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Purpose: The purpose of this study was to investigate the association between the
radiomics features (RFs) extracted from a whole-tumor ADC map during the early
treatment course and response to concurrent chemoradiotherapy (cCRT) in patients
with esophageal squamous cell carcinoma (ESCC).

Methods: Patients with ESCC who received concurrent chemoradiotherapy were
enrolled in two hospitals. Whole-tumor ADC values and RFs were extracted from
sequential ADC maps before treatment, after the 5th radiation, and after the 10th
radiation, and the changes of ADC values and RFs were calculated as the relative
difference between different time points. RFs were selected and further imported to a
support vector machine classifier for building a radiomics signature. Radiomics signatures
were obtained from both RFs extracted from pretreatment images and three sets of delta-
RFs. Prediction models for different responders based on clinical characteristics and
radiomics signatures were built up with logistic regression.

Results: Patients (n=76) from hospital 1 were randomly assigned to training (n=53) and
internal testing set (n=23) in a ratio of 7 to 3. In addition, to further test the performance of
the model, data from another institute (n=17) were assigned to the external testing set.
Neither ADC values nor delta-ADC values were correlated with treatment response in the
three sets. It showed a predictive effect to treatment response that the AUC values of the
radiomics signature built from delta-RFs over the first 2 weeks were 0.824, 0.744, and
0.742 in the training, the internal testing, and the external testing set, respectively.
Compared with the evaluated response, the performance of response prediction in the
internal testing set was acceptable (p = 0.048).
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Conclusions: The ADC map-based delta-RFs during the early course of treatment were
effective to predict the response to cCRT in patients with ESCC.
Keywords: esophageal squamous cell carcinoma, concurrent chemoradiotherapy, diffusion-weighted imaging,
radiomics, treatment response
INTRODUCTION

Worldwide, esophageal cancer ranks 7th in cancer incidence and
6th in mortality rate reported by the World Health Organization
(1). Esophageal squamous cell carcinoma (ESCC) is one of the
top ten characteristic tumors in China with a proportion over
90% in all esophageal cancer patients, while adenocarcinoma is
dominant in the West (2). The 5-year survival rate for locally
advanced ESCC is limited to 15-30%, and the prognosis varies
from patients even with the same treatment (3, 4). Though
concurrent chemoradiotherapy (cCRT) has become the
prevalent treatment for local advanced ESCC, individual
differences for therapeutic sensitivity still exist (5). It is
challenging to accurately predict the sensitivity to cCRT and
distinguish the discrepancy of ESCC to assist clinical decisions.

Response Evaluation Criteria in Solid Tumors (RECIST,
version1.1) is the most widely used tool for assessing solid
tumor response to nonsurgical treatment. It relies on imaging
techniques, such as X-ray and computed tomography (CT),
providing little information about the molecule, cell,
histopathology, and biology (6). Compared to these imaging
modalities, magnetic resonance imaging (MRI) is able to
precisely depict the histopathological layers of the esophageal
wall in an ex vivo evaluation (7). Notably, diffusion-weighted
imaging (DWI) with physiological information reflecting water
diffusion properties of tissues is potentially practical to monitor
tumor response. The apparent diffusion coefficient (ADC)
and the change of ADC (delta-ADC/DADC) generated from
DW-MRI showed a correlation with tumor response to treatment
(8–10). Nevertheless, the utilization of the ADC value as an
imaging biomarker is still controversial (11–13).

With the development of computerized image processing
technology during the past decades, quantitative imaging
analysis is becoming more and more popular in radiology (14).
Radiomics, which extracts numeric radiologic data from medical
imaging, quantitatively describes the shape, intensity, texture,
and other features of target structures (15). It has been reported
that various radiomics features (RFs) are associated with tumor
genes, pathology, and outcome of treatment in different tumors
(16–20). Furthermore, the change of RFs between pretreatment
images and images of other time points during or after treatment,
referred to as delta-radiomics, has been investigated in lung
cancer and rectal cancer as promising prognostic factors (21, 22).
Theoretically, delta-RFs (DRFs) reflect much detailed
information of changes induced by chemotherapy, radiation,
and immunotherapy throughout treatment rather than just
at pretreatment.

It is assumed that radiomics analysis of the ADC map is
helpful to predict early treatment response to cCRT of ESCC
2

patients. Aiming to predict response to concurrent CRT in
patients with ESCC, this study developed radiomics models
based on RFs and DRFs during early treatment. In addition,
the prediction value of ADC and DADC values were
also analyzed.
MATERIALS AND METHODS

Study Population
All protocols of this prospective and observational study were
approved by the Institutional Review Board (Project ID:
201404005). Patients from Shandong Cancer Hospital and
Institute were randomly assigned to the training set and the
internal testing set in a ratio of 7:3 to ensure an adequate sample
size. The external testing set was enrolled in Anyang
Tumor Hospital.

All methods were carried out following relevant guidelines
and regulations. All patients provided written informed consent
before enrollment. Inclusion criteria were as follows: (a) ESCC
histological ly proven by endoscopic biopsy; (b) no
contraindications to MR examination; (c) clinical stage T3 or
T4 defined on endoscopic ultrasonography, diagnostic CT scans,
or 18

fluorodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) scan; (d) no prior
anticancer treatment; (e) no distant metastasis except lymph
nodes; (f) no other primary tumor. Clinical staging was based on
the tumor-node-metastasis classification of malignant tumors
(UICC, Version 8th). All patients were treated with concurrent
CRT. The daily fractional dose of radiotherapy was 1.8–2.0 Gy,
administered 5 days a week, and the total dose was 50.4–66.0 Gy
with 6–15MVX-rays performed by intensity-modulated radiation
therapy. Before the early treatment response evaluated, all patients
accepted two cycles of chemotherapy concurrently during
radiotherapy every 3 weeks. One of the following proposals of
chemotherapy would be adopted: 1) an intravenous injection of
paclitaxel (150 mg/m2) on day 1 and cisplatin (75 mg/m2) on days
1–3; and 2) S-1 administered orally twice daily at 80 mg/m2 for 2
weeks and cisplatin (75 mg/m2) on days 1–3.

Response Assessment
The response was assessed according to RECIST 1.1 (6). Upper
gastrointestinal endoscopy, chest and abdomen CT, or whole-
body 18F-FDG PET/CT was performed 2–3 months after
treatment finished to compare with the pretreatment images.
The definition of chemoradiotherapy sensitivity was as follows:
the sensitive group comprised patients with complete response
(CR) and partial response (PR); the resistant group consisted of
patients with stable disease (SD) and progression disease (PD).
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Sequential MRI Acquisition
MRI examination with DWI and T2-weighted imaging (T2WI)
in the axial orientation was sequentially performed at about 1–3
days before treatment, 5th fraction of radiation completed (5f),
and 10th fraction of radiation completed (10f) as shown in
Figure 1A. All patients were scanned using a 3.0 T MRI
system (Achieva, Philips Medical Systems, Netherlands;
Ingenia, Philips Medical Systems, Netherlands) with body
phased-array coil anterior and spine array coil posterior. T2WI
was performed by using a two-dimensional fluid-attenuated
inversion recovery sequence (repetition time/echo time, 1,277
ms/70 ms; flip angle, 140°; bandwidth, 315 kHz; section
thickness, 4 mm; slice gap, 1 mm; field of view, 350 × 350mm;
matrix, 384 × 276; no. of slices, 24–36; imaging time, 5 minutes).
DWI was performed by using a single-shot echo-planar imaging
(repetition time/echo time, 1,244.7 ms/47.9 ms; flip angle, 140°;
bandwidth, 260 kHz; section thickness, 4 mm; slice gap, 1 mm;
field of view, 360 × 360 to 400 × 400 mm; matrix, 128 × 128; no.
of slices, 24–36; imaging time, 5 minutes). The number of signal
averaged (NSA) was 1. Diffusion gradients were applied in three
orthogonal directions by different diffusion weightings (b-values)
of 0, 300, and 600 s/mm2. Especially, b = 600 s/mm2 was assigned
Frontiers in Oncology | www.frontiersin.org 3
a NSA of 4 to improve the signal-to-noise ratio. Respiratory
triggering was used.

The ADC map was generated automatically at the MR
workspace (Philips Medical Systems Extended MR workspace,
Netherlands) from DWI, which was overlayed and averaged in
three directions with the b-value of 0 and 600 s/mm2.

ADC Value and Extraction of Original RFs
The location of the primary tumor was firstly identified on DWI
(b = 600 s/mm2) as areas of high signal (Figure 2). Although it
was not outlined on DWI, it assisted in accurately finding the
corresponding location of the tumor in the ADCmap. Regions of
interest (ROIs) were manually drawn on the ADC map via a
segmentation editor in the 3D Slicer software (version 4.10.0,
http://www.slicer.org) (23). The definition of ROI was the region
of the tumor that was of low signal in the ADC map but
excluding the lumen. Every slice containing the tumor was
outlined. These ROIs constituted a volume of interest (VOI)
with the entire tumor visualized on the ADC map as showed in
Figure 2. The mean tumor ADC value was calculated by
averaging the measured ADC values of the VOI. For whole-
tumor radiomics feature, the Slicer Radiomics, which was based
A

B

FIGURE 1 | Workflow: (A)Magnetic resonance imaging acquisition schema and time ranges of the change of radiomics features. (B)Workflow for building radiomics
signature-based prediction model.
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on PyRadiomics program (Revision 2.2.0) in the 3D Slicer
software, automatically extracted whole-tumor RFs from the
three-dimensional reconstructed VOI (24). In our practice,
resampled voxel size, LoG kernel sizes, and bin width were
respectively set to 1, 1, and 25. In total, 851 RFs were extracted
including 18 first-order statistics features, 14 shape-based (2D
and 3D) features, 24 gray-level co-occurrence matrix (GLCM)
features, 16 gray-level run length matrix (GLRLM) features, 16
gray-level size zone matrix (GLSZM) features, 5 neighboring
gray tone difference matrix (NGTDM) features, 14 gray-level
dependence matrix (GLDM) features, and 744 wavelet-based
features. Detailed classification of the extracted RFs was
summarized in Supplementary Table 1. In addition, the RFs
mentioned in our study were consistent with the definition of the
image biomarker standardization initiative (25).

RF Selection
Selection procedures were performed on the pretreatment
images with three steps.

Because DWI is susceptible to field inhomogeneities, large
amounts of magnetization artifacts in the chest area, and patient
movement, two consecutive DWI acquisitions of the same
patient may give images with slightly different imaging
characteristics, which may affect radiomics analysis. Thus, the
first is to evaluate the repeatability of the radiomics features
between two ADC maps in a short time by the intraclass
correlation coefficient (ICC) method. Five extra patients with
ESCC were enrolled before the first treatment in Shandong
Cancer Hospital and Institute (Supplementary Table 2) who
were not included in the training and internal testing sets. The
interval between the two consecutive DWI scans was 5 minutes
(Supplementary Figure 1). VOIs were delineated in the ADC
map by an experienced radiologist (WL, with 20 years of
experience in MRI), then the VOI was duplicated to the other
ADC map from the same patient. The reliability coefficient of
RFs was supposed to be higher than 0.75.

Secondly, to select RFs with high interobserver
reproducibility, VOIs were delineated by two experienced
Frontiers in Oncology | www.frontiersin.org 4
radiologists (WL, appointed as reader 1; NS, appointed as
reader 2 with 11 years of experience in MRI) who were blind
to clinical information, treatment plan, and response about
patients. Bland–Altman analysis was used to test the
interobserver reproducibility of the RFs from the VOI
delineated by different radiologists. The differences between the
same parameters extracted from two readers’ delineation were
plotted against their average and reported as a percentage. The
lower and upper reproducibility limits were calculated as ± 1.96
standard deviations. In our case, the mean and standard
deviation of the differences were supposed to be less than 5%
and 10%, respectively, as stated in related work (26, 27).

Thirdly, to reduce the number of features and select the most
significant features correlated with treatment response, the
minimum redundancy maximum relevance (mRMR) algorithm
was used to identify and rank the top 30 features. Finally, the
selected RFs were applied in the training, internal, and external
testing sets from the delineation of reader 1.

Change of the Mean of ADC
Values and RFs
The changes of the whole-tumor ADC value between images of
different time points were respectively calculated as follows:

DADC1st week =
ADC5f − ADCpretreatment

ADCpretreatment
(Eq:1)

DADC2nd week =
ADC10f − ADC5f

ADC5f
(Eq:2)

DADC2 weeks =
ADC10f − ADCpretreatment

ADCpretreatment
(Eq:3)

where DADC1st week, DADC2nd week, and DADC2 weeks denoted
the change of the ADC value within the 1st week, the 2nd week,
and the first two weeks, respectively. Similarly, ADCpretreatment,
ADC5f, and ADC10f denoted the ADC value of images acquired
FIGURE 2 | Sequential MR images in a 73-year-old male who underwent concurrent chemoradiotherapy with partial response. The value of b-factor of DWI in the
figure was 600 s/mm2. t, time point; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; ROI, region of interest; VOI, volume of interest.
March 2022 | Volume 12 | Article 787489
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before treatment, after the 5th radiation, and after the 10th
radiation, respectively.

The changes of the selected RFs were defined as the relative
difference between each measurement as follows:

DRF1st week =
RF5f − RFpretreatment

RFpretreatment
(Eq:4)

DRF2nd week =
RF10f − RF5f

RF5f
(Eq:5)

DRF2 weeks =
RF10f − RFpretreatment

RFpretreatment
(Eq:6)

where DRF1st week, DRF2nd week, and DRF2 weeks denoted the
change of RFs within the 1st week, 2nd week, and first two weeks,
and RFpretreatment, RF5f, and RF10f denoted the RFs in images
acquired before treatment, after the 5th radiation, and after the
10th radiation, respectively.

Construction of Prediction Model Based
on Radiomics Signature
As shown in Figure 1B, RFpretreatment, DRF1st week, DRF2nd week,
and DRF2 weeks were used to train a support vector machine
(SVM) classifier in the training set, and then a radiomics
signature was built by the trained classifier and evaluated in
the internal and external testing sets. The cost‐based SVM
classifier, which used the radial basis function kernel and a
cost coefficient of 0.001, was trained by RFs with the 10-fold
cross-validation. The SVM classifier transformed the feature
space to a high-dimensional space where a separating
hyperplane maximized the margin between classes. For each
patient, the SVM classifier generated a radiomics signature for
evaluating predictions of treatment response. The receiver
operating characteristic (ROC) curves of obtained radiomics
signatures in the training, internal, and external testing sets
were analyzed and then tested by the DeLong test. The chi-
square test was used to compare the predicted responses, which
were corresponding to radiomics signatures in the internal
testing with the signatures’ ground truth, i.e., treatment
response evaluated by RECIST1.1. Afterward, the eligible
radiomics signatures together with clinical characteristics were
imported to a multivariate logistic regression-based prediction
model to predict the sensitivity to treatment. Furthermore, the
performance of radiomics signatures, the ADC value, clinical
characteristics, and the regression model was assessed by the
ROC curve, respectively. The area under the curve (AUC) was
calculated, and the optimal Youden’s index was determined.

Statistical Analysis
Statistical analysis was performed using the R software (version
3.6.1, http://www.R-project.org). The ICC method, Bland–
Altman method, mRMR approach, SVM classifier, logistic
regression analysis, and ROC curve analysis were implemented
based on the R packages “irr”, “BlandAltmanLeh”, “mRMRe”,
“e1071”, and “pROC.” Chi-square test or t-test was used to
Frontiers in Oncology | www.frontiersin.org 5
examine the correlations between clinical features and treatment
response. The differences in ADC and DADC values were
compared between the sensitive group and the resistant group
by Mann–Whitney U test. P-value < 0.05 was considered as an
indicator of the statistically significant difference.
RESULTS

Clinical Characteristics
In Shandong Cancer Hospital and Institute, eighty-five
consecutive patients with ESCC were enrolled. Nine patients
were excluded, given that the DWI of 6 patients were deformed
or had high noise and 3 patients’ radiotherapy was interrupted.
Finally, 76 patients were enrolled in the study during the period
of enrollment from June 2014 to September 2019. Fifty-four of
the 76 patients experienced clinical PR, 2 with CR and 20 with
SD. Patients (n=76) were randomly assigned to training (n=53)
and internal testing sets (n=23) in a ratio of 7 to 3. There was no
significant difference in clinical characteristics between the
training and internal testing sets (sex, age, tumor location,
clinical T stage, lymph node status, and radiation dose) and
treatment response in both sets (Table 1). In Anyang Tumor
Hospital, twenty consecutive patients with ESCC were enrolled
during the period of enrollment from April 2017 to May 2019.
Three patients were excluded, given that 3 patients’ radiotherapy
was interrupted. Finally, 17 patients were enrolled in the external
testing set. Eleven of the 17 patients experienced clinical PR and
6 with SD. Clinical characteristics are presented in Table 1.

We measured the voxel volume of the whole-tumor ADC
map to substitute the tumor volume and the maximum 3D
diameter and their changes between each time point.
Supplementary Tables 3, 4 show that these parameters had no
relationship with treatment response.

Association of Sequential ADC Value and
Treatment Response
The mean values of ADCpretreatment, ADC5f, and ADC10f of all
patients are shown in Table 2. All of the ADC values and relative
changes during the first two weeks showed no significant
difference between the sensitive and resistant groups in the
training and internal testing sets. In the external testing set,
ADC in the 5th radiation showed association with treatment
response (p = 0.048). We noticed that the ADC value was gradually
higher than before treatment as the treatment progressed.

Generation and Validation of the
Radiomics Signature
A total of 560 RFs (Supplementary Table 5) were selected by the
ICC method from two consecutive whole-tumor ADC map
acquisitions in the same patient. Afterward, 224 RFs
(Supplementary Table 6) were selected from pretreatment
images in the training set via the Bland–Altman method, and
30 RFs (Supplementary Table 7) were finally chosen out
according to mRMR. Most of these RFs were calculated to
measure the local homogeneity of the image. To predict good
March 2022 | Volume 12 | Article 787489
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and bad responder, four radiomic signatures based on an SVM
classifier were respectively built with RFpretreatment, DRF1st week,
DRF2nd week, and DRF2 weeks. The effectiveness of these 4
radiomics signatures to classify the sensitive group versus the
resistant group is shown in Figure 3. Only the radiomics
signature based on DRF2 weeks, denoted as R-Signature2 weeks,
discriminated treatment response with an AUC value higher
than 0.5 in the training set [AUC = 0.824, 95% confidence
interval (CI): 0.679–0.968], the internal testing set
(AUC = 0.744, 95% CI: 0.465–1.0), and the external testing set
(AUC = 0.742, 95% CI: 0.478–0.919). No difference was found
between the training and internal testing sets according to the
results of the DeLong test (p = 0.580), nor between the training
and external testing sets (p = 0.526). Compared with the
evaluated response, the performance of response prediction in
Frontiers in Oncology | www.frontiersin.org 6
internal testing was acceptable (p = 0.048). The chi-square test of
prediction results between R-Signature2 weeks in the training set
and the internal testing set achieved a p-value of 1.000, which
implied that the distribution of R-Signature2 weeks between the
two sets was not statistically significantly different.

Combining Model Analysis
As elaborated in Supplementary Table 8, in the training set, the
outputs of univariate logistics regression showed that tumor
location and R-Signature2 weeks were separately associated with
treatment response. We performed the tumor location and R-
signature2 weeks to the prediction model of treatment response by
multivariate logistics regression (Supplementary Table 9) in the
three sets. R-Signature2 weeks was identified as an independent
factor predicting treatment response in multivariate analysis in
TABLE 1 | Patients and tumor characteristics association with treatment response in the training, internal, and, external testing sets.

Characteristics Training set (n=53) p Internal testing set (n=23) p p † External testing set (n=17) p

Sensitive group
(n=36)

Resistant group
(n=17)

Sensitive group
(n=18)

Resistant
group (n=5)

0.361 Sensitive group
(n=11)

Resistant
group (n=6)

Sex 0.821 0.048 0.793 1.000
Male 28 12 16 3 6 3
Female 8 5 2 2 5 3
Age (year) 0.412 0.446 0.675 0.660
mean ± sd 63.1 ± 8.14 65.2 ± 10.3 63.9 ± 5.6 59.0 ± 10.7 62.2 ± 8.2 64.5 ± 6.1
range 43-78 44-80 51-72 39-70 51-72 39-70
T-stage 0.730 0.576 0.602 0.515
T3 25 11 14 3 10 4
T4 11 6 4 2 1 2
LN Status 0.647 1.000 0.834 1.000
N- 7 5 3 1 4 2
N+ 29 12 15 4 7 4
Location 0.023 0.662 1.000 0.043
Cervival 0 4 1 1 1 3
Upper thoracic 15 7 7 2 6 2
Middle thoracic 14 3 6 2 4 0
Lower thoracic 7 3 4 0 0 1
Dose (Gy) 0.234 1.000 0.823 1.000
<55 19 6 9 2 9 2
≥55 17 11 8 3 8 3
March 2022 | Volume 12 | Article 7
LN, lymph node.
† Difference between the training set and the internal testing set in characteristics of patients and tumor.
*P < 0.05, statistically significant.
TABLE 2 | Association between ADC values or DADC values and treatment response in the training, internal, and external testing sets.

Set Time point ADC value (10-3 mm2/s) p Time range DADC p

Sensitive group Resistant group Sensitive group Resistant group

Training set Pre-treatment 1.695 ± 0.687 1.644 ± 0.626 0.746 1st week 0.200 ± 0.415 0.135 ± 0.293 0.391
5th radiation 1.723 ± 0.612 2.067 ± 0.875 0.253 2nd week -0.160 ± 0.218 -0.175 ± 0.286 0.819
10th radiation 2.057 ± 0.720 2.118 ± 0.697 0.381 2 weeks 0.275 ± 0.370 0.255 ± 0.400 0.746

Internal testing set Pre-treatment 1.556 ± 0.599 1.466 ± 0.946 0.363 1st week 0.177 ± 0.444 0.351 ± 0.396 0.491
5th radiation 1.847 ± 0.624 1.893 ± 0.990 0.914 2nd week -0.152 ± 0.239 0.126 ± 0.630 0.538
10th radiation 2.145 ± 0.831 1.973 ± 0.924 0.691 2 weeks 0.405 ± 0.595 0.538 ± 0.692 0.745

External testing set Pre-treatment 1.948 ± 0.247 1.818 ± 0.388 0.149 1st week 0.065 ± 0.037 0.042 ± 0.0447 0.216
5th radiation 2.084 ± 0.237 1.787 ± 0.422 0.048* 2nd week 0.119 ± 0.117 0.145 ± 0.113 0.591
10th radiation 2.387 ± 0.263 2.078 ± 0.283 0.078 2 weeks 0.177 ± 0.110 0.179 ± 0.127 1.000
ADC, apparent diffusion coefficient.
*P < 0.05, statistically significant.
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the three sets. Figure 4 shows the results of ROC analyses on the
tumor location, R-Signature2 weeks, and the regression model in
the prediction of treatment response in the training, internal, and
external testing sets. Table 3 shows the effectiveness of our
proposed regression model in discriminating the sensitive and
resistant groups.
DISCUSSION

In this study, a radiomics signature was developed that
incorporated the change of RFs based on the whole-tumor
ADC map for predicting treatment response to concurrent
CRT in patients with ESCC. Compared with pretreatment, our
study showed that the radiomics signature based on DRF2 weeks

was able to predict the treatment response for evaluations in the
following 2–3 months.

DWI-MRI was widely and routinely performed in kinds of
tumors for diagnosis and treatment assessment. As designed in
our study, ADC values were obtained at pretreatment, after the
Frontiers in Oncology | www.frontiersin.org 7
5th radiation, and after the 10th radiation. However, the mean
value of pretreatment ADC was not significantly different
between sensitive and resistant groups, which was consistent
with the studies of Kozumi in patients with ESCC undergoing
concurrent CRT (11). In fact, results of prediction of treatment
response using ADC or DADC were not consistent among
previous studies, or even the opposite (8–10, 12). In our study,
ADC5f in the external testing showed association with treatment
response, which was different from those in the training and
internal testing sets. Since the diffusion movement of water
molecules in the tissue was closely related to the distribution of
the intratumoral structure, the ADC value tended to be affected
by many factors, such as cell density, nuclear area, nuclear–
cytoplasmic ratio, tumor angiogenesis, and proteins (28–30). In
addition, tissue edema commonly occurred during CRT because
of changes in blood perfusion, cell death, and blocked lymphatic
drainage induced by radiation and cytotoxicity, which further
caused the change of the ADC value (31). We observed that the
ADC value increased in both the sensitive group and the
resistance group, but only one set of positive results was
A B

DC

FIGURE 3 | Results of support vector machine classifier in the training, internal, and external testing sets with four kinds of radiomics features. (A) Result of SVM
generating radiomics signaturepretreatment. (B) Result of SVM generating radiomics signature1st week. (C) Result of SVM generating radiomics signature2nd week.
(D) Result of SVM generating radiomics signature2 weeks. NA in (B, C) means not applicable.
March 2022 | Volume 12 | Article 787489
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obtained in the external testing set. Thus, ADCpretreatment and the
changes during the first ten radiations were limited in predicting
the treatment response.

The mean value of ADC and DADC reflected the average level
of the Brownian motion of water molecules and a rough change
in the whole tumor, while radiomics offered more heterogeneity
information involving the above molecular and pathologic
characteristics in different regions. The rise of radiomics using
quantitative image features of tumors provided an opportunity
for the development of predictive biomarkers (32). Over the
years, although several studies on the prediction performance of
radiomics analysis to treatment response had been reported in
patients with esophageal cancer, the predictive radiomics
features were hard to reproduce since there were thousands of
RFs and diverse selection criteria. For example, in the 18F-FDG
PET, different radiomics features were found with discriminatory
capability in predicting response to CRT in patients with
esophageal cancer (33–35). Many researchers are committed to
the standardization and unification of radiomics due to its virtue
Frontiers in Oncology | www.frontiersin.org 8
of convenience to use (36, 37). In our study, the radiomics
signature was developed from 30 radiomics features from
pretreatment images, and these radiomics features were
selected with high interobserver reproducibility, high relevance,
and low redundancy. Nevertheless, it was inadequate to predict
the response merely using RFs from pretreatment images as what
the single-shot image modeling did.

In our study, the selected features were extracted from a four-
gray-level matrix, which was the ADC value matrix in the ADC
map. Sixteen selected feature names were explained representing
homogeneity or heterogeneity. The interpretation of other
features was based on their calculation, including the
distribution pattern of gray and the neighborhood intensity of
the image. Their changes are recorded by DRFs. We proposed to
train an SVM classifier by the RFs extracted from the images of
four time points, including RFpretreatment, DRF1st week, DRF2nd
week, and DRF2 weeks. R-Signaturepretreatment showed no
correlation with treatment response. Instead, containing the
change of whole-tumor heterogeneity over treatment, the
A B

FIGURE 4 | Receiver operating characteristic curves analysis for tumor location, radiomics signature2 weeks, and regression model, respectively, in the training set
(A) and the external testing set (B).
TABLE 3 | Performance of radiomics signatures and models for predicting treatment response in the training, internal, and external testing sets.

Set Predictor Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) p AUC (95% CI)

Tumor location 100.0 23.5 75.5 73.5 100.0 0.046 0.681 (0.504-0.773)
Training
set

R-Signature2 weeks 100.0 64.7 88.7 85.7 100.0 <0.0001 0.824 (0.694-0.915)

Tumor location+
R-Signature2 weeks

100.0 82.4 94.3 92.3 100.0 <0.0001 0.966 (0.875-0.996)

Internal testing
set*

Tumor location 22.2 100.0 39.1 100.0 26.3 0.256 0.650 (0.425-0.835)
R-Signature2 weeks 88.9 60.0 82.6 88.9 60.0 0.044 0.744 (0.522-0.901)
Tumor location+
R-Signature2 weeks

– – – – – – –

External testing set Tumor location 90.9 50 76.5 75.0 75.0 0.0499 0.674 (0.486-0.924)
R-Signature2 weeks 81.8 66.7 76.5 81.8 66.7 0.0465 0.742 (0.478-0.919)
Tumor location+
R-Signature2 weeks

81.8 83.3 82.3 90.0 71.4 0.027 0.841 (0.586-0.970)
March 20
22 | Volume
*Tumor location was showed a p-value of 0.256, which means the model was not established.
PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve; CI, confidence interval.
*P < 0.05, statistically significant.
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radiomics signature based on DRF2 weeks predicted the treatment
response with an accuracy of 0.887, 0.826, and 0.765 in the three
sets, respectively. In this study, the trend of ADC change during
the initial two weeks showed an increase with no correlation with
treatment response. This increase was thought to reflect the
reduction in cell membrane integrity and changes in tumor cell
numbers due to cytotoxic drugs and radiation, resulting in less
restriction on the Brownion motion of water molecules (12). As
the treatment progressed, tumor cells gradually decomposed and
were absorbed, and the blood vessels and fibers in the
microenvironment changed together. During this time, the
changes of internal structures were not synchronized due to
heterogeneity including different cell-cycle, oxygen status, and
proliferative potential (38, 39). Our study was designed to record
meaningful changes as early as possible (40). By screening
radiomics features, effective predictions can be made through
statistical methods. The results showed that the larger the time
span, the more significant the changes obtained in radiomics
features. Delta-radiomics has previously been used for the
prediction of response to tumor treatment with ADC maps
and CT (41, 42). As radiation and reaction to cytotoxic drugs
accumulated, early changes from the tumor interior were
recorded and quantified by a ratio that reduced the variability
of the data. Moreover, Nasief et al. predicted the treatment
response for CRT of pancreatic cancer by combining CT-based
delta-radiomics and increasing CA19-9 (43).

In our study, esophageal tumor location was associated with
treatment response in the training and external testing sets, while
few studies had reported that the location of primary tumors was
associated with the sensitivity of CRT in ESCC. One explanation
was that biases existed in the clinical characteristic distribution in
different responders with treatment due to the small sample size.
Such as the result in the internal testing set, although the AUC
changed, there was no increase in diagnostic performance. The
other one was that the uneven dose distribution reduced the
treatment effect since cervical esophagus had physiological
curvature affected by the peripheral anatomical structure (44).
The association of tumor locations and treatment response was
to be further investigated in a larger cohort.

Our study had several limitations. Firstly, although an external
testing set was included, the cohort of our study was still small. A
multicenter studywith a larger patient cohort is required. Secondly,
though several selected procedures were used, esophageal tumors
were manually delineated, which introduced an uncertain level of
observer dependency. Thirdly, compared with RECIST 1.1 in the
definitive cCRT, the pathological evaluation of neoadjuvant CRT
was more convincing, and a systematic control comparison was
supposed to be studied in the future.
Frontiers in Oncology | www.frontiersin.org 9
In conclusion, we developed a radiomics signature-based
model that incorporated the early change of RFs based on the
sequential whole-tumor ADC map to predict treatment response
to cCRT in patients with ESCC. This model provided a solution
to quantify intratumoral changes and utilized them to guide
treatment planning at an early date.
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