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A B S T R A C T   

Despite ongoing safety efforts, construction sites experience a concerningly high accident rate. 
Notwithstanding that policies and research to reduce the risk of accidents in the construction 
industry have been active for a long time, the accident rate in the construction industry is 
considerably higher than in other industries. This trend may likely be further exacerbated by the 
rapid growth of large-scale construction projects driven by urban population expansion. Conse
quently, accurately predicting recovery periods of accidents at construction sites in advance and 
proactively investing in measures to mitigate them is critical for efficiently managing construction 
projects. Therefore, the purpose of this study is to propose a framework for developing accident 
prediction models based on the Deep Neural Network (DNN) algorithm according to the scale of 
the construction site. This study suggests DNN models and applies the DNN for each construction 
site scale to predict accident recovery periods. The model performance and accuracy were 
evaluated using mean absolute error (MAE) and root-mean-square error (RMSE) and compared 
with the widely used multiple regression analysis model. As a result of model comparison, the 
DNN models showed a lower prediction error rate than the regression analysis models for both 
small-to-medium and large construction sites. The findings and framework of this study can be 
applied as the opening stage of accident risk assessment using deep learning techniques, and the 
introduction of deep learning technology to safety management according to the scale of the 
construction site is provided as a guideline.   

1. Introduction 

As a 3D industry, the construction industry is often associated with a perception that it experiences a higher frequency of accidents 
compared to other industries. According to the status of occupational accidents in 2021 reported by the Korea Labor Administration,1 

the number of injured (injured, dead, or sick due to occupational accidents or diseases) occurred in the order: other businesses (37 %) 
> manufacturing (25.8 %) > the construction industries (24.4 %). However, the number of deaths occurred in the order: the con
struction industry (26.5 %) > manufacturing industry (24.6 %) > other businesses (22.2 %), demonstrating that the construction 
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industry shows a higher severity of disasters than other industries. The main causes of accidents in the construction industry were 
various, such as collapse, jamming, crushing, being hit by objects, overturning, and bumping. In particular, it was reported that the 
highest number of deaths in the construction industry occurred in workplaces with fewer than five employees (231 people). Analysis of 
the number of accident victims (the total number of injuries and deaths caused by occupational accidents) shows a similar trend to the 
number of casualties. The number of accident victims was high in other businesses (38.9 %), construction (26.3 %), and manufacturing 
industries (23.7 %). However, the accident fatalities were found in construction (50.4 %), manufacturing (22.2 %), and other busi
nesses (14.9 %). The death toll in the construction industry was 2.3 times higher than that in the manufacturing industry, which had 
the second highest rate possible. 

As shown in the previous statistics, the construction industry is exposed to more safety accidents than other industries due to the 
nature of the industry [1− 5,[1]]. To summarize some of these characteristics, first, in the work environment, the construction industry 
is directly exposed to the external environment due to the specificity of the work environment and thus is greatly affected by outdoor 
work, weather, and topography. In addition, the work has many risks, such as the repetitive assembly and dismantling of temporary 
structures and the handling of many construction machines and heavy objects [2]. Second, in the internal environment of the con
struction industry, the inequity and unilateral nature of the construction contract, such as the low construction price according to the 
lowest bid schedule, the construction order period, and the lack of a construction period, make the construction industry vulnerable to 
safety accidents [3,4]. Third, there is a change in the technological environment due to the rapid influx of new technologies and new 
construction methods introduced in the construction industry due to the high-rise complex of buildings, construction in the city center, 
etc. Thus, insufficient safety measures, cost-cutting, shortened construction periods, and neglect of safety considerations contribute to 
increased accidents in the construction industry [5]. The transient nature of construction work, insecure employment, and limited 
safety education opportunities lead to a lack of safety awareness among workers [3,6]. Factors such as long, unpredictable working 
hours and fatigue from continuous work further exacerbate safety concerns. Additionally, challenges such as an aging workforce and 
the influx of foreign workers hinder the development of a safety culture in the construction industry. These factors collectively elevate 
the risk of accidents in construction compared to other industries. Consequently, this study addresses the heightened risk of accidents 
in the construction industry, particularly emphasizing the significance of construction site scale. Recent data from the Korea Labor 
Administration highlights the high incidence of accidents in the construction industry, revealing an alarming situation where the 
number of casualties is disproportionately higher in small- and medium-sized construction sites compared to large construction sites. 
These small- and medium-sized construction sites often lack adequate safety management structures, leading to an increased accident 
rate. This alarming situation of construction sites at different scales necessitates a focused investigation into the contributing factors. 
While existing research has made progress in safety management, there remains a critical gap in tailored models that account for the 
unique challenges faced by construction sites of varying sizes. Therefore, there is an urgent requirement to study the prevention of 
accidents at construction sites by analyzing problems in the construction industry and deriving improvement plans to reduce accidents 
in that industry. The present study aims to fill this gap by proposing a model leveraging advanced deep learning techniques to predict 
and analyze recovery periods (i.e., the total number of treatment days due to accidents) of accident occurrences, considering the 
distinct characteristics of the construction site scale. The ultimate goal is not only to advance our understanding of these risks but to 
significantly contribute to reducing accidents within the construction sector, specifically emphasizing enhancing safety measures for 
small- and medium-sized construction projects. 

2. Background of the study and literature review 

2.1. Background of the study 

In many studies, small-to-medium-sized construction sites are considered as a major cause of accidents at construction sites. Table 1 
shows the number of accidents by construction site size that occurred between 2017 and 2020, according to the Korean National 
Statistical Office in 2020.2 Although the number of accident victims by year is slightly different, it can be seen that 85− 90 % of the 
number of casualties occur in small-to-medium-sized sites, while the rest occur in large-scale sites. Thus, most casualties occur in small- 
to-medium-sized construction sites. 

Furthermore, Table 2 shows that the casualty rate by construction size was 6.02 % for small-to-medium-scale construction sites and 
2.2 % for large construction sites, indicating that the casualty rate in small-to-medium-sized construction sites is about 3.82 times 
higher. This clearly confirms that the number of accidents and the accident rate are significantly greater in small-to-medium-sized 
construction sites than in large construction sites. 

As the previous statistical data shows, small-to-medium-sized construction sites are more vulnerable to accidents than large 
construction sites. The reasons can be summarized as follows. First, compared to large-scale construction sites (construction costs more 
than 12 billion KRW), small-to-medium-sized construction sites (construction costs less than 12 billion KRW) are relatively lacking in 
safety management organization and technical systems. In particular, under the current safety management system, small- and 
medium-sized construction sites are classified as worksites that are subject to technical guidance by an accident prevention expert 
guidance organization, while large construction sites are classified as worksites that are subject to the appointment of safety managers. 
In other words, small- and medium-sized construction sites with a construction cost of less than 12 billion KRW are not obliged to 

2 https://kosis.kr/statHtml/statHtml.do?orgId=118&tblId=DT_118006_001&vw_cd=MT_ZTITLE&list_id=C_14_001&seqNo=&lang_ 
mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE (accessed July 20th, 2022). 

J.-M. Kim et al.                                                                                                                                                                                                        

https://kosis.kr/statHtml/statHtml.do?orgId=118&amp;tblId=DT_118006_001&amp;vw_cd=MT_ZTITLE&amp;list_id=C_14_001&amp;seqNo=&amp;lang_mode=ko&amp;language=kor&amp;obj_var_id=&amp;itm_id=&amp;conn_path=MT_ZTITLE
https://kosis.kr/statHtml/statHtml.do?orgId=118&amp;tblId=DT_118006_001&amp;vw_cd=MT_ZTITLE&amp;list_id=C_14_001&amp;seqNo=&amp;lang_mode=ko&amp;language=kor&amp;obj_var_id=&amp;itm_id=&amp;conn_path=MT_ZTITLE


Heliyon 10 (2024) e32215

3

appoint a safety manager. This shows that the absence of a safety management organization has a significant impact, as the number of 
accidents occurring at construction sites with the cost of less than 12 billion KRW, which sites are subject to technical guidance by an 
accident prevention expert guidance organization, is much higher than that at sites subject to the appointment of safety managers. The 
absence of an on-site safety organization leads to non-implementation of safety training, non-compliance with basic safety rules, and 
prior safety inspection, which raise the incidence of accidents [7–9]. Second, small- and medium-sized construction sites are fairly 
economically coarse compared to large-scale construction sites. Small- and medium-sized construction sites often have shorter con
struction periods and lower construction costs, prioritizing efficiency and speed, which can contribute to a higher incidence of ac
cidents. Moreover, this economic inferiority leads to insufficient, or avoidance of, investment in safety, deteriorating the work 
environment of small- and medium-sized construction sites. In addition, safety management for accident prevention is insufficient 
since the investment necessary for safety, such as specialized technology, equipment, and functions related to safety, is not well made. 
Furthermore, the short construction period of small- and medium-sized construction sites makes it difficult to understand the con
struction status, making it challenging to invest in improving the construction environment [10,11]. Third, these sites lie in the blind 
spot of safety management through policy support and institutional regulation of small- and medium-sized construction sites. For 
example, the Severe Accident Punishment Act, which was enforced in 2022 to broaden the scope and subject of safety and health 
obligations and significantly strengthen the severity of punishment, excludes small-scale construction sites (i.e., less than five full-time 
workers). In addition, small-scale construction companies (outside the top 1000 in construction capacity) have no disadvantage in 
bidding even in the event of an accident, so the safety and health awareness of business owners and other managers is unsatisfactory, 
and they are working formally on the use of occupational safety and health management expenses [7,11,12]. 

2.2. Review of construction site disaster risk analysis and construction risk quantification model 

Despite various efforts to prevent accidents in the construction industry, accidents are becoming more numerous and are centered 
on small- and medium-sized sites. Thus, it is impossible to moderate the total number of accidents in the construction industry without 
reducing safety accidents at small- and medium-sized construction sites [10]. To minimize accidents effectively, proactive investments 
in risk reduction are crucial. This necessitates the use of advanced predictive models to identify and mitigate potential accident risks, 
making them an essential component of safety measures. This accident risk prediction can be utilized to prevent and reduce accident 
risk by identifying the types and amounts of accidents that can occur, eventually ensuring the continuity of the construction project 
and affecting the increase in profits. These measures can further underwrite the reduction of accidents in the construction industry. 
Nevertheless, as discussed above, although small and large construction sites have marked differences in characteristics, studies and 
models for quantifying construction accident risk considering these differences are deficient. 

The accident risk analysis of a construction project manages potential risks at the construction site by preventing and dropping risks 
in advance and finally decreases the risk of accidents. This can eventually lead to a successful project by reducing the risk of accidents. 
Additionally, prediction through accident risk analysis can be adopted as a yardstick for strategically allocating and executing limited 
resources in a construction project commendably [13,14]. Consequently, sophisticated accident risk analysis is crucial for fruitful and 
sustainable construction projects. The reason is that, in accident risk assessment, the opinions or experiences of experts, engineers, and 
clients are often utilized, and subjective indicators that are problematic to index, other than opinions or experiences, are included in 
accident risk assessment [15,16]. For example, qualitative methodologies, such as surveys or checklists based on construction-related 
experts’ or engineers’ knowledge and experience, are repeatedly used for accident risk [17]. The reason is that to use a quantitative 
methodology, securing reliable data is the most significant factor, but due to the limitation of collecting reliable data, a qualitative 
methodology is sometimes forced in the construction industry [18,19]. Furthermore, there are hitches in quantitative analysis due to 
the influence of various indicators due to the specificity and complexity of the construction site [3]. This is because the construction 
industry has numerous external work processes, and since a number of specialized companies for each process work within a short 

Table 1 
Number of accidents by construction scale over the period from 2017 to 2020.  

Construction Scale 2017 2018 2019 2020 

Number of casualties (%) Number of casualties (%) Number of casualties (%) Number of casualties (%) 

Medium & small 46,817 (89.4 %) 52,114 (87.6 %) 57,523 (85.7 %) 72,063 (85.5 %) 
Large 4947 (10.6 %) 7364 (12.4 %) 9624 (14.3 %) 10,447 (14.5 %)  

Table 2 
Casualties rate by construction scale.  

Size of Company Total number of employeesa Number of casualtiesb Casualty ratec 

Medium & small 1,197,564 (71.7 %) 72,063 (85.5 %) 6.02 % 
Large 473,834 (28.3 %) 10,447 (14.5 %) 2.2 %  

a Total number of construction workers in 2020, according to Statistics Korea. 
b Number of casualties in the construction industry as of 2020, according to Statistics Korea. 
c Total number of casualties/number of employees. 
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construction period within a fixed place, the construction industry is unprotected from countless and compound risk indicators, 
resulting in extraordinary uncertainty [20,21]. Thus, reliable data collection and aggregation are essential to advance and refine the 
accident risk analysis of construction sites, and dependable and advanced analysis techniques are prerequisites for scientific and 
quantitative data analysis. Although active investment, policies, and systems have been enhanced and introduced to reduce accidents 
in the construction industry for decades, the number of accidents in the construction industry is still extraordinarily associated with 
other industries; every year, a lot of the budget is spent on accident treatment [22,23]. 

In the previous study, for scientific and quantitative analysis of accidents at construction sites, there were many studies to advance 
accident analysis and increase efficiency through research, such as identifying, analyzing, and evaluating accident risk factors. For 
example, Cabello et al. [23] analyzed construction accident data through data mining to analyze patterns and factors for each con
struction process. They analyzed the accident data accumulated in the database and subdivided the accident investigation for each 
stage of construction. Their study delivered a framework for construction workers to advance accident prevention measures, accident 
action plans, and risk management. Martinez-Rojas et al. [24] built an IoT infrastructure and an open-source library to support 
accident-related decision-making by construction personnel. IoT can be used at all stages of the life cycle of a construction project, not 
just on the construction site, to improve accident-related data collection and information management. These measures contributed to 
real-time decision-making ability for efficient and active disaster risk management. In addition, an integrated safety environment 
framework for gathering and analyzing quantitative and qualitative data was proposed to improve accident safety performance in the 
construction industry [25]. In this study, quantitative data, as well as qualitative data (unsafe communication, work conditions, 
cognitive conflict between logic, cost tradeoff, etc.), were combined to advance the assessment of the accident risk and safety envi
ronment at the construction site. Allison et al. [22] presented a method of calculating the cost of an accident through an ex-post 
approach to governing the average cost of an accident for the quantitative assessment of an accident. When the volatility and 

Fig. 1. Flow chart of the proposed DNN model with its different phases.  
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uncertainty of accidents are considered, the cost estimate and variability are enormous, depending on the nature of the accident [22]. 
Betsis et al. [26] created a database of accidents occurring in construction work and analyzed potential accident trends, stipulating 
correlations between various parameters. Through this study, the associations between various accidents were identified; conse
quently, an improvement plan for accident risk reduction was suggested. 

As seen in the previous studies, analysis methods and frameworks for effective safety management have been proposed by iden
tifying and evaluating risk indicators through the analysis of construction accident data in many existing studies. Nevertheless, despite 
these many studies, the accident rate in the construction industry is still great compared to that in other industries, and continuous 
research and efforts to improve that rate are immediately compulsory. As an extension of these efforts, this study recommends a model 
for predicting accident recovery periods (i.e., number of treatment days) at construction sites according to the scale of the construction 
site by applying deep learning techniques. Deep learning techniques can have more complex structures than other artificial intelligence 
techniques, such as fuzzy logic and machine learning, so they can quickly and precisely process more multifaceted and outsized 
amounts of data [27]. This technique can be actively adopted to analyze the massive quantity of big data produced and accumulated by 
unmanned aerial vehicles, IoT, sensors, CCTVs, etc., which are promptly being implemented at construction sites in recent years, and is 
expected to contribute to reducing the risk of accidents at construction sites [28–30]. Hence, this study proposes a method for accident 
analysis by predicting recovery periods of accidents at construction sites that consider the characteristics of construction site scale 
using deep learning algorithms. 

3. Data and methodology 

The ultimate goal of this study is to present a framework for predicting accident recovery periods by construction site size using 
deep learning algorithms. The detailed aims are as follows: First, accident cases and indicators occurring at the construction site are 
collected and classified by the scale of the site. Second, deep learning algorithm models are generated grounded on the collected data. 
The deep learning models were developed using Python 3.8. Third, to verify the deep learning models, the prediction results are 
compared with the multiple regression analysis models. The multiple regression model is a technique mainly used in the development 
of existing predictive models, and it was introduced for error and validation of deep learning models. Multiple regression models were 
developed using IBM Statistical Package for the Social Sciences (SPSS) V23. The prediction results (i.e., mean absolute error (MAE) and 
root mean squared error (RMSE)) of the deep learning algorithm models and the multiple regression analysis models were calculated 
and paralleled individually. Fig. 1 depicts the overall framework of the proposed DNN model with its different phases. 

Table 3 
Variable description and numerical assignment of variables.  

Variable Descriptions Unit 

Output Accident recovery 
periods 

Total number of treatment days due to accident Numeric 

Input Time of accident Time zone at the time of the accident 
Morning (6− 12), afternoon (13− 18), evening and night (18− 24), dawn 
(0− 6) 

Nominal 
1. Dawn 
2. Evening and night 
3. Afternoon 
4. Morning 

Day of the accident Day of the week when the accident occurred Nominal 
1. Monday 
2. Tuesday 
3. Sunday 
4. Wednesday 
5. Friday 
6. Saturday 
7. Thursday 

Classification of 
Occupations 

Classification according to the Korean Standard Occupational Classification Nominal 
1. Equipment, machine operator and 
assembly worker 
2. Professionals and related workers 
3. Craft and related trades workers 
4. Manager 
5. Elementary workers 

Nationality of the 
accident 

Classification of migrant workers and non-migrant workers by nationality of 
the accident 

Nominal 
0. non-migrant worker 
1. Migrant worker 

Status of employment Classified into regular and non-regular workers according to the 
employment status of the accident 

Nominal 
0. irregular worker 
1. regular worker 

Employee number Total number of employees at the accident site Numeric 
Construction progress Construction progress at the time of the accident (%) Numeric  
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3.1. Data collection 

In this study, deep learning models were developed based on accident cases that occurred at Korean construction sites from 2010 to 
2020. Accident cases were collected from the Korea Occupational Safety and Health Agency (KOSHA). The reason this study selected 
KOSHA data is the high consistency of the data. KOSHA is a government institution established in 1987 in accordance with the Korea 
Occupational Safety and Health Agency Act to support employers in preventing accidents and to help workers work safely and 
healthily. Also, among many of KOSHA’s representative tasks, such as disaster-related R&D, safety education, and prevention tech
nology dissemination, the data is extremely dependable because it contains electronic data conversion through accident counting by 
industrialists [31]. 

The present study incorporated several input variables (i.e., time of the accident, employee number, occupational classification, 
nationality of the individuals involved in the accident, employment status, day of the accident, and the progress of construction at the 
site) identified through previous research as risk indicators associated with construction site accidents [1, 3, 5, 29− 31]. Additionally, 
accident type classification, accident details, accident date and time, and total number of hospitalization days due to the accident were 
involved. Among them, the number of treatment days (i.e., the total number of treatment days due to accidents) was used as an output 
variable to compute the severity of accidents and fatal accidents were excluded for uniformity of cases. The input and output variable 
was obtained from the KOSHA dataset. A log transformation was applied to ensure a more normal distribution of the data. Here, we 
focus solely on non-fatal injuries, despite the significant occurrence of fatal accidents across different construction scales, including 
small and medium-sized industries, and aim to ensure uniformity and consistency in risk assessment. In general, small- and medium- 
sized construction sites are more unprotected from complex issues and several risk indicators, such as contract system, safety edu
cation, and the difficulty and complexity of work, indicating that uncertainty about the rate of fatal accidents is comparatively more 

Fig. 2. Data distribution and the relationship between the output variable and input variables of the small-to-medium construction sites: (a) 
construction progress, (b) employee number, (c) day of the accident, (d) time of the accident, (e) classification of occupations, (f) nationality of the 
accident, and (g) status of employment (Note: Even. & night – evening and night, PW- professionals and related workers, CTW- craft and related 
trades workers, EW- elementary workers). 
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significant than large construction sites. The list of input variables is illustrated in Table 3. The time of the accident and the day of the 
accident are extensively used indicators for accident risk measurement and evaluation, as they are affected by the concentration of 
workers, the difficulty of construction and the occurrence and severity of accidents. Each was entered as a nominal variable [3,32]. 
Classification of occupations, the accident’s nationality, and employment status are also statistically significantly related to accidents 
and are frequently applied as accident-related indicators [4,33]. For example, the nationality of the accident distinguished 
non-migrant workers from migrant workers. Non-migrant workers have longer careers and more opportunities for safety education 
than migrant workers; thus, they are less vulnerable to accidents. In addition, the employment status was divided into regular and 
non-regular workers since regular workers are less vulnerable to accidents than non-regular workers. Classification of occupations, the 
accident’s nationality, and employment status were all accepted as nominal variables. Employee number is often used to indicate the 
risk of accidents since the larger the construction site, the less vulnerable workers are to accidents because workers have opportunities 
for safety education and high-quality safety management by safety officers [4,34]. The variable was entered as a numeric variable. As 
for the construction progress, as the construction project progresses and various processes unfold, the construction site becomes more 
composite, and as many specialized construction companies are involved on-site, the risk of accidents increases. For this reason, the 
variable is broadly adopted as a risk index for accidents, and in this study, it was entered as a numeric variable [6]. After selecting input 
and target variables, data cleaning was done, which involved feature selection for predictive variables and outlier detection within 
instance values to ensure data integrity for accurate predictions. Additionally, data transformations are essential for maintaining 
consistency in deep learning models, including converting categorical variables to numerical form and ensuring that input data is 
numeric and normalized [35,36]. Chollet [37] also highlights that deep learning frameworks natively handle numerical data, making 
the numerical assignment of categorical variables a common preprocessing step for seamless integration into the model. Accordingly, 
the numerical assignment of categorical variables has been performed (Table 3). Further, the collected input and output variables were 
divided according to the size of the construction site into small- and medium-sized construction sites and large construction sites. The 

Fig. 3. Data distribution and the relationship between the output variable and input variables of the large construction sites: (a) construction 
progress, (b) employee number, (c) day of the accident, (d) time of the accident, (e) classification of occupations, (f) nationality of the accident, and 
(g) status of employment (Note: PW- professionals and related workers, CTW- craft and related trades workers, EW- elementary workers). 
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classification of construction site size was according to the Korea Occupational Safety and Health Act. This act classifies construction 
sites with a total construction cost of less than 2 billion won as small-sized, construction sites with a total construction cost of (2− 12) 
billion won as medium, and construction sites with a total construction cost of 12 billion won or more as large [7]. Through this, small- 
and medium-sized construction sites (construction sites with a total construction cost of less than KRW 12 billion) and large con
struction sites (construction sites with a total construction cost of more than KRW 12 billion) were separated. In the present study, a 
total of 3954 accident cases were gathered, and among them, 3647 small- and medium-sized sites and 307 large construction sites were 
classified according to size. 

Exploratory data analysis visually explores the link between accident severity and independent variables. Fig. 2 illustrates data 
distributions and the relationship between the output (i.e., average treatment days/recovery period) and input variables for small-to- 
medium construction sites. The relationship between construction progress and the average number of treatment days due to accidents 
is depicted in Fig. 2a. It reveals that early construction stages (0–20 % progress) result in higher average treatment days, suggesting 
heightened severity or extended recovery. Conversely, accidents during the intermediate construction stage (20–60 %) require fewer 
treatment days, indicating potential safety improvements as construction progresses. Similarly, accidents lead to shorter treatment 
durations in the final construction stages (80–100 % progress), possibly due to increased safety awareness as the project wraps up. In 
the case of employee numbers, the construction sites with less than 30 workers tend to have a higher average treatment duration 
following accidents, while construction sites with more than 50 workers exhibit shorter treatment periods, as depicted in Fig. 2b. It 
could be due to smaller construction teams encountering specific challenges or conditions leading to longer treatment periods, whereas 
larger construction teams may benefit from improved safety measures and quicker response, resulting in shorter treatments. 
Furthermore, accidents on weekends (Saturdays and Sundays) tend to result in longer treatment durations, while those at the 
beginning of weekdays (Mondays and Tuesdays) are associated with shorter treatment periods, as indicated in Fig. 2c. There is a slight 
increase in treatment times later in the week. This underscores the substantial influence of the accident day on severity and recovery 
times, possibly due to varying response dynamics and conditions during weekends versus weekdays. Moreover, morning and afternoon 
accidents lead to longer treatment days, whereas evening, night, and dawn accidents are linked to shorter durations (Fig. 2d). Fewer 
workers during dawn and evening-night shifts may contribute to these patterns, potentially affecting accident outcomes and response 
efficiency. Fig. 2e demonstrates that elementary workers undergo extended treatment durations following accidents, while pro
fessionals and related workers recover more quickly. Craft and related trades workers and managers fall in between. These disparities 
suggest that professionals and related workers are typically more safety-conscious and experienced, often in less physically demanding 
roles. In the case of the nationality of the accident, the migrant workers experience longer treatment durations after accidents, while 
non-migrant workers achieve shorter recoveries (Fig. 2f). Similarly, Fig. 2g shows irregular workers experience longer treatment 
durations after accidents, while regular workers recover more quickly. This may be because irregular workers often lack a sense of 

Fig. 4. The inter-relationship of the number of treatment days with employee number & construction progress for (a) small-medium construction 
sites and (b) large construction sites, while (c) & (d) represents the inter-relation of number of treatment days with classification of occupations & 
construction progress, respectively (note: PW– Professionals and related workers, CTW– Craft and related trades workers, EW– Elementary workers). 
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belonging to their current construction site and opportunities for safety education. 
Fig. 3 depicts the relationship between input and output variables for large construction sites. It was observed that the accidents 

tend to result in longer treatment durations during 80–90 % of the construction stages, with the highest number of accident cases 
observed (Fig. 3a). In terms of employee numbers, sites with fewer than 5 workers or more than 1000 workers exhibit longer average 
treatment durations following accidents, despite having fewer accident cases, as shown in Fig. 3b. Additionally, accidents occurring on 
Saturdays typically lead to longer treatment durations, while those on Mondays and Fridays are associated with shorter recovery 
periods, as illustrated in Fig. 3c. Moreover, accidents during morning and afternoon hours are linked to longer treatment days, whereas 
dawn accidents are associated with shorter durations (Fig. 3d). Notably, no accident cases are reported during the evening and night 
times for large construction sites. Furthermore, Fig. 3e highlights that professionals, craft workers, and related trade workers tend to 
undergo prolonged treatment durations following accidents, while elementary workers and managers recover more quickly. In terms 
of nationality, migrant workers experience longer treatment durations compared to non-migrant workers (Fig. 3f). Similarly, irregular 
workers experience longer treatment durations after accidents compared to regular workers, as depicted in Fig. 3g. The exploratory 
data analysis revealed that factors like time of accident, employee number, occupational classification, and construction progress all 
significantly impact recovery times for both small and large construction sites. Interestingly, nationality and employment status follow 
similar recovery patterns in both cases. Thus, understanding these trends is essential for optimizing safety protocols across all con
struction phases and ensuring worker well-being throughout the project lifecycle for both the small-to-medium and large construction 
sites. 

In the case of an accident that wasn’t life-threatening, the injured worker received medical care and took time off work. Therefore, 
the severity of the accident could affect the duration of workdays lost. Consequently, Fig. 4(a and b) exhibits the distribution of re
covery period (i.e., treatment days) due to accidents, taking into account the number of employees and construction progress for both 
the small-to-medium and large construction sites. The analysis revealed that small-to-medium construction sites with fewer than 50 
workers, especially during the construction progress phase between 20 % and 90 %, experienced longer treatment periods. Conversely, 
sites with more than 50 workers revealed fewer workdays lost throughout the entire construction process. On the other hand, it was 
observed that the recovery period throughout the construction process in large construction sites is less than in small-to-medium 
construction sites, irrespective of employee number. Fig. 4(c and d) highlights the variations in treatment days influenced by occu
pational classifications and construction progress in both construction sites, reflecting the nature of work and associated risk levels. 
Notably, in both cases, elementary workers and craft and related trades workers typically had longer treatment durations, while 
professionals and related workers consistently had shorter recovery periods throughout the construction process. The physical de
mands of jobs held by elementary and craft workers increased the likelihood of accidents with more severe injuries, resulting in longer 
treatment times. Interestingly, managers experienced shorter treatment periods throughout the construction progress compared to the 
other occupational classes. This interconnection is vital for refining safety protocols throughout construction projects. 

Furthermore, exploring the correlation between variables is captivating, particularly in identifying highly correlated variables. The 
degree of correlation among variables is quantified through Pearson’s correlation coefficient [35,38]. Upon thorough analysis of the 
correlation matrix, we observe a noteworthy correlation of 0.143 between work progress and the number of employees for the 
small-to-medium construction sites (Fig. 5a), while 0.16 between employee number and status of employment for the case of large 
construction sites (Fig. 5b). However, this correlation does not reach a level where the removal of either variable is warranted. 
Consequently, none of the variables are considered redundant, enabling us to advance to the next analysis and modeling phase. 
Additionally, data normalization is crucial for effective predictive deep-learning models [39]. This is particularly important for diverse 
datasets like construction accident data, where features can have significantly different measurement units. During training, features 
often span varying scales, leading high-range variables to dominate those with smaller ranges, adversely affecting predictions [35,36, 
40]. Therefore, data normalization aims to minimize bias, ensuring equitable feature contribution and enhancing pattern recognition 
by minimizing the influence of dominant features on the model’s overall performance. Consequently, the collected data went through a 
preprocessing process that normalized the data through z-score normalization. The z-score normalization was adopted considering the 

Fig. 5. Heatmap showing Pearson correlation matrix between each variable for (a) small-to-medium construction sites and (b) large construction 
sites (note: CP– Construction progress, EN– Employee number, NT– Nationality, OC– Occupations Classification, DA– Day of the accident, TA– Time 
of accident, ES– Status of employment). 
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diversity of construction accident cases and indicators since it adjusts the range of data using standard deviation and average and 
corrects for differences in different units and quantities [35,41]. Table 4 shows the descriptive statistics of input and output variables. 
The normalized data were indiscriminately separated into learning data (70 %) and test data (30 %). Among them, 30 % of the learning 
data was used as validation data. 

3.2. Framework of deep learning algorithm model 

This study employed a deep learning algorithm widely utilized for predictive and recognition tasks across diverse industrial do
mains to develop models. The deep learning algorithm comprises a neural network with several layers; subsequently, it can be applied 
to various data types and is extensively applied in innumerable industries [42]. For example, there are various models depending on 
the processing method, such as Deep Neural Network (DNN), Generative Adversarial Network (GAN), Recurrent Neural Network 
(RNN), Auto Encoder (AE), and Convolutional Neural Network (CNN). Among them, DNN is commonly applied for the prediction and 
classification of data with complex non-linear relationships, as multiple layers act to identify diverse specific functions [43]. Conse
quently, this study suggests a framework for developing accident prediction models according to the construction scale using DNN, 
considering the non-linearity of the accident data of the construction site [35,44,45]. To determine the optimal DNN model, the 
prediction error was estimated by comparison with the multiple regression analysis (MRA) models. The evaluation indicators of 
prediction error for artificial neural networks, known as MAE and RMSE, were calculated and contrasted individually [46]. The MAE 
calculates the difference between the actual and predicted values as an absolute value and averages them, while RMSE shows the 
residual as one measure. Therefore, the closer the MAE and RMSE are to 0, the higher the predictive power of the model. The detailed 
workflow and overview of the proposed DNN model with its different phases are depicted in Fig. 1. 

The DNN model implements an optimization model through a backpropagation algorithm that changes the weight of each neural 
network node. Thus, for the optimization model, it is compulsory to find the optimal network structure scenario and hyperparameter 
through trial-and-error methods [47]. To achieve an optimal model configuration, it is crucial to establish the appropriate number of 
nodes and layers in the network structure and set hyperparameters such as dropout rate, batch size, epoch count, choice of optimizer, 
and activation functions. Hyperparameters are parameters that control the learning process [48]. For example, dropout is a regula
rization penalty to solve the overfitting problem that causes poor performance of deep learning models. The batch size sets the data 
learning unit of the DNN model and affects the efficient training of the model. Epoch specifies the number of learning in the data 
learning process of the model, and the optimizer controls the model’s stability by governing the model’s data learning rate. The 
activation function specifies how to regulate the least-cost function [49]. To address the limitations of the available data and align with 
the network structure and hyperparameters used in related prior studies, we configured the model with three layers, and dropout was 
set to 0 or 0.2. Additionally, we set the batch size to 5 and conducted training for 1000 epochs [44− 47]. Optimizer announced an 
optimization algorithm called Adaptive Moment Estimation (Adam) using the moment theory of the stochastic objective function. The 
Adam Method has been accepted in numerous areas owing to the convenience of calculation and the diversity of applications [50]. As 
the activation function, the Rectified Linear Unit (ReLu) function established to supplement the sigmoid function was used [51]. The 
block diagram of DNN architecture, which includes input variables, hidden layers and output (number of treatment days, i.e., recovery 
period), is depicted in Fig. 6. 

4. Results and discussion 

4.1. Results 

Table 5 illustrates the variation in the number of nodes for simulation based on network structure and hyperparameters. It also 
presents the MAE and RMSE values corresponding to different construction scales (small- and medium-sized construction sites, large 
construction sites) and dropout rates. Among the scenarios, the scenario with the minimum MAE and RMSE values was designated as 
the final model. In the small- and medium-sized construction site model, the scenario generally had a larger loss function when the 
dropout was 0.2 than when the dropout was 0. Moreover, as the number of nodes increased, the MAE and RMSE values tended to 
decline, and when the numbers of nodes were 400− 400− 400, the MAE and RMSE values displayed the smallest values. On the other 

Table 4 
Descriptive statistics of variables.  

Variables Small- and Medium-sized construction site Large construction site 

N Min. Max. Mean Std. Devi-ation N Min. Max. Mean Std. Devi-ation 

Output aAccident recovery periods 3647 3.30 5.89 4.52 0.36 307 4.19 5.12 4.67 0.24 
Input Time of accident 3647 1.00 4.00 3.46 0.58 307 1.00 4.00 3.50 0.55 

Day of the accident 3647 1.00 7.00 3.99 2.05 307 1.00 7.00 4.14 2.07 
Classification of Occupations 3647 2.00 5.00 3.84 1.00 307 2.00 5.00 4.00 0.99 
Nationality of the accident 3647 0.00 1.00 0.05 0.22 307 0.00 1.00 0.11 0.32 
Status of employment 3647 0.00 1.00 0.94 0.23 307 0.00 1.00 0.96 0.19 
Employee number 3647 1.00 100.00 10.69 14.15 307 1.00 1000.00 163.16 159.87 
Construction progress 3647 1.00 100.00 50.61 27.04 307 20.00 100.00 63.02 21.89  

a Accident recovery periods, i.e., number of treatment days presented in log-transformed form. 
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hand, the large construction site model revealed that the loss function was larger when the dropout was 0.2 than when the dropout was 
0. Similarly, as the number of nodes grew, the MAE and RMSE values tended to minimize. When the number of nodes was 
700− 700− 700, the MAE and RMSE values showed the smallest values. Table 6 presents the optimized network structure and 
hyperparameters for the model used in small-to-medium-sized and large construction sites. 

To ensure the final model’s effectiveness with new data, we calculated MAE and RMSE values for both the test data and verification 
data. Table 7 presents the MAE and RMSE values for verification and test data in both the small- and medium-sized and large con
struction site models. Specifically, for the small- and medium-sized construction site model, the verification data yielded MAE and 

Fig. 6. The block diagram of DNN architecture.  

Table 5 
Learning results.  

Network Structure Scenario Small- and Medium-sized construction sites Large construction sites 

Dropout (0) Dropout (0.2) Dropout (0) Dropout (0.2) 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

5− 5− 5 0.332 0.389 0.342 0.401 0.282 0.335 0.368 0.444 
10− 10− 10 0.324 0.381 0.357 0.402 0.231 0.289 0.270 0.339 
25− 25− 25 0.317 0.374 0.324 0.384 0.257 0.320 0.283 0.349 
50− 50− 50 0.302 0.359 0.322 0.382 0.197 0.254 0.283 0.347 
75− 75− 75 0.291 0.354 0.315 0.374 0.199 0.254 0.254 0.318 
100− 100− 100 0.284 0.346 0.302 0.362 0.182 0.232 0.226 0.279 
200− 200− 200 0.266 0.335 0.297 0.356 0.158 0.204 0.216 0.267 
300− 300− 300 0.264 0.332 0.291 0.352 0.158 0.201 0.186 0.229 
400− 400− 400 0.263 0.331 0.285 0.345 0.126 0.167 0.193 0.249 
500− 500− 500 0.263 0.333 0.284 0.347 0.141 0.191 0.188 0.233 
600− 600− 600 0.266 0.334 0.289 0.354 0.134 0.181 0.198 0.253 
700− 700− 700 0.261 0.333 0.285 0.349 0.095 0.138 0.187 0.235 
800− 800− 800 0.268 0.334 0.285 0.349 0.109 0.162 0.152 0.188 
900− 900− 900 0.267 0.333 0.285 0.349 0.129 0.177 0.161 0.205 
1000− 1000− 1000 0.269 0.332 0.284 0.349 0.120 0.161 0.168 0.206  

Table 6 
Hyper-parameter and network structure.  

Type Configuration Small- and Medium-sized construction site model Large construction site model 

Hyper Parameter Dropout 0 
Batch Size 5 
Epoch 1000 
Optimizer Adaptive Moment Estimation (Adam) Method 
Activation Function Rectified Linear Unit (ReLu) function 

Network structure Hidden Layers 3 
Node 400− 400− 400 700− 700− 700  
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RMSE values of 0.258 and 0.317, respectively, while the test data produced values of 0.263 and 0.332. Similarly, for the large con
struction site model, the MAE and RMSE values for the verification data were 0.227 and 0.302, respectively, and for the test data, they 
were 0.109 and 0.057. Notably, both models showed no significant difference between the MAE and RMSE values of the test data and 
those of the validation data, suggesting that the overfitting problem of the model was overlooked. Furthermore, additional validation 
of the prediction error rates of the models was compared with MRA models. The MRA model is a method for estimating the correlation 
between factors by means of a statistical technique and is commonly used in the field of prediction [52,53]. The MRA model was 
constructed using the same input and output variables as used in the DNN model. Table 7 presents the results of the comparison 
between the models. The small- and medium-sized construction site DNN model showed lower prediction error rates than the MRA 
model at 4.7 % in MAE and 28.9 % in RMSE. The large construction site DNN model also showed lower prediction error rates than the 
MRA model at 40.9 % in MAE and 30.3 % in RMSE. 

4.2. Discussion 

This study proposed a framework for developing an accident prediction model according to the construction scale by applying the 

Table 7 
Comparison of the analysis results of the verification data and test data.  

Models Small- and Medium-sized construction site Large construction site 

Validation data Test data Validation data Test data 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

MRA   0.276 0.467   0.185 0.082 
DNN 0.258 0.317 0.263 0.332 0.227 0.302 0.109 0.057 
MRA/DNN (%)   − 4.7 % − 28.9 %   − 40.9 % − 30.3 %  

Fig. 7. Alluvial flow diagram exhibiting inter-correlations among the input and output variables for (a) large construction sites and (b) small-to- 
medium construction sites. The numerical values presented in each bar of the corresponding variable are discussed in Table 3. 
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DNN algorithm. For data collection, accident cases that occurred at the construction sites were collected from the KOSHA and based on 
the total construction cost, divided into small- and medium-sized construction sites (construction sites with a total construction cost of 
less than 12 billion won), and large construction sites (Construction sites with a total construction cost of 12 billion won or more). The 
alluvium diagram (Fig. 7) provides valuable insights into the intricate relationship between output and input variables that signifi
cantly influence the severity of construction accidents for both large and small-to-medium construction sites. Notably, it was observed 
that accidents during the morning and afternoon required the longest recovery or treatment periods (Fig. 7 a & b), which suggests the 
scheduling of construction activities to reduce the likelihood of accidents during critical times. Concerning occupation classes, both 
elementary and craft-related trades workers required longer recovery periods, while professionals and related workers recovered more 
quickly in both cases, highlighting the need for customized safety measures and training programs. Additionally, it was observed that 
the migrant and irregular workers had longer recovery periods than regular and non-migrant workers. These differences imply that 
unique challenges or circumstances faced by migrant workers, including limited job experience due to frequent job changes, contribute 
to their extended treatment periods, emphasizing the need to address safety disparities and ensure the well-being of all worker groups. 
An analysis of accidents on specific days of the week, employee numbers, and construction progress revealed that these factors showed 
minimal variation and oscillated within a narrow range in both cases. There was no significant indication from the data analysis that 
the day of the week consistently affected the duration of accident recovery. The analysis revealed that accidents occurring during the 
early stages of construction (0–20 % progress) resulted in an average recovery period of 98 days in the case of small-to-medium 
construction sites, indicating heightened severity or prolonged recovery periods. Interestingly, these early-stage accidents, which 
are frequent, often involve construction sites with fewer than five workers (Fig. 7b). On the other hand, in the case of large construction 
sites, accidents during the advanced construction stage (40–80 % progress) necessitated most treatment days (approximately 97 days) 
(Fig. 7a). Further investigation is needed to understand this specific trend. In terms of employee numbers, small-to-medium con
struction sites with fewer than sixteen workers tend to see longer treatment durations following accidents, while sites with more than 
50 workers experienced shorter treatment periods. This pattern is also mostly followed in large-scale construction sites. This variation 
may stem from the unique challenges or conditions encountered by smaller construction teams, leading to extended recovery periods, 
whereas larger teams could benefit from better safety protocols and quicker responses, resulting in shorter treatment durations. 
Interestingly, it was noted that large construction sites with more than 1000 workers also experienced longer treatment periods despite 
having fewer accident cases. This discrepancy could be due to various factors, such as the severity of accidents, the nature of injuries, or 
the effectiveness of response and treatment protocols. The inter-relationships identified provide a data-driven roadmap for enhancing 
construction site safety, enabling the precise implementation of measures to reduce accident severity and promote worker well-being. 
Nonetheless, it is important to note that the relationships between the number of treatment days and input variables, including ac
cident timing, employee numbers, occupational classification, nationality, employment status, day of the accident, and construction 
progress, predominantly exhibit non-linear patterns. This underscores the necessity for advanced modeling approaches to effectively 
predict accident recovery periods for planning, resource allocation, and minimizing downtime in the construction industry. 

The DNN model was deemed more suitable for predicting the severity of construction accidents, given its capacity to capture the 

Fig. 8. Performance evaluation of network architecture at various dropout rates for (a) Small- and Medium-sized and (b) large construction sites 
using MAE and RMSE. 
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non-linearity and uncertainty inherent in the data. Consequently, we opted for the DNN model to predict the accident recovery period 
for construction sites following accidents. After that, the final optimal DNN model was established by learning network scenarios and 
hyper-parameters using input and output variables through trial-and-error methods. The network architecture performance at various 
dropout rates for both small- and medium-sized and large construction sites is depicted in Fig. 8a and b, respectively. In the prediction 
results of the final optimal model, it was observed that the small- and medium-sized construction site model exhibited superior 
predictive capabilities compared to the MRA model, with a 4.7 % lower MAE and a 28.9 % lower RMSE. The large construction site 
model also presented greater predictive power than the MRA model by 40.9 % in MAE and 30.3 % in RMSE. Additionally, both DNN 
models demonstrated greater predictive accuracy in the verification results than the MRA models. Consequently, the results and 
framework of this study are considered to be highly significant. The reason is that the DNN models can better reveal the non-linearities 
of accidents and various influencing indicators at the construction site than the MRA model [47,48,54]. When comparing the two DNN 
models, the small- and medium-sized construction site model showed a 36.2 % higher prediction error in MAE and 1.4 % in RMSE. This 
shows that small- and medium-sized construction sites are more unprotected from complex issues and several risk indicators, such as 
contract system, safety education, and the difficulty and complexity of work, indicating that uncertainty about prediction is 
comparatively great for large construction sites. To unravel this problem, it is considered that it can be supplemented with additional 
research by securing more influencing indicators and acquiring data for small- and medium-sized construction sites. 

Hence, according to the framework offered in this study, by building a model for predicting accident recovery periods at con
struction sites, numerous construction-related players will be able to derive an accurate and objective amount of lost workdays. For 
example, a small- and medium-sized site contractor can develop an accident prediction model (i.e., recovery period) using the pro
posed DNN algorithm, quantify accident risk, and manage accidents without needing expert consulting or separate risk assessment. In 
particular, the ordering party can set the risk probability level in consideration of the asset status and risk appetite through pre- 
prediction of the amount of accident risk, and based on this, it can be used as a guideline for budgeting, such as accident prepared
ness reserve and safety management budget. Furthermore, reducing and preventing accidents through appropriate investment parallel 
to the risk of accidents will be possible. It can also be utilized as a criterion for judging whether the contractor purchases insurance for a 
construction site or whether the insurance premium purchased is suitable. For additional risks, it will be possible to proactively 
establish a financial risk transfer strategy in advance through special contracts or expansion of coverage. This will finally enable active 
accident management at the construction site, thereby contributing to the reduction of the high accident rate and social costs due to 
accidents at the construction site. 

Nonetheless, in this study, a model was established based on the accident cases collected by KOSHA. Thus, additional research is 
needed to compare and verify the results of this study by securing supplementary data from insurance companies or institutions that 
can signify the financial loss of construction site accidents and accidents in various countries. In addition, we intend to develop further 
models to incorporate data and features related to fatal accidents, thereby providing a more comprehensive tool for risk assessment in 
the construction industry. Further, for the gradual sophistication of the model, it is indispensable to discover additional influencing 
indicators and secure superfluous data. Moreover, although only the DNN algorithm was utilized in this study, it is crucial to improve 
the reliability of the model through comparative or cross-validation studies by introducing other machine learning and deep learning 
algorithms in future studies. Additionally, owing to the nature of the DNN algorithm, the mutual relationship and weight between each 
node could not be acknowledged. This illustrates the disadvantage that the user cannot access the process and basis of the prediction 
result by unilaterally presenting the prediction result through the black box of the DNN algorithm. Hence, it is compulsory to define the 
user variables and weights by introducing XAI (eXplainable AI) to improve the dependability and acceptability of the model in the 
future and to relieve user anxiety [55]. 

5. Conclusion 

The construction industry is more prone to accidents than other industries. In addition, the accident rate at construction sites is 
increasing due to the recent increase in complexity and scale of construction projects and the upsurge in urban construction. An 
advanced and accurate accident risk quantification model is desperately necessary for accident rate reduction and prevention. 
However, although there are significant differences in the characteristics of small-to-medium and large construction sites in existing 
accident risk quantification models and studies, they do not replicate this. Therefore, this study proposes a framework for developing a 
deep learning model for accident analysis by predicting recovery periods of accidents based on the scale of construction projects. 

To develop predictive models, accident-related indicators allowed in earlier studies were collected based on accident case data of 
construction sites, and DNN algorithm models were created. The optimal combination was found to set up the optimal DNN model, and 
the model was refined through trial and error by referring to the optimal hyper-parameter components and network structure scenarios 
utilized in former studies. The proposed model significantly aids in conserving workdays within the construction industry by accu
rately estimating recovery periods for accidents across various construction scales. Employers can leverage these forecasts to strategize 
temporary work reassignments, modify project timelines, and allocate resources more effectively, thereby mitigating disruptions 
resulting from injuries. Through the predictive capacity of the proposed model, innumerable construction-related entities will be able 
to predict accident-related risks easily and quickly in advance. 

The DNN model developed in this study showed a low prediction error through comparative verification with the conventional 
MRA model, so it is considered that it can contribute to the prediction of the accident recovery period at the construction site. The 
research results and framework offered in this study can also be adopted as reference materials for accident loss reduction and pro
ficient safety management and are projected to eventually contribute to the decline of the accident rate in the construction industry. 
Furthermore, the outcomes and framework of this study can be of practical assistance to managing construction projects in high-risk 
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industries and other risk studies. In addition, it is judged that the deep learning model of this study will be capable of advancing the 
accident prediction technique at the construction site and expanding the accuracy of accident prediction. Moreover, it is probable that 
the model can be further advanced through additional validation of the effectiveness of the model and continuous data collection. 
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