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Abstract

Background: Originating from a marine ancestor, the myriapods most likely invaded land independently of the
hexapods. As these two evolutionary lineages conquered land in parallel but separately, we are interested in
comparing the myriapod chemosensory system to that of hexapods to gain insights into possible adaptations for
olfaction in air. Our study connects to a previous analysis of the brain and behavior of the chilopod (centipede)
Scutigera coleoptrata in which we demonstrated that these animals do respond to volatile substances and analyzed
the structure of their central olfactory pathway.

Results: Here, we examined the architecture of the deutocerebral brain areas (which process input from the
antennae) in seven additional representatives of the Chilopoda, covering all major subtaxa, by histology, confocal
laser-scan microscopy, and 3D reconstruction. We found that in all species that we studied the majority of
antennal afferents target two separate neuropils, the olfactory lobe (chemosensory, composed of glomerular
neuropil compartments) and the corpus lamellosum (mechanosensory). The numbers of olfactory glomeruli in the
different chilopod taxa ranged from ca. 35 up to ca. 90 and the shape of the glomeruli ranged from spheroid
across ovoid or drop-shape to elongate.

Conclusion: A split of the afferents from the (first) pair of antennae into separate chemosensory and
mechanosensory components is also typical for Crustacea and Hexapoda, but this set of characters is absent in
Chelicerata. We suggest that this character set strongly supports the Mandibulata hypothesis (Myriapoda +
(Crustacea + Hexapoda)) as opposed to the Myriochelata concept (Myriapoda + Chelicerata). The evolutionary
implications of our findings, particularly the plasticity of glomerular shape, are discussed.

Background
In arthropod phylogeny the emerging consensus is that
Myriapoda are not to be considered the closest relatives
of Hexapoda anymore (Tracheata concept), but rather
that hexapods constitute a sister group or even an in-
group of Crustacea (Tetraconata concept; e.g. [1-4]).
Hence, it seems well established that from a marine
ancestor of Euarthropoda, members of the Chelicerata

as well as the Myriapoda and Hexapoda invaded land
independently from each other [5,6]. The successful
transition from marine to terrestrial life requires a num-
ber of physiological adaptations that are important for
survival out of water. The sensory organs of terrestrial
species must be able to function in air rather than in
water and hence were exposed to new selection pres-
sures that may have reshaped the nervous system (see
e.g. [7-10] for examples on terrestrial Crustacea). We
are interested in how the structure of the central ner-
vous system mirrors functional adaptations of the olfac-
tory system to a terrestrial life style. Studying the
olfactory system in Myriapoda and comparing it to that
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of Hexapoda may provide insights into how the arthro-
pod nervous system evolved in response to new environ-
mental and ecological challenges.
The Chilopoda together with the Progoneata (Sym-

phyla + (Diplopoda + Pauropoda)) constitute the taxon
Myriapoda. The position of monophyletic Myriapoda
within the Euarthropoda is still under debate and most
of the recent phylogenetic studies either place them as
sister group to the Tetraconata (Crustacea + Hexapoda)
together forming the taxon Mandibulata (e.g. [11,12]) or
as a sister group to the Chelicerata to form the taxon
Myriochelata (e.g. [13]). The Chilopoda are one of the
few arthropod taxa of which the internal phylogeny
appears to be widely accepted [14]. The Notostigmo-
phora (Scutigeromorpha) (Figure 1A) are the sister
group to the Pleurostigmophora which are composed of
Lithobiomorpha (Figure 2A) and Phylactometria. In the
latter taxon, the Craterostigmomorpha (Figure 3A) are
the sistergroup to the Epimorpha which are composed
of Scolopendromorpha (Figure 4A, G) and Geophilo-
morpha (Figure 5A) [14].

Our knowledge of the chilopod nervous system largely
relies on studies from the 19th and early 20th century
using paraffin sections and light microscopy (e.g.
[15-20]). Studies with contemporary neuroanatomical
methods are only available for the brain, and specifically
for the deutocerebrum (the second brain neuromere) of
Scutigera coleoptrata [21].
The deutocerebrum in the mandibulate (Myriapoda +

(Crustacea + Hexapoda)) brain is associated with the
first pair of antennae and is characterized by a unified
architecture: it comprises a paired anterior olfactory
lobe that receives the chemosensory afferents from the
first antennae, and (at least) a paired posterior neuropil
[21,22]. These uni- or bipartite posterior neuropils are
thought to process mechanosensory stimuli and have a
range of different names within the mandibulate taxa:
antennal mechanosensory and motor center (AMMC)
or dorsal lobe in Hexapoda (e.g. [23]), corpus lamello-
sum in Chilopoda [19-21,24] and lateral antennular neu-
ropil (LAN) plus median antennular neuropil (MAN) in
malacostracan Crustacea and Remipedia [8,25-29]. All of

Figure 1 Scutigeromorpha. A Scutigera coleoptrata. B Single optical section of a neurobiotin backfill showing an olfactory lobe with distinct
olfactory glomeruli. cLSM scan. C cLSM scan (maximal projection) of the brain and the subesophageal ganglion. View from ventral. Left antennal
nerve was filled with neurobiotin. Antennal neurites project into the seg. D 3D reconstruction of the brain of S. coleoptrata with deutocerebral
neuropils. Blue: olfactory glomeruli, yellow: corpus lamellosum. Abbreviations: cl corpus lamellosum, clc contralateral connection, fg frontal
ganglion, na nervus antennalis, np neurite projections, ol olfactory lobe, pc protocerebrum, seg subesophageal ganglion. Scalebars: A = 10
mm, B, C = 100 μm.
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Figure 2 Lithobiomorpha. A Lithobius forficatus. B Histological horizontal section of the head showing the deutocerebral lobes with olfactory
glomeruli and corpus lamellosum (dashed line) as well as the ommatidia. C Voltexrendering (Amira) of a neurobiotin backfill showing
deutocerebral neuropils and neurite projections. D Horizontal optical section (cLSM scan) of a neurobiotin backfill (dorsal deutocerebrum)
showing single olfactory glomeruli (asterisks). The arrow points to the contralateral connection of the olfactory lobe. E Horizontal optical section
(cLSM scan) of a neurobiotin backfill (ventral deutocerebrum) showing the corpus lamellosum. Asterisks mark single lamellae of the neuropil. F
Voltexrendering (Amira) of a neurobiotin backfill showing the brain with deutocerebral neuropils and projections. Arrows point to antennal
neurites projecting into the subesophageal ganglion. G 3D reconstruction of the brain with deutocerebral neuropils. Blue = olfactory glomeruli,
yellow = corpus lamellosum. Contralateral connection of OG and CL is not shown. Abbreviations: an antenna, cl corpus lamellosum, clc
contralateral connection, dc deutocerebrum, fg frontal ganglion, na nervus antennalis, no nervus opticus, np neurite projections, ol olfactory
lobe, om ommatidia, pc protocerebrum, seg subesophageal ganglion. Scalebars: A = 10 mm, B = 500 μm, C-E = 100 μm.

Sombke et al. BMC Neuroscience 2012, 13:1
http://www.biomedcentral.com/1471-2202/13/1

Page 3 of 17



these structures can be unified under the term mechan-
osensory neuropils.
The chemosensory olfactory lobe (called antennal lobe

in Hexapoda) is composed of structural and functional
subunits [22], which are called olfactory glomeruli (or
olfactory neuropils) [21,24]. These subunits are clearly
demarcated dense neuropils in which the axons of olfac-
tory sensory neurons (OSN) terminate and interact with
olfactory interneurons via the first synapses of the olfac-
tory pathway [22,30]. Thus, within the olfactory glomer-
uli of Hexapoda, malacostracan Crustacea and the
House Centipede Scutigera coleoptrata, first order inte-
gration of olfactory input takes place, which is then
relayed to secondary brain centers via olfactory projec-
tion neurons (e.g. [8,21,22]). The glomerular array in
hexapods is thought to represent a chemotopic map,
which forms the basis of the olfactory code [31-33].
Based on this uniform architecture and several addi-
tional synapomorphic characters [22], the olfactory sys-
tem in general as well as the olfactory glomeruli in

particular were suggested to represent homologous
structures within the deutocerebrum of the Mandibulata
[21,22], whereas previously, also a convergent evolution
was proposed [3].
Nevertheless, previous studies have revealed a high

degree of plasticity in the shape and arrangement of
mandibulate olfactory glomeruli, suggesting a critical
evaluation of glomerular neuropils. In Scutigera coleop-
trata, the olfactory glomeruli are elongated and
arranged in parallel [21]. On the contrary, in many dec-
apod Crustacea the olfactory lobes consist of glomeruli
that are cone-like and in the lobe are arranged with
their apices pointing inwards (reviews: [22,27,28,34]). In
some decapods crustaceans, these glomeruli may be
extremely elongated [8,10], whereas studies on represen-
tatives of the basal malacostracan taxon Nebalia (Lep-
tostraca) suggest spherical glomeruli to be part of the
malacostracan ground pattern (Kenning and Harzsch;
unpublished results). Such spherical glomeruli are also
present in marine Isopoda [9]. Furthermore, it has been

Figure 3 Craterostigmomorpha. A Head and maxillipedes of Craterostigmus tasmanianus from dorsal. B Horizontal optical section of an
autofluorescence preparation (cLSM stack). Single olfactory glomeruli (asterisks) are weakly detectable. C Different horizontal section of the same
preparation as in B. The arrow marks the structural composition of the corpus lamellosum. D Histological cross section of the right brain
hemisphere showing the proto- and deutocerebrum with the corpus lamellosum (dashed line). E Histological cross section of the left
deutocerebrum showing the dorsomedian located olfactory glomeruli. F 3D reconstruction of the brain with deutocerebral neuropils. Blue =
olfactory glomeruli, yellow = corpus lamellosum. Contralateral connection of the CL is not shown. Abbreviations: an antenna, cl corpus
lamellosum, dc deutocerebrum, ey eye, mp maxillipede, na nervus antennalis, ol olfactory lobe, pc protocerebrum. Scalebars: A = 1 mm, B-E =
100 μm.
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Figure 4 Scolopendromorpha. A Scolopendra oraniensis. B Neurobiotin backfill of the antennal nerve in S. oraniensis showing the olfactory
lobe, the corpus lamellosum, and neurite projections (horizontal maximal projection, cLSM scan). C Single optical horizontal section of a Lucifer
yellow backfill in S. oraniensis (cLSM scan). Antennal neurites cross each other in a sorting zone and project into different neuropils. The arrow
marks the structural composition of the corpus lamellosum in which single lamellae are weakly noticeable. The large ventral OG is visible in this
section. Single olfactory glomeruli in the olfactory lobe are arranged like in a grape. D Neurobiotin backfill of the antennal nerve of S. oraniensis.
Only a subpopulation of the antennal neurites and olfactory glomeruli is labeled (horizontal maximal projection, cLSM scan). E 3D reconstruction
of the brain of Scolopendra subspinipes (dorsal protocerebrum is not shown) with deutocerebral neuropils. Blue = olfactory glomeruli, yellow =
corpus lamellosum. F 3D reconstruction of deutocerebral neuropils of Scolopendra oraniensis combined with volume rendering of the antennal
backfill in B. Three enlarged ventral glomeruli (I, II, III) are present. G Cryptops hortensis. H Single horizontal optical sections (cLSM) of a
neurobiotin backfill of the right antennal nerve in C. hortensis from dorsal to ventral. Antennal nerve bundles and innervation of single olfactory
glomeruli. H’ Sorting zone (arrow) of antennal neurites and corpus lamellosum. H’’ Larger ventral olfactory glomerulus (arrow) and neurite
projections. I 3D reconstruction of the brain of C. hortensis with deutocerebral neuropils and midline neuropil. Contralateral connection of the CL
is not shown. Blue = olfactory glomeruli, yellow = corpus lamellosum, red = midline neuropil. J Lateral view of the 3D reconstruction in I. Two
enlarged ventral glomeruli (I, II) are present. Abbreviations: cec circumesophageal connectives, cl corpus lamellosum, mn midline neuropil, na
nervus antennalis, np neurite projections, ol olfactory lobe, pc protocerebrum, pcg protocerebral gland, seg subesophageal ganglion, sz sorting
zone, vog ventral olfactory glomerulus. Scalebars: A and F = 10 mm, B-D, G = 100 μm.
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Figure 5 Geophilomorpha. A Geophilus carpophagus. B Single horizontal optical section (cLSM) of an autofluorescence preparation of the brain of
Haplophilus subterraneus showing olfactory glomeruli (asterisks) and the structural composition of the corpus lamellosum (arrow). C 3D reconstruction
of the brain of H. subterraneus with deutocerebral neuropils and midline neuropil. Blue = olfactory glomeruli, yellow = corpus lamellosum, red =
midline neuropil. Contralateral connection of the CL is not shown. D Single horizontal optical sections (cLSM) of a neurobiotin backfill of the right
antennal nerve in Stigmatogaster dimidiatus from ventral to dorsal. Left: several somata stained by the neurobiotin backfill (arrow) and neurite
projections into a circumesophageal connective. Middle: Antennal nerves and olfactory glomeruli. Right: The slightly concave appearance of the
olfactory lobe. Inset: Sagittal optical section of the same preparation showing the structural composition of the corpus lamellosum (arrow) and neurite
projections (asterisk). E Single horizontal optical sections (cLSM) of an autofluorescence preparation of the brain of S. dimidiatus from dorsal to ventral.
Olfactory glomeruli (asterisks) and the contralateral connection between the posteroventral OG (arrow). E’ Concave appearance of the olfactory lobe
(arrow). E’’ ventrolateral position of the corpus lamellosum. F 3D reconstruction of the brain of S. dimidiatus with deutocerebral neuropils and midline
neuropil. Blue = olfactory glomeruli, gray = bigger ventral olfactory glomerulus, yellow = corpus lamellosum, red = midline neuropil. Abbreviations:
cec circumesophageal connective, cl corpus lamellosum, mn midline neuropil, na nervus antennalis, np neurite projections, ol olfactory lobe, pc
protocerebrum, vog ventral olfactory glomerulus. Scalebars: A = 5 mm, B, D, E = 100 μm.
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well documented from crayfish (Astacidea), spiny lob-
sters (Palinuroidea) and hermit crabs (Paguroidea) that
in the olfactory lobe each glomerulus is stratified and
provides an outer cap, a subcap, and a base [8,10,34].
Most pterygote insects also feature spherical glomeruli
[22], whereas primarily flightless hexapods diverge from
this pattern [35,36].
Is the shape of olfactory glomeruli of purely functional

significance or does it contain an unexplored phyloge-
netic signal? Clearly, comparative information on the
deutocerebral neuropils in a broad range of myriapods
will contribute to this question. This study sets out to
analyze the architecture of the central olfactory pathway
in Chilopoda in more detail. To that end we analyzed
the brains of representatives of eight chilopod species
using histology, confocal laser scanning microscopy
(cLSM), and 3D reconstruction. Our data are compared
and evaluated with regard to the evolution of glomerular
shape in Mandibulata.

Results
General morphology of the chilopod brain
Due to the anteriorly projecting antennae in the Chilo-
poda, the deutocerebrum (DC) is the most anterior part
of the brain with regard to the body axis, so that the
protocerebrum is always located dorsally and extends
into lateral lobes where the optic neuropils are located
(Figure 1, 2, 3, 4, 5). In the blind Cryptopidae (Scolo-
pendromorpha) (Figure 4G), these lateral lobes are
much smaller and are even totally reduced in the Geo-
philomorpha (Figure 5C, F). Contrary to Fahlander [20],
who stated that a distinct midline neuropil is lacking in
Geophilomorpha, all investigated representatives exhibit
an unpaired midline neuropil (Figure 6). In S. coleop-
trata and C. tasmanianus this unpaired neuropil is asso-
ciated with small lateral lobes. As this study focuses on
the organization of deutocerebral neuropils, we will not
further consider here, if these neuropils represent an
equivalent of the crustacean and hexapod central bodies
or the chelicerate arcuate bodies (compare [3,37]).
The morphology of the sensory antennal nerve differs

in investigated chilopod species: while Scutigeromorpha,
Lithobiomorpha and Craterostigmomorpha exhibit a
“solitary” and robust antennal nerve, in Scolopendro-
morpha and Geophilomorpha it is composed of a bun-
dle of several discrete nerves (Figure 4E, H; 5C, D, F; 6).
Both types of antennal nerves enter the DC at its fron-
tolateral or frontal edges (compare review [38]). The
motoric antennal nerve will not further considered here.
In the following the sensory antennal nerve is referred
as antennal nerve.
Apart from the Geophilomorpha, the anterior part of

the deutocerebrum is separated into two discrete hemi-
spheres (Figure 1D, 2F, 3F, 4E, H; 5C, F). Anterograde

backfilling experiments reveal that the antennal nerve
targets the deutocerebral neuropils, which therefore are
first order processing areas in the brain. In all Chilopoda
examined, each deutocerebral hemisphere contains an
olfactory lobe (OL) being composed of densely packed
olfactory glomeruli (OG) and a corpus lamellosum (CL).
A central coarse neuropil in the OL is not present in
most examined taxa (uncertain for the Geophilomor-
pha). In the following, bilaterally paired structures will
be referred in singular. A demarcation between deuto-
cerebrum and tritocerebrum is not clearly apparent,
although the stomodeal bridge and frontal connectives
indicate the anterior margin of the tritocerebrum (com-
pare [21,24,38])

Scutigeromorpha
The organization of deutocerebral neuropils in Scutigera
coleoptrata (Figure 1A) was described in detail by
Sombke et al. [21] and therefore will be only briefly
reviewed here. Due to the roundish head outline, the
shape of the brain differs from that of the pleurostigmo-
phoran chilopod taxa. The antennal nerve enters the
brain at its frontolateral edge (Figure 1D) and divides
into two branches: an anterior part innervates the olfac-
tory glomeruli whereas the posterior part innervates the
corpus lamellosum. In S. coleoptrata, the olfactory lobes
are arranged in an angle of nearly 180° to each other
(Figure 1D, 6). Histological sections and dextran-biotin
backfills reveals that single olfactory glomeruli have an
elongated shape and are arranged in a parallel array
(Figure 1B, D; and [21]). A 3D reconstruction (Figure
1D) reveals the bilateral symmetrical pattern with two
contralaterally connected glomeruli (anterior deutocer-
ebral commissure sensu Fahlander [20]) (Figure 1C, D:
clc). In all histological section series and autofluores-
cence preparations, a total number of 34 distinct and
uniquely identifiable OG in a more or less invariant
arrangement is present (Figure 1D) [21]. The posterior
part of the antennal nerve innervates the presumed
mechanosensory neuropil called corpus lamellosum (CL;
[19,21,24]), which in S. coleoptrata is composed of
approximately eight parallel neuropilar lamellae [21].
Two different types of lamellae were recognized: the
outer lamellae forming a distal connection, and inner
lamellae that extend further dorsomedially to project
towards the contralateral hemisphere (posterior deuto-
cerebral commissure sensu Fahlander [20,21]). Golgi
impregnations shows that axons targeting the CL are
much thicker than those targeting the OG and give off
short side branches alongside their length [21]. In back-
fills of the antennal nerve, we found that the dye was
also transported along thicker neurites projecting into
the ventrolateral protocerebrum and the subesophageal
ganglion (Figure 1C) [21].

Sombke et al. BMC Neuroscience 2012, 13:1
http://www.biomedcentral.com/1471-2202/13/1

Page 7 of 17



Lithobiomorpha
The lithobiomorph head is flattened, a fact that is mir-
rored in the shape of the brain (reviewed in [24]). The
antennal nerve enters the deutocerebrum at its frontal

edge (Figure 2B-G). The deutocerebrum is organized in
an anterior olfactory lobe (OL) with glomeruli (OG) and
a posterior corpus lamellosum (CL) (Figure 2B-G). In
contrast to S. coleoptrata, the OLs extend in a slightly

Figure 6 Brains of selected Chilopoda. Schematic representation of the brains of selected Chilopoda with illustration of the olfactory glomeruli
(blue), corpus lamellosum (yellow), Midline neuropil (red) and neurite projections (dashed lines). View from dorsal. The protocerebrum appears
brighter. Abbreviations: cl corpus lamellosum, dc deutocerebrum, mn midline neuropil, np neurite projection, nr nervus recurrens, ol olfactory
lobe, pc protocerebrum, pcg protocerebral gland, seg subesophageal ganglion, tc tritocerebrum.
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dorsomedian direction resulting in an angle of nearly
90° (Figure 2G, 6). Antennal afferents were revealed by
neurobiotin backfills which, in addition to the termina-
tions in the OL and CL, also show a bundle of neurites
projecting from the antennal nerve through the tritocer-
ebrum deep into the subesophageal ganglion (Figure 2C,
F: np). Within the OL, two OG feature a contralateral
connection (Figure 2C, F: clc, D: arrow). Histological
sections and neurobiotin backfills reveal that single OG
have a drop-like to elongated shape that narrows to
their anterodistal edges (Figure 2D, G). All OG appear
compact without any subcompartments. The 3D recon-
struction reveals a bilaterally symmetrical pattern with a
total number of 43 OG (Figure 2G). The CL is located
posteriorly to the OG and extends a small contralateral
connection (not shown). The neuropil is composed of at
least four lamellae (Figure 2C, E asterisks). However, the
lamellae are more densely packed than in S. coleoptrata
so that a precise count is not possible.

Craterostigmomorpha
This is the first investigation of the nervous system of
Craterostigmus tasmanianus (Figure 3A). Like in the
Lithobiomorpha, the head of the Craterostigmomorpha
is flattened, which is reflected in the shape of the brain
(Figure 3F). The robust antennal nerve enters the deuto-
cerebrum at its frontal edge (Figure 3B, F). In principle,
the deutocerebrum is organized in an anteromedian OL
and a posterior CL (Figure 3B-F). The OLs extend in a
median direction resulting in an angle of nearly 90° (Fig-
ure 3F, 6). Histological sections and autofluorescence
preparations reveal that single OG have a drop-like to
elongated shape with a nearly circular profile and a
smaller diameter distally (Figure 3B, E, F). The OG are
arranged in an anteroposterior direction (Figure 3B, F).
A contralateral connection of the OLs was not found.
The 3D reconstruction shows a total number of 36 OG
(Figure 3F). The CL is located posteriorly to the OL and
features a thin contralateral connection (not illustrated).
Due to the fixation, a lamellar organization was not
clearly recognizable. However, a partition into discrete
lamellae is likely (Figure 3C, D arrow).

Scolopendromorpha
Similar to the Lithobiomorpha and Craterostigmomor-
pha, the head and also the brain of the Scolopendro-
morpha are flattened. The DC is innervated by several
antennal nerve bundles (Figure 4E, H) at its frontal
edge. The DC is composed of an anteriorly located
olfactory lobe and a posteriorly located CL (Figure 4B-E,
H, I). The OLs extend in a slightly dorsomedian direc-
tion resulting in an angle of less than 90° (Figure 4B, E,
H, I). The OG are arranged in an anteroposterior direc-
tion. In the three investigated scolopendromorph

species, the shape of the OG appears spheroid to drop-
like elongated (Figure 4B-F, H-J). In Scolopendra ora-
niensis and Cryptops hortensis, ventral glomeruli are
much bigger (Figure 4C, F, H, J). In S. oraniensis, three
enlarged ventral OG are present (Figure 4F) while in C.
hortensis two enlarged ventral OG exist (Figure 4J). A
contralateral connection of the OLs is absent. Based on
histological sections, backfill experiments, and autofluor-
escence preparations, all OG appear compact without
any subcompartments and are arranged in a bilaterally
symmetrical pattern. Numbers of OG range from 51 in
Scolopendra subspinipes (Figure 4E), across 56 in Cryp-
tops hortensis (Figure 4H) to 58 in Scolopendra oranien-
sis (Figure 4F). The CL is located posteroventrally to the
OL. A contralateral connection of the CL is always pre-
sent, although it varies in thickness in the three investi-
gates species. In Scolopendra subspinipes, it appears as a
thick connection (Figure 4E) while in Cryptops hortensis
it appears very thin (not shown in Figure 4I). Single
lamellae are not clearly detectable. However, backfill
experiments reveal an alternating texture within the
neuropil (Figure 4B, C arrow, G). Neurobiotin backfills
reveal an additional neurite bundle projecting from the
antennal nerve through the tritocerebrum into the sube-
sophageal ganglion (Figure 4B, C, H: np).

Geophilomorpha
The brain of obligatory blind Geophilomorpha is spheri-
cal in shape and also the most modified within the Chi-
lopoda [24,38]. The dominant component of the
geophilomorph brain is the deutocerebrum. A clear
demarcation between proto- and deutocerebrum is not
detectable (Figure 5C, F). The antennal nerve comprises
10-15 bundles of sensory neurons and innervates the
DC at its frontal edge (Figure 5B-F). The deutocerebral
hemispheres are fused posteromedially (Figure 5B-F).
The OLs are arranged more or less parallel to each
other (Figure 5B, C, F). In both investigated species, the
OL is composed of spheroid to slightly ovoid OG. In
Stigmatogaster dimidiatus, the OL appears slightly inva-
ginated posteriorly (Figure 5D, E: arrow) thus resulting
in a cup-like shape. The number of OG is 49 in Haplo-
philus subterraneus and 97 in Stigmatogaster dimidiatus.
A conspicuous contralateral connection (clc) features
the OLs of S. dimidiatus, where two elongated OG
extend a thin clc (Figure 5E: arrow, F: asterisks). How-
ever, in H. subterraneus, a clc of the OLs is not present.
The OG appear compact without any subcompartments
and a bilateral symmetry seems to be present (Figure
5B-F). In both investigated species, an enlarged ventral
glomerulus is found (Figure 5F: vog; not shown in the
reconstruction of H. subterraneus). The CL is located
posteroventrally to the OL (Figure 5B-F) and features a
thin contralateral connection (Figure 5F). In the
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autofluorescence preparations, this thin connection
could not be depicted clearly. In most of the prepara-
tions, the CL appears lamellar (Figure 5B, D inset;
arrows). Posteriorly directed antennal neurite projections
were revealed by neurobiotin backfills, which showed a
bundle of neurites projecting from the antennal nerve,
through the tritocerebrum (asterisk in inset Figure 5D)
and probably into the subesophageal ganglion via the
circumesophageal connectives (Figure 5D: cec). Interest-
ingly, several somata were filled by neurobiotin in the
ventral brain (Figure 5D left: arrow) branching inten-
sively in an anteroposterior direction. Whether these
somata belong to projection- or local interneurons
remains unknown.

Discussion
Chilopoda: the antennal nerve innervates two separate
deutocerebral neuropils
Supporting the descriptions of Seifert [38] and Fahlan-
der [20], we found that a sensory antennal nerve

composed of several discrete bundles (as opposed to
one “solitary” nerve) occurs only in representatives of
the Scolopendromorpha and Geophilomorpha. In a phy-
logenetic view, this feature can be regarded as an apo-
morphy for the taxon Epimorpha.
Fahlander [20] described the nervous system of var-

ious Chilopoda and also interpreted the results from
Saint-Rémy [15] and Hörberg [19] in a broad compara-
tive study. Although previous authors mentioned a glo-
merular organized antennal lobe for the Chilopoda (e.g.
[17-20,39]), the number, organization, and structural
composition remained unclear. Sombke et al. [21] rein-
vestigated the deutocerebral neuropils in Scutigera
coleoptrata using a variety of histological and immun-
histochemical methods. Similar to S. coleoptrata [21],
the deutocerebrum of the Chilopoda investigated here is
organized into structured neuropils that can be divided
into two different regions: olfactory lobe and corpus
lamellosum (Figure 6, 7). Moreover, a similar organiza-
tion of deutocerebral neuropils may be present in

Figure 7 Deutocerebral neuropils of selected Chilopoda. Schematic representation of the deutocerebral neuropils in representatives of the
Chilopoda (left hemisphere). Horizontal view with equal scaling.
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representatives of the Diplopoda ([40], Seefluth and
Sombke unpublished data.) as well as in representatives
of the Hexapoda and Crustacea [e.g. [23,27]].

The chilopod olfactory lobes and olfactory glomeruli
In principle, the olfactory lobe (OL) extends from the
entrance of the antennal nerve into the brain on
towards the dorsomedian brain and is composed of
olfactory glomeruli (OG) which are located in the ante-
rior part of the deutocerebrum. The OG are innervated
from the periphery. As a result of different innervation
angles of the antennal nerves, the overall orientation of
the olfactory lobes differs in the Chilopoda (Figure 6).
In contrast to the remaining chilopod taxa, the OL of
the Geophilomorpha appears globular and slightly inva-
ginated (Figure 6, 7). The alignment of the OG also dif-
fers in investigated taxa: while in S. coleoptrata the OG
form more or less parallel layers, the drop-like shape in
L. forficatus, C. tasmanianus and the representatives of
the Scolopendromorpha results in a more compact
arrangement.
The presence of a central coarse neuropil in the OL of

Geophilomorpha is uncertain. In many hexapod taxa,
the glomeruli surround a coarse neuropil e.g. Dictyop-
tera [41], Hymenoptera [42], Lepidoptera and Diptera
(reviewed in [22]). Contrary, in Archaeognatha the OL
is composed of elongated OG without a central neuropil
[36]. In malacostracan Crustacea, the OG are arranged
in a peripheral radial array that surrounds a loose core
of neuronal processes (reviewed in [22,34]). Single glo-
meruli in these animals are also innervated from the
periphery (reviews: [22,27,28,34]).
In Scutigera coleoptrata, 34 individually identifiable

OG per olfactory lobe were detected repeatedly in sev-
eral specimens and these glomeruli form a fixed array,
so that individual OG are identifiable [21]. In the pre-
sent study, glomerular numbers were only determined
in few specimens, so that the numbers have to be
viewed with caution. Nevertheless, we speculate that the
determined numbers are taxon-specific within the Chi-
lopoda. In Lithobius forficatus, 43 OG were detected,
and 36 in Craterostigmus tasmanianus. In the investi-
gated Scolopendromorpha, the number of OG ranges
around 50-60, while in the Geophilomorpha, some var-
iation was encountered (49 in H. subterraneus, 97 in S.
dimidiatus). In hexapods, the number of olfactory glo-
meruli ranges from about 20 in Collembola to approx.
250 in ants (reviewed in [22,35]) and seems to be invar-
iant within species (e.g. [42-52]). In Crustacea the num-
ber of OG varies from approximately 60 to 1300
(reviewed in [10,22,53]) but it is uncertain if crustaceans
have a fixed set of OGs [53,54].
The number of glomeruli is generally thought to pro-

vide a good indication regarding how many different

olfactory receptor proteins (OR) are expressed in the
antenna. One OSN typically expresses a single OR, and
all OSNs expressing a specific receptor project their
axons to the same glomerulus. Odor input thus paints a
map of activation over the glomerular array.
The size of OG is more or less taxon-specific and con-

stant within the investigated chilopods (Figure 7). The
only exceptions are the ventrally located enlarged OG in
Scolopendra oraniensis, Cryptops hortensis, and Stigma-
togaster dimidiatus. This is also true for the posterior-
most OGs in Scutigera coleoptrata (compare [21]). In
general, glomeruli of increased fitness-related impor-
tance tend to increase in size. Sex-specific enlargement
("macroglomeruli”) are known from various hexapods e.
g. moths [55], cockroaches [56] or honeybees [42].
Other enlargements have been found to be associated
with trail pheromones and with specific food cues [57].
In this study a functional correlation was not conducted,
and no conclusions regarding the functional significance
of macroglomeruli in Chilopoda can be drawn.
In histological sections, backfills, and autofluorescence

preparations, there is not any evidence of further com-
partmentalization of the OG in the investigated Chilo-
poda as it is known from hexapods and malacostracan
crustaceans. In honeybees (Hexapoda), olfactory glomer-
uli have a concentric organization [42,58-62], where
only the periphery is innervated by axons of sensory
neurons. A longitudinal subdivision of the OG into cap,
subcap, and base has been well documented in crayfish,
clawed and clawless lobsters, and hermit crabs (Crusta-
cea) [8,10,63-67].
The shape of the OG in the investigated chilopods

displays a considerable plasticity (Figure 6, 7). OG in the
Scutigeromorpha have an elongated shape and in some
the distal end is thickened and/or bent posteriorly [21].
According to Fahlander [20], the internal organization
of deutocerebral neuropils in Lithobius forficatus
strongly resembles those of the Scutigeromorpha, but
here we show that the shape of the OG actually differs.
In Lithobius forficatus and Craterostigmus tasmanianus,
the overall shape of OG ranges from elongated (more
than two times longer than wide) to drop-shaped, with
a smaller anterior diameter. In the Scolopendromorpha,
the shape of OG is mostly drop-like to spheroid and in
the Geophilomorpha, the OG have a spheroid shape.
For the Chilopoda, it is unclear if elongated or spheroid
glomeruli represent the ancestral shape of the OG in
this group. Here, we take benefit from the fact that the
debate on the internal phylogeny of Chilopoda rather
unequivocally gravitated into accepting the Pleurostig-
mophora concept of Verhoeff [68] in the past four dec-
ades so that we can map our results on a stable
phylogeny of Chilopoda. Based on the number and posi-
tion of stigmata, this phylogenetic concept separates the
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Scutigeromorpha (= Notostigmophora) as sister group
to all other Chilopoda (Pleurostigmophora). This phylo-
genetic concept has received substantial support from
the analysis of morphological, molecular and combined
morphological-molecular data sets (e.g. [14,69-73]). If
we accept this phylogeny, we have to assume that elon-
gated OG mark the plesiomorphic state in Chilopoda,
perhaps retained from the myriapod ground pattern. In
this view, the exclusive occurrence of spheroid OG has
to be considered an additional apomorphy of the Geo-
philomorpha. However, alternatives to this view are pos-
sible. In most pterygote Hexapoda, the antennal lobe (or
olfactory lobe) is organized into numerous roughly
spheroid OG. In Archaeognatha the OG have an elon-
gated shape [36]. In Crustacea, the shape of olfactory
glomeruli differs considerably (reviewed in [22]). The
olfactory lobes of malacostracan Crustacea are typically
composed of glomeruli which are columnar or wedge-
shape, (reviews [3,34]). or slightly cone-shaped [9,74].
Nevertheless, certain Stomatopoda possess olfactory
lobes with spheroid OG [75] as do Remipedia [29,76],
Leptostraca [18], and marine isopods [9]. Within several
taxa of the Chelicerata, spheroid neuropil units have
been reported but these are not associated with the sec-
ond brain neuromere [77-82]. Along these lines it would
appear that spheroid OG within the deutocerebrum
characterize both, the ground patterns of Malacostraca
and Hexapoda. If this hypothesis holds true, it is parsi-
monious to assume that spheroid glomeruli are also part
of the ground pattern of Mandibulata and would thus
characterize the ground pattern of Myriapoda. In this
view, the elongate shape of OG in Scutigeromorpha
would be a derived character characteristic for this par-
ticular group.
In this context, the question arises if the shape of

olfactory glomeruli is of purely functional significance or
if it does contain an unexplored phylogenetic signal.
Clearly, considering glomerular shape alone is not suffi-
cient to answer these questions. Concerning the central
olfactory pathway of malacostracan crustaceans and hex-
apods, the fact that in both groups the afferents of che-
mosensory receptor neurons terminate in lobed
deutocerebral neuropils where they target neuropil units
to make synaptic contacts to local olfactory interneurons
and olfactory projection neurons has been suggested as
evidence that the olfactory system in these two taxa
goes back to a shared ground pattern [22]. Furthermore,
in both taxa the axons of olfactory projection neurons
link the olfactory neuropils to secondary olfactory pro-
cessing centers in the protocerebrum. What is more,
local olfactory interneurons in both taxa include a char-
acteristic innervation by one or very few serotonergic
giant neurons that target every OG. Hence it seem legit-
imate to suggest that in the ground pattern of the

common ancestor of hexapods and malacostracan crus-
taceans, a basal computational circuit was present that
included the antennal afferents, local olfactory inter-
neurons, and projection neurons (compare [22]). Taken
together, this mosaic of architectural differences as well
as similarities suggests that most likely the olfactory
centers and their connections are homologous in hexa-
pods and malacostracan crustaceans, having evolved in
divergent directions from a much simpler ground pat-
tern. What we do not know at the moment is to what
level of detail the connection pattern of antennal affer-
ents with olfactory local interneurons and projection
neurons in Myriapoda resembles that of Tetraconata.

The corpus lamellosum
In a brief description of deutocerebral neuropils in
Lithobius variegatus, Strausfeld et al. [39] described that
the antennal nerve innervates the olfactory lobe and
that a lateral strand projects to a region behind it, which
the authors called dorsal lobe in analogy to the hexapod
mechanosensory neuropil. This posterior deutocerebral
neuropil in Chilopoda had already been termed “masse
lamelleuse” by Saint-Rémy [16] and latinized by Fahlan-
der [20] who called it corpus lamellosum (CL). Because
it reflects the characteristics of this structured neuropil,
we suggest maintaining this nomination. As mentioned
above, in Scutigera coleoptrata the posterior partition of
the antennal nerve innervates the CL in which approxi-
mately eight parallel lamellae were found [21]. Golgi
impregnations showed that sensory neurites innervating
the CL appear much thicker than those innervating the
olfactory glomeruli and give off short side branches
along their length [21]. Although similar Golgi experi-
ments on other chilopod taxa have not been conducted
yet, it appears to us that the architecture of the CL in
the other chilopod taxa investigated here is similar to
that of S. coleoptrata. In S. coleoptrata, the parallel
lamellae project dorsomedially and extend into the pos-
terior deutocerebral commissure [20,21]. By backfilling
the antennal nerve in Lithobius forficatus, at least 4 sin-
gle lamellae are visible. The report of Fahlander [20]
that in Lithobius forficatus the CL is not composed of
distinct lamellae can therefore be rejected. In Crateros-
tigmus tasmanianus, a lamellation is only partially visi-
ble. In the Scolopendromorpha, backfill experiments
also show an arrangement of parallel fibers suggesting a
lamellation in the investigated genera. In the Geophilo-
morpha, the CL also appears lamellar. Possibly, due to a
higher degree of condensation, single lamellae could not
be detected. In summary, all the investigated chilopods
exhibit a CL, which is composed of parallel lamellae and
features a contralateral connection.
In pterygote Hexapoda, the first and second antenno-

meres of the antenna supply the dorsal lobe
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(mechanosensory neuropil) whereas the flagellar sensilla
are mostly specialized for olfactory perception and their
neurites project into the olfactory lobe [56]. Examples
where mechanosensory and gustatory afferents project
into the such a mechanosensory neuropil in the poster-
ior region of the deutocerebrum (and in some cases
even proceed into the anterior subesophageal ganglion)
are e.g. Periplaneta americana [62,83], Apis mellifera
[84], Gryllus bimaculatus [85,86], and Aedes aegypti
[33,87]. In these organisms, presumptive tactile antennal
afferents provide two pairs of long branches whereas
several short branches are orientated laterally and form
a multilayered arrangement medially in the dorsal lobe.
This arrangement exhibits a similarity to the branching
pattern of sensory axons in the CL of Scutigera coleop-
trata [21]. In malacostracan crustaceans, the first (deu-
tocerebral) pair of antennae, in addition to the
aesthetasc chemosensory pathway, provides mechano-
sensory and non-aesthetasc chemosensory input to the
lateral and median antennular neuropil (LAN and
MAN) [25-28,34]. Between the lobes of the LAN, con-
tralateral connections occur in Decapoda. The general
organization of the LAN and MAN in many respects
matches the innervation and connections of the CL. To
summarize, we suggest that in the ground pattern of
Chilopoda, Hexapoda, and Crustacea, the posterior deu-
tocerebrum is characterized by at least one neuropil
(corpus lamellosum, dorsal lobe, lateral antennular neu-
ropil) that processes mechanosensory input from the
first pair of antennae. Such a neuropil is absent in Cheli-
cerata and therefore represents a homology of Mandibu-
lata (apomorphic character state). However, the
architecture of this neuropil was then elaborated in dif-
ferent ways in the various mandibulate lineages.

Posterior neurite projections
In all investigated Chilopoda (except for C. tasmania-
nus), antennal afferents also project into the subesopha-
geal ganglion and even into the ventral nerve cord.
These neurites project ipsilaterally and bypass the deu-
tocerebral neuropils. In addition, in S. coleoptrata a sec-
ond projection to the ventrolateral protocerebrum was
found [21]. We speculate that these posterior neurites
may project to a gustatory or motoric center in the sub-
esophageal ganglion. In Hexapoda, certain neurites from
the antennal nerve also project to the subesophageal
ganglion and the thoracic ganglia [62,88-90]. Barrozo et
al. [90] suggested that these neurite projections with a
characteristic larger diameter might serve to insure a
rapid neuronal transmission of sensory inputs towards
centers responsible for controlling motor activities and
physiological processes. In Crustacea, these characteris-
tic posterior neurite projections have not yet been

described. As a consequence it can be assumed, that
they are reduced within the Crustacea. The presence in
Chilopoda and Hexapoda could indicate an additional
shared feature of the mandibulate deutocerebrum. How-
ever, neurite projections are also described from the
pectines in Scorpiones [81]. If these neurite projections
correspond to those in Chilopoda and Hexapoda
remains uncertain.

The deutocerebrum and olfactory lobes of Euarthropoda
in an evolutionary context: support for the Mandibulata
concept
In the Chilopoda, the deutocerebrum is characterized by
two distinct neuropil regions, which are innervated by
antennal sensory afferents. The olfactory glomeruli are
bilaterally and symmetrically arranged and appear pre-
sumably in a taxon-specific fixed number. Contralateral
connections occur in some species. The corpus lamello-
sum is a structured neuropil and exhibits a contralateral
connection. In the Chilopoda, antennal neurite projec-
tions transit the deutocerebrum and project into the
subesophageal ganglion.
In Chilopoda, Crustacea, and Hexapoda, distinct neu-

ropils for processing sensory information of the (first)
antennae are located in the deutocerebrum. According
to Hox-gene expression patterns and morphological
investigations, the deutocerebrum and the deutocerebral
antennae are homologous within Mandibulata and cor-
respond to the chelicere neuromere in Chelicerata
[91-93]. Although in some Chelicerata glomerular che-
mosensory processing areas associated with a sensory
appendage are located in the trunk ganglia (e.g. [81]),
distinct neuropils for processing of chemo- and mechan-
osensory information have not yet been reported for
their second brain neuromere. Moreover, a characteris-
tic divergence of sensory neurites and the presence of a
mechanosensory neuropil are not realized in Chelicerata.
There is a consensus now that the antenna in Onycho-
phora is a protocerebral appendage and therefore not
equivalent to the deutocerebral antenna in Mandibulata
[94-97]. In Onychophora, chemosensory centers com-
posed of glomerular neuropils are located within the
protocerebrum [98,99]. Similar to the chelicerates, sepa-
rate mechanosensory neuropils associated with the
antennal input do not seem to be present in onycho-
phorans. Strausfeld and co-workers [98,99] emphasize
the structural similarities of onychophoran and chelice-
rate brains so that we suggest that these two taxa repre-
sent the plesiomorphic arthropod character state
concerning brain architecture. In summary, within the
arthropod outgroups of Mandibulata, chemosensory
appendages and olfactory glomeruli, if present, are never
located in the second brain neuromere (deutocerebrum).
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Conclusion
Our most important conclusion is that the presence of a
bifunctional deutocerebrum composed of distinct neuro-
pils for chemo- and mechanosensory qualities is homo-
logous in Chilopoda, Diplopoda, Hexapoda and
Crustacea and can therefore be postulated as an apo-
morphic character complex for the Mandibulata. How-
ever, our neuroanatomical data strongly contradict a
sister group relationship of Myriapoda and Chelicerata
("Myriochelata; [13]), but instead support the Mandibu-
lata concept (e.g. [11,12]). In this view, the absence of
olfactory lobes in various Crustacea (Branchiopoda and
certain “Maxillopoda"; [22,100,101]) and Hexapoda
(Odonata, certain Hemiptera and Coleoptera, reviewed
in [22]) as well as the absence of the mechanosensory
neuropils in Cephalocarida (Crustacea; [102]) can be
interpreted as a reduction.

Methods
Experimental animals
Specimens were collected on the Balearic Island Ibiza
(Spain) mainly in pine forests or in Germany mainly in
litter and soil. Specimens of Craterostigmus tasmanianus
were collected by Robert Mesibov in Tasmania. If not
fixed directly after capture, individuals were kept in
plastic tubes (50 ml; Carl Roth, Germany) at room tem-
perature. For keeping of animals, they were transferred
into plastic boxes supplied with bark and water. They
were fed with Drosophila melanogaster or juveniles of
Achaeta domestica.
Representatives of all five chilopod subtaxa were

investigated: (1) Scutigera coleoptrata (Linnaeus, 1758),
Scutigeromorpha: Scutigeridae; collected in Spain: Ibiza.
(2) Lithobius forficatus (Linnaeus, 1758), Lithobiomor-
pha: Lithobiidae; collected in Germany: Aachen, Greifs-
wald. (3) Craterostigmus tasmanianus Pocock, 1902,
Craterostigmomorpha; collected in Australia: Tasmania.
(4) Cryptops hortensis (Donovan, 1810), Scolopendro-
morpha: Cryptopidae; collected in Germany: Aachen,
Greifswald. (5) Scolopendra oraniensis Lucas, 1846, Sco-
lopendromorpha: Scolopendridae; collected in Spain:
Ibiza. (6) Scolopendra subspinipes Leach, 1815, Scolo-
pendromorpha: Scolopendridae; ordered from btbe
Insektenzucht GmbH, Germany http://www.futter-
tiere24.de/. (7) Haplophilus subterraneus (Shaw, 1794),
Geophilomorpha: Himantariidae; collected in Germany:
Aachen, Greifswald. (8) Stigmatogaster dimidiatus (Mei-
nert, 1870), Geophilomorpha: Himantariidae; collected
in Spain: Ibiza.

Histology
For section series, several individuals were anesthetized,
decapitated and prefixed for 24 h in a solution of 80%

ethanol, 37% formaldehyde and 100% acetic acid
(10:4:1). After washing in sodium hydrogen phosphate
buffer (PBS, pH 7.4), specimens were postfixed for 1 h
in 2% OsO4 solution (same buffer) at room temperature
and, following dehydration in a graded series of acetone,
embedded in Araldite (Araldite epoxy resin kit, Agar
Scientific). Serial semithin sections (1-1.5 μm) were pre-
pared with a Microm HM 355 S rotary microtome and
stained using 1% toluidine blue and Pyronin G in a solu-
tion of 1% sodium tetraborate.

Autofluorescence preparation
For autofluorescence analysis, specimens were anesthe-
tized and decapitated. Dissected brains were fixed in a
solution of 4% paraformaldehyde and 4% glutaraldehyde
(1:1) for at least one week at 4°C. After several washing
steps in PBS, brains were dehydrated in a graded series
of ethanol and embedded in methyl salycilate. For
cLSM, an excitation of 488 nm was used to detect auto-
fluorescence from the nervous tissue.

Antennal Backfilling
For antennal backfills, specimens were anesthetized and
mounted in plastic Petri-dishes. One antenna was cut
and the antennal nerve was exposed. For neurobiotin
backfills, the antennal nerve stump was isolated in pet-
roleum jelly, covered by aqua dest. for two minutes, and
subsequently exposed to 5% neurobiotin (Vector
Laboratories) being dissolved in aqua dest. Preparations
were incubated at 4°C for 1 day. After final dissection
and fixation in 4% paraformaldehyde for 24 hours, the
preparations were washed in several changes of PBS and
incubated in streptavidin conjugated to Cy3 (1:2000,
Jackson Immunoresearch) for 24 hours. After washing
in several changes of PBS, the preparations were dehy-
drated in a graded series of ethanol and mounted in
methyl salycilate. In controls the brains of which were
not subjected to backfills, incubation in streptavidin
alone resulted in an absence of all labeling. For Lucifer
yellow backfills, the treatment of the antennal nerve
stump was the same as for neurobiotin backfills, but
instead of washing and incubating, the preparations
were directly dehydrated in a graded series of ethanol
after fixation and mounted in methyl salycilate.

Microscopy, 3D reconstruction, and terminology
Wholemounts and brain sections were examined with a
Nikon eclipse 90i microscope and a Leica SP 5 II confo-
cal laser scanning microscope (cLSM). All images were
processed with Adobe Photoshop using global contrast
and brightness adjustment features.
The alignment and 3D reconstruction was made using

AMIRA 5.1 (Visage Imaging) operated on a FS Celsius
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work station. In each section, contours of the nervous
system and neuropilar regions were demarcated and a
3D reconstruction was generated. The 3D reconstruc-
tion of the brain of Craterostigmus tasmanianus was
generated by merging two reconstructions of single
brain hemispheres of the same specimen.
The neuroanatomical terminology is according to [30].
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