version 3.1, derived from the TeleAtlas MultiNet data set for the year 200815. This dataset was used for
the predictors holding the length (in m) of all roads and major roads in a buffer (RL and MRL,
respectively), and the inverse distances (m−1) to the nearest road (IDC) or the nearest major road (IDM).

Pollutanta LUR modelb

NO2 −7.8 + 1.18·BEO + 2.3e−05·POP5000 + 2.47e−06·TL50 + 1.06e−4·RL1000 + 9.84e−05·HTL25 + 12.19·IDC + 4.47e−07·HTL25−500

NO2background 3.21 + 0.74·BEO + 2.29e−05·POP5000 + 6.4e−07·IND5000 + 4.72e−07·HAR5000

NOx 3.25 + 0.74·BEX + 4.22e−06·TL50 + 6.36e−04·POP1000 + 2.39e−06·HTL500 + 71.65·IDM + 0.21·MRL25

PM2.5 9.46 + 0.42·BEP + 0.014·MRL50 + 2.28e−09·TML1000

PM2.5absorbance 0.07 + 2.95e−09·TL500 + 0.0029·MRL50 + 0.85·BEA + 7.90e−09·RES5000 + 1.72e−06·HTL50

PM10 23.71 + 2.16e−08·TML500 + 6.68e−06·POP5000 + 0.015·MRL50

Table 1. Description of the Dutch LUR models. Predictors with subscripted radii (m) are variables
corresponding to the accumulated attribute value within the given circular buffer centred at the cell under
consideration. Each model is calculated for each raster cell in the Netherlands. aConcentration of PM2.5absorbance

is given in 10−5 m−1, the residual pollutant concentrations are given in μg m−3. bRegional background
concentration estimates in μg m−3 for NO2 (BEO), NOx (BEX), and PM2.5 (BEP), and in 10−5 m−1 for
PM2.5absorbance (BEA); traffic load (vehicles·day−1·m) on all roads (TL) and major roads (TML); heavy traffic
load (vehicles·day−1·m) all roads (HTL); road length (m) of all roads (RL) and major roads (MRL); inverse
distance (m−1) to all roads (IDC) and major roads (IDM); population density (inhabitants·m−2, POP); the
surface area (m2) of industrial area (IND), harbour area (HAR), and residential area (RES).
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The widths of roads were not explicitly given in the datasets but each centre of a road lane was specified
as separate line segment.

For the Netherlands, local traffic network and traffic intensity data from the Netherlands
Environmental Assessment Agency (http://www.pbl.nl/en/) were additionally used for predictor variables
with traffic load (vehicles·day−1·m) on all roads (TL) and major roads (MTL), and heavy traffic load on all
roads (HTL).

Land use information was derived from the CORINE land cover 2000 data set (https://land.
copernicus.eu/pan-european/corine-land-cover). The CORINE land use categories were reclassified and
used to create predictor variables holding areas (m2) for harbour (HAR), industry (IND) and areas with
high and low density residential land (RES). Population density data (POP) was obtained from the
INTARESE project dataset (http://www.integrated-assessment.eu/eu/).

Regional background estimates (BEO, BEX, BEP, BEA) were included for the study area as not all
large-scale spatial trends in the air pollution concentrations could be explained by the potential predictor
variables10. Concentration data obtained from 20 stations for nitrogen oxides and 10 stations for the
other pollutants, respectively, were used to estimate four background concentrations by inverse distance
weighted interpolation. A regional background estimate did not improve the PM10 model and was
therefore not included.

Spatially distributed modelling
The original ESCAPE project used vector data sources. The predictor variables and models were then
calculated using vector-based Geographic Information System functions on a limited set of observations
and home address locations. With this approach it was not feasible to calculate air pollution
concentrations at all Dutch home address locations due to the extensive runtime of the vector-based
operations. We therefore applied a raster-based modelling approach where first the vector input data
sources were converted to 5 m resolution raster data, and predictor variables and LUR models were
calculated from these data in a raster environment as well. This approach results in minor differences
between the original variables calculated by a vector-based and variables calculated using the raster-based
approach. The differences between both approaches are negligible as will be shown in the ‘Technical
Validation’ section.

To calculate raster-based predictor variables and air pollution concentrations we used PCRaster22, an
open-source environmental modelling platform providing a wide range of operations suitable to express
spatio-temporal processes via the Python programming language (http://www.python.org/). To be usable
in PCRaster, the geographic source datasets were translated using GDAL/OGR (http://www.gdal.org/).
The scripts implementing the conversion steps from vector to raster data are included (Data Citation 1).

The datasets were created as follows: The population density dataset was rasterised with gdal_rasterize.
For land use, first the CORINE dataset was rasterized with gdal_rasterize. Then, the CORINE land use
classes were reclassified and recoded to individual raster maps holding industrial, harbour and residential
areas. The total length of roads in each raster cell was calculated by intersecting a 5 m2 resolution fishnet
grid with the road network to obtain all individual road segments per raster cell. Then, the lengths of each
road segment in a raster cell were calculated in QGIS (http://qgis.osgeo.org). Finally, the length values
were summed up per cell and the total road lengths were assigned as raster cell value.

Calculation of the predictor variables
The rasterised data sources were used to calculate the predictor variables that are used in the LUR models.
Different circular buffer sizes for land use and population density (with 1000 and 5000 metres) and for
road lengths and traffic loads (with 25, 50, 500 and 1000 metres) were required to calculate the six LUR
models. In total, 16 predictor variables with buffers were calculated. The summation of cell values covered
by circular buffers of radii between 25 and 5000 metres was area-wide calculated in Python using the
multiprocessing, PCRaster22 and NumPy28 modules. Depending on the size of the buffers the predictor
maps were either calculated on a standard Linux workstation (40 cores Intel Xeon E5-2650, 128 Gb
memory; buffers smaller than 1000 metres) or on the Dutch national supercomputer ‘Cartesius’ (buffers
with 1000 and 5000 m radii).

For the inverse distances to road networks we calculated for each cell the distance of the cell centre
coordinate to the nearest road using the Distance function from the GDAL/OGR module, and assigned
the inverse distance as raster cell value.

The four regional background estimators were calculated by inverse distance weighting interpolation
using air pollution measurements from 20 stations for nitrogen oxides and 10 stations for particulate
matter. We first created raster maps with values at station locations and used these as arguments for the
inversedistance function from PCRaster, with a radius of 100 km.

Implementation and calculation of the LUR models
With each of the predictor variables available as individual raster file the LUR models can be
implemented to compute the air pollution concentration maps. A PCRaster Python script illustrating
the calculation of a LUR model is shown in Box 1. PCRaster provides a broad set of operations based on
the map algebra and cartographic modelling concept29; these geospatial operations are available after
importing the module of the same name. The required predictor variables are read from disk using the
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corresponding filenames by readmap operations (lines 4–6) and each assigned to new variables. These
variables become thereby spatial data types that essentially hold information on geographic extent and
discretisation, and two-dimensional arrays for the raster cell values. The LUR model for PM10 (see
Table 1) itself is implemented in line 9. The arithmetic operators of the equation are executed for each
raster cell, an approach comparable to other array programming languages. The resulting concentration
values are then stored to a new geospatial dataset on disk (line 12). The five other LUR models are
calculated in the same way.

Examples for the resulting maps are shown in Fig. 1, illustrating the spatial pattern of air pollution
concentration on national and municipality scale. Figure 2 shows the concentration values for a North-
South transect through the municipality of Utrecht. The models include several small scale traffic
predictors including inverse distance to roads that explain the gradient near roads. The increased
concentration near intersections is due to higher 50 meter traffic buffers.

Code availability
The PCRaster software package used to calculate the ESCAPE Land Use Regression models is open-
source and can be executed on Linux, Windows and macOS. The PCRaster source code is available on
GitHub (https://github.com/pcraster/pcraster/). Links to release packages for Windows, build instruc-
tions for Unices, reference documentation, online courses and information on research projects can be
found at the project website (http://www.pcraster.eu). PCRaster version 4.2 is required to execute the
models due to several recent code improvements for handling large datasets.

Additionally, Python (http://www.python.org/) version 2.7 (or 3.6) with the NumPy module28 version
1.7 (or higher) are required to calculate the land use regression models. The Geospatial Data Abstraction
Library (GDAL, http://www.gdal.org/) version 2.2.4 (or higher) is required to execute the scripts that
rasterise vector datasets, and to execute the scripts performing the distance to road calculations.

Data Records
We provide the air pollution concentration maps resulting from the six LUR models, the Python scripts
for data preprocessing, and the LUR model calculation. All content is included in a compressed file
nl_apc.7z available through the public Zenodo repository (Data Citation 1).

Each concentration map is provided as individual file in the PCRaster binary file format. The PCRaster
binary file format can be processed and visualised with the Aguila software30, which is included in
the PCRaster package, common GIS applications such as ArcMap (http://www.esri.com/) or QGIS
(http://qgis.osgeo.org), or converted to other raster formats or resampled to other grid cell sizes using the
GDAL tools (http://www.gdal.org/) for further processing.

The maps cover the entire Netherlands with a 5 × 5 m grid cell size (63500 rows, 54800 columns). The
ESCAPE source datasets and the resulting raster datasets use the ‘Amersfoort/RD New’ (EPSG:28992)
coordinate reference system. Concentration values for NO2, NO2background, NOx, PM2.5 and PM10 are
given in μg m−3, concentration values for PM2.5absorbance are given in 10−5 m−1. The cell values represent
average concentration values for the year 2009.

In addition to the spatial datasets we provide the Python scripts for the LUR model calculation and
preprocessing of the predictor variables. The Python script lur_models.py performs the calculation of the
land use regression models. The script calculate_buffer.py was used to aggregate cell values using circular
buffers of various radii. The calculate_distance.py script performed the distance calculations to road
networks. The generate_landuse.py script was used to generate predictor variables from the CORINE
dataset. The regional background estimates were calculated with the generate_regest.py script, population

Box 1 | Python script showing the fundamental steps to calculate the LUR models, here exemplary for PM10.

The preprocessed predictor variables are read from disk, the LUR model is calculated and the resulting air pollution concentration map is stored. Operations
specific to PCRaster are marked in blue.
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densities were calculated with the generate_population.py script. Configuration settings valid for all
scripts are specified in settings.py.

Technical Validation
Validation of the raster-based approach
We first calculated the predictor variables and LUR models on a small set of locations to evaluate whether
the resulting concentration values obtained in a raster-based modelling approach are in agreement with
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Figure 1. Air pollution concentration maps for the entire Netherlands with the box in the centre showing

the municipality of Utrecht (left) and detailed maps for the municipality of Utrecht (right). The panels

show concentrations for NO2 (a), NOx (b) and PM10 (c).
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the results obtained from the LUR models calculated using a vector-based approach. We used 8000 front
door locations in the province of Utrecht, an area of about 66 × 59 km2. The locations were obtained from
a cohort dataset previously used in the ESCAPE project.

Table 2 shows comparative statistics between the vector-based and raster-based approaches. Model
results and measurements are compared in terms of the coefficient of determination (r2), the root mean
square error

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

oi -mið Þ2
vuut ; ð1Þ

and the bias

Bias ¼ 1
N

XN
i¼1

oi -mið Þ; ð2Þ

with oi the observed and and mi the modelled value for location i, and N the number of locations
(N= 8000).

Overall, there is a high agreement between values obtained from the newly calculated raster maps and
the previously calculated concentrations, with most of the predictor variables resulting in r2 values above
0.9, and the air pollution concentration maps with r2 values above 0.98. Small deviations were expected
due to the grid representation of the spatial domain, as each possible location within a raster cell obtains
the value of the 5 m2 area.

The results of the comparison show that in general the chosen 5 m2 grid is appropriate to represent
distance related attributes for the ESCAPE LUR models. In a following step, the raster-based approach
was therefore applied to calculate concentration maps covering the entire Netherlands.

Independent validation of the datasets
We used additional datasets with measured concentrations to assess the nation-wide datasets. The
corresponding scatterplots are shown in Fig. 3 and the statistics are shown in Table 3.

The first dataset we used included monitoring data from the RUPIOH study19 (Relationship between
ultrafine and fine particulate matter in indoor and outdoor air and respiratory health). Measurements of
PM2.5, PM10 and PM2.5absorbance were made at 48 locations spread over the city of Amsterdam between
October 2002 and March 2004. Measurements were made directly outside the home, e. g. at balconies or
in gardens, where feasible. The number of homes located at major roads and background sites was
approximately equal. Annual average concentrations per site were calculated using data from a central
reference site. The same measurement methods were applied as in the ESCAPE study used to develop the
LUR models. We used this dataset because of the detailed spatial coverage of one city. NO2 was not
measured in this study.

The LUR model predictions of the nation-wide dataset were moderately correlated with measured
values and significantly underpredicted the measurements. Correlation was better for the component
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with more fine scale spatial variability (PM2.5absorbance). The low validation r2 for PM2.5 and PM10 in the
Amsterdam validation dataset are likely due to the application of a national LUR model to a single city
and to the modest spatial variation of PM within a city. Consistently, the validation r2 for PM10 was much
higher (0.57 vs 0.22) in the national validation dataset (LML). The difference in validation raises concern
with application of the model in a single city for PM10 and PM2.5. We further note that the validation
dataset refers to 2002–2004 and the model was developed primarily based on measurements in 2009.
There is also a downward air pollution trend in the Netherlands31, contributing to the lower estimates of
the model compared to the measurements.

The second dataset involved measurements of NO2 made in the framework of the TRACHEA study
(Traffic Related Air pollution and Children’s respiratory HEalth and Allergies20). Measurements were
made simultaneously at 144 sites spread over the Netherlands using the same passive samplers as used in
the ESCAPE study. Measurements were made during four 1-week periods spread over the seasons in
2007. Annual average concentration for 2007 was calculated.

Our NO2 LUR model predictions correlated well with the TRACHEA measurements. The large
variability in concentrations makes it easier to compare model predictions with measured values. The
agreement is affected by both small scale variation (traffic versus background) and regional variation.

We also used the nation-wide dataset provided from the Dutch Air Quality Monitoring Network
(https://www.lml.rivm.nl/). Hourly measurements of NO2 and PM10 concentrations are recorded by the
LML, which is maintained by the National Institute for Public Health and the Environment (https://www.
rivm.nl/en/). There are four location types: urban, rural, traffic and industry. During the ESCAPE period
from October, 1st 2008 to April, 1st 201115, 49 stations provide measurement data. We excluded stations
with more than 20% missing values in the data, resulting in 45 stations for NO2 and 38 stations for PM10.
The NO2 and PM10 concentration are then averaged per measurement station over the ESCAPE period.

For the LML dataset we obtain an r2 of 0.85 for NO2, and an r2 of 0.57 for PM10. The lower correlation
with measurements for PM10 compared to NO2 is due to the absence of a regional component in the
ESCAPE model for PM10 (in contrast to PM2.5, NO2, PM2.5absorbance). In the international ESCAPE study,
it was first attempted to explain measured variability by including small and large scale GIS variables and
only then added regional variables to explain remaining variability. In the case of PM10, large scale

Variable (units) Buffer size (m) r2 RMSE Bias

NO2 (μg m−3) n/a 0.98 1.37 1.05

NOx (μg m−3) n/a 0.98 1.9 1.13

PM2.5 (μg m−3) n/a 0.99 0.034 6.3e-3

PM2.5absorbance (10
−5 m−1) n/a 0.98 0.043 2.9e-2

PM10 (μg m−3) n/a 0.99 0.041 9.2e-3

TL (vehicles day−1 m) 500 0.95 1.24e7 8.43e6

RL (m) 1000 0.99 7.81e3 6773.61

HTL (vehicles day−1 m) 25 0.93 1731.53 396.77

50 0.97 7111.19 2368.91

500 0.98 5.94e5 −3.73e5

IND (m2) 5000 1.0 7.56e4 −7859.48

HAR (m2) 5000 1.0 3151.88 −42.71

POP (inhabitants m−2) 1000 1.0 14.25 −5.57

5000 1.0 913.69 88.49

TML (vehicles day−1 m) 1000 0.99 3.89e6 1.59e6

RES (m2) 5000 0.99 2.42e5 −1.17e5

IDC (m−1) n/a 0.85 0.026 4.3e-4

IDM (m−1) n/a 0.91 4.1e-3 4.5e-5

BEO (μg m−3) n/a 1.0 0.06 −0.06

BEX (μg m−3) n/a 1.0 0.11 −0.1

BEP (μg m−3) n/a 1.0 1e-4 5e-5

BEA (10−5 m−1) n/a 1.0 4.64e-7 −7e-6

Table 2. Statistics of the modelled air pollution concentrations and predictor variables for 8000
house address locations in the province of Utrecht resulting from the comparison of the vector-based
and raster-based modelling approaches. Units of RMSE and Bias are the same as the corresponding
variable, their calculations according to Equations 1 and 2.
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population density entered the model, after which the regional background was no longer significant. For
rural populations, the consequence may be that exposure contrast across the Netherlands is
underestimated. Furthermore, the ESCAPE project did not include measurements specifically in
intensive livestock rich areas and did not include GIS data representing farming emissions.

Usage Notes
The six raster datasets presented can be opened, processed and visualised with the open-source PCRaster
package. Any application making use of recent versions of the GDAL libraries can visualise or process the
datasets for further statistical analysis, for example GIS applications like ArcMap (http://www.esri.com/)
or QGIS (http://qgis.osgeo.org), or statistical software such as R (http://www.R-project.org). To reduce
the data volume and allow for easier data handling, e.g. in local or regional studies, the datasets can be
cropped or resampled by PCRaster, or converted to other raster formats by the GDAL tools.

The large file sizes of our datasets impose hardware requirements that may exceed present-day
standard desktop computers. To allow for enriching cohort data with a subset of the air pollution maps,
we also developed a web service facilitating access to various spatially aggregated derivatives of our raster
maps. This functionality is demonstrated by the GGHDC exposure web portal (https://gghdc.geo.uu.nl/).

With our air pollution concentration map, several health research applications are feasible to
investigate exposure-response relationships. The datasets can be used to extract concentration estimates
for any coordinate in the Netherlands and arbitrary cohort sizes. In recent national health studies, for
instance, associations between air pollution concentrations and smoking habits, alcohol consumption,
physical activity and body mass index were investigated for 387 195 adults21 or to diabetes prevalence of
289 703 adults6.

Spatially fully distributed datasets also allow for a better representation and consequently
incorporation of individual mobility patterns. By integrating road networks or GPS tracks and air
pollution concentration maps, exposure along travel routes can be estimated. Alternatively, routes with
minimal exposure can be calculated to suggest the healthiest routes for travel. Spatial aggregations using
buffer sizes or administrative areas can be calculated to estimate exposure for persons with approximately
known residence locations or movement patterns. As an additional dataset, the PMcoarse concentration
can be calculated as difference between the PM10 and PM2.5 maps.

We are not able to provide the source datasets used to generate the predictor variables. However, the
presented land use regression modelling approach is generic (e.g.7,11,13,14) and can be applied using other
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data sources as well. The Corine land cover data can be downloaded (https://land.copernicus.eu/pan-
european/corine-land-cover). Predictor variables holding distance to nearest roads and road lengths
could be calculated using OpenStreetmap datasets, e.g. provided by Geofabrik (http://download.geofabrik.
de/). For traffic intensity based predictors, estimates based on a road type classification could be used. As
the traffic intensity predictor variable received high weights in the Dutch LUR models, however,
measurements might be preferable for this type of variables.

Our model included predictors starting from 25m buffer sizes. We did not have very local predictor
variables with the exception of inverse distance to roads. Our 5 × 5 m estimates will therefore only
gradually change with distance to traffic sources and should not be used to reflect very fine scale
differences. The data can therefore not be used to interpret the absolute value of the concentration at a
specific location, e.g. a specific home or school address. The models have been developed to characterise
exposure contrast to be applied in research. The models include the main factors that explain spatial
variation of air pollution, but individual locations may have deviating concentrations because of specific
local factors not included in the model such as being in a narrow street canyon, stop-and-go traffic with
higher emissions related to proximity to a traffic light or an exceptionally high fraction of old diesel cars.
The concentrations should also not be compared strictly with air quality limit values. The monitoring
instruments used to develop the ESCAPE LUR models were not formal reference instruments, though the
difference with references instruments is limited. The models include main sources of air pollution with
typically generic predictor variables. The models have not been developed to incorporate specific
(industrial) point sources in a specific location. Monitoring in ESCAPE focused on residential addresses
and as a consequence the models are less reliable in predicting on-road concentrations.

The reader should also notice that the values represent average values over the year 2009. The data set
can be used for epidemiological studies that require estimates of personal exposures for other years or
aggregated over multiple years (preferably in the range +/− 10 years relative to 2009) as yearly mean
values do not change considerably, but studies that use our dataset should take into account that there has
been and continues to be a downward trend in concentrations while patterns in air pollution may change
as a result of road construction or changes in traffic density on roads. The LUR models were developed
with the intention to estimate long term exposure, the maps are therefore less suitable to estimate short
term variation of air pollution concentrations. The ESCAPE project did not include measurements
specifically in intensive livestock rich areas and did not include GIS data representing farming emissions.
The model should therefore not be used to represent spatial variation related to farming emissions within
local study areas. Concentration values in industrial areas might be underestimated as the Corine dataset
does not distinguish between the types of industry. In addition, predictor variables with large buffer sizes
are underestimated at the border zones as not all data in the neighbouring countries were available.
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