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Abstract.	 [Purpose] We aimed to determine whether lower leg muscle echo intensity, an indicator of muscle qual-
ity, is a useful predictor of gait variability after examining the relationship between physical activity and gait vari-
ability in community-dwelling older and healthy young adults. [Participants and Methods] This study comprised 
two tasks. In the first task, 18 older and 25 young adults were included as participants. We examined the relationship 
between the amount of physical activity and gait variability in both groups. In the second task, muscle echo intensity 
related to gait variability in each group was measured using ultrasound echoes after identifying common factors 
related to gait variability in 19 older and 19 younger adults, and trends were compared. [Results] In the first task, 
gait variability was significantly higher in the younger group than in the older group. A significant negative cor-
relation was found between the amount of physical activity and gait variability in both groups. In the second task, 
multiple regression analysis was performed for gait variability, and lower leg muscle echo intensity was identified 
as a significant factor. There was no difference in the correlation coefficient between gait variability and lower leg 
muscle echo intensity between the two groups. [Conclusion] Lower leg muscle quality was one of the causes of gait 
variability, suggesting that it is a useful predictor of gait sway status.
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INTRODUCTION

Physical activity does not only improve physical and mental function, it also has the potential to reverse the effects of 
chronic disease; however, participation in physical activity among the older adults is usually inadequate1). As humans age, 
their anatomical and physiological functions decline. Consequently, skeletal muscle disorders are a common negative event 
in the older adults2). As sarcopenia is a core component of the frailty cycle3), some form of assessment and intervention for 
the skeletal muscles is essential. In older adults, the variability of spatial (stride length and step distance), mechanical (gait 
speed), and temporal (gait cycle) parameters of gait cause more negative changes than noted in younger people4). The flex-
ibility and muscle weakness associated with aging are thought to cause a gait with a large degree of sway. Co-contraction5), a 
postural control strategy related to gait, is higher in the older than in the young adults, and increased co-contraction is a type 
of strategy for maintaining postural stability6, 7). However, excessive co-contraction inhibits a smooth gait and increases the 
energy cost of motion8).
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Older adults may experience a decrease in physical activity due to fewer opportunities to go outside. Thus, it is meaningful 
to evaluate physical activity and gait variability from a preventive perspective to maintain future health. We focused on 
muscle quality in relation to co-contraction. Muscle quality is affected by the infiltration of non-contractile tissues, such 
as adipose tissue, into the muscles9), which can now be easily assessed by muscle echo intensity (MEI) using ultrasound 
equipment. Generally, the somatosensory system, including the intrinsic sensory system, accounts for a high percentage of 
human postural control strategies10). In older adults with reduced skeletal muscle mass, the sensitivity of muscle spindles and 
other proprioceptors that are selectively distributed in the lower limbs is reduced and postural control is impaired11). While 
the function of Ia inhibition and alpha motor neurons in antagonist muscles is reduced in the older adults, the infiltration of 
intramuscular fat also reduces the percentage of contractile tissue that produces muscle strength and decreases proprioceptor 
sensitivity. This is speculated to be accompanied by a loss of Ia inhibition, leading to excessive co-contraction. Thus, it is 
likely that the degree of intramuscular fat infiltration increases gait variability. By examining the relationship between muscle 
qualities in gait variability, a new index for gait can be created from a preventive perspective. Moreover, if muscle quality is 
determined as a factor influencing gait variability, effective exercise therapy and assessment can be provided to those with 
low physical activity.

This study aimed to examine the relationship between physical activity and gait variability in community-dwelling older 
and healthy young adults, to identify common factors and their influence on gait variability, and to determine whether MEI 
is associated with gait variability. We then verified whether MEI was a predictor of gait variability.

PARTICIPANTS AND METHODS

This study was divided into two tasks (Fig. 1). In Task 1, an interview was conducted among 18 community-dwelling 
older adults and 25 healthy young adults. In order to identify the characteristics of the older population as a whole, we did not 
classify the older adults by gender for this task. The interview obtained data regarding participant characteristics (gender, age, 
and medical history). Next, after measuring the participants’ height, the body mass index (BMI) was calculated by measuring 
their body weight using a body component analyzer (Inbody 270: Inbody Japan Inc., Tokyo, Japan). The young group was 
then assessed using the International Physical Activity Questionnaire (IPAQ). For the older group, the Physical Activity 
Questionnaire for Elderly Japanese (PAQ-EJ), which is adapted to the lifestyle of elderly Japanese, was used. The two scores 
were calculated using a prescribed formula to obtain the total amount of physical activity12, 13). Gait variability was evaluated 
using a triaxial accelerometer (ATR-Promotions, Inc., Kyoto, Japan) to measure the change in trunk acceleration along the 
horizontal axis. The measurement method was the same as for the 10-m walking test, but with a 3-m front-back aided zone. 
The changes in the horizontal axis were extracted as the root-mean-square (RMS). RMS was divided by the square of the 
gait speed to obtain the normalized root-mean-square (NRMS). The triaxial accelerometers were firmly attached to the third 
lumbar spinous process, which is considered to reflect the center of gravity, using a velcro belt.

Participants for Task 2 were 19 community-dwelling older adults and 19 healthy young adults matched in terms of gender 
ratio. The same method was used for participant characteristics (gender, age, medical history, height, weight, and BMI) as in 
Task 1. In addition, the skeletal muscle mass index (SMI) was calculated. Next, grip strength (GRIP-D, Takei Kiki Kogyo 
Co., Ltd., Niigata, Japan) was measured twice on both sides, and the bilateral averages were used. Ankle plantar flexor and 
dorsiflexor muscle strength were measured using a multipurpose device for evaluating muscle function (BIODEX System 4, 
Sakai Medical Co., Ltd., Tokyo, Japan). The measurement protocol consisted of 5 seconds of isometric contraction, a 10-sec-
ond rest period, and 5 seconds of dorsiflexion. This was performed for a total of two sets, and the results were averaged. 
A diagnostic ultrasound device (SonoSite iViz, FUJIFILM, Tokyo, Japan), a linear probe (L38v/5-10 MHz, FUJIFILM), 
and ultrasound jelly (F JELLY Ultrasound Gel MIDDLE, FUJIFILM) were used to measure MEI in the lower legs. The 
measurement point was the medial head of the gastrocnemius muscle at 30% proximal to the length of the lower leg, since 
the role of the triceps muscle is an important determinant in gait14). Pixels in the measurement area were quantified using 

Fig. 1.	  Overview of protocols for Task 1 and Task 2.
10MWT: 10 m walk test; IPAQ: International Physical Activity Questionnaire; PAQ-EJ: Physical Activity Questionnaire for Elderly 
Japanese; SMI: Skeletal muscle mass index; MEI: Muscle echo intensity; CCI: Co-contraction index.
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image analysis software (Image J software, National Institute of Health, Bethesda, MD, USA) with an 8-bit grayscale (256 
grayscale levels), with values of 255 and 0 designating white and black, respectively15). The area for analysis in the image 
was analyzed as a region of interest with the vertical axis being the largest area, not including the fascia, and the horizontal 
axis being the center three-quarters of the image. Gait variability was evaluated with the same method as in Task 1. To 
evaluate the muscle contraction index, the lower leg co-contraction was calculated based on the muscle activity obtained 
from the 10-m walk test at the same time as the evaluation of gait variability. Thereafter, the lower leg co-contraction index 
(CCI) was calculated using a specified formula16). Measurements were made using a surface electromyograph (TeleMyo 
2400T G2, NORAXON U.S.A., Scottsdale, AZ, USA) with electrodes (Blue Sensor M-00-S, Metts, Tokyo, Japan) affixed to 
the tibialis anterior muscle and the medial head of the gastrocnemius muscle. The electrode for tibialis anterior muscle was 
placed on the proximal third of the line connecting the tip of the fibula to the tip of the medial capsule, and the electrode for 
the medial head of the gastrocnemius muscle was placed along the lower leg of the maximum bulge of the gastrocnemius 
muscle (Nihon Kohden Co., Ltd., Tokyo, Japan). Before applying the electrodes, the skin at the measurement site was treated 
with a pretreatment agent for biological signal monitoring (SkinPure, Nihon Kohden Co., Ltd.) and with alcohol to lower the 
impedance17). The sampling frequency of the surface electromyograph was 1,500 Hz, and a bandpass filter (frequency range: 
20–500 Hz) was applied to the data. The raw waveforms were smoothed (RMS: 50 ms window) and then normalized by the 
peak value during gait18). A foot switch that can be synchronized with the electromyograph was used to identify one gait 
cycle. The foot switch is a sensor that can display an electrical signal based on heel contact pressure. Data on five stable gait 
cycles were extracted and utilized. The muscle activity obtained was calculated using the CCI as the degree of simultaneous 
contraction of the lower leg muscles during one gait cycle16).

IBM® SPSS® version 27 and Microsoft Excel 2019 (Microsoft Corporation, Redmond, WA, USA) were used for the 
statistical analyses. For Task 1, the unpaired t-test was used for between-group comparisons of height, weight, BMI, and 
gait speed, and the Mann–Whitney U test was used to compare age and NRMS. The χ2 test was used to compare gender. 
Spearman’s rank correlation analysis was used to examine the association of NRMS with IPAQ and PAQ-EJ in each group, 
and correlation coefficients were calculated. For Task 2, for intergroup comparisons between the young and older groups, un-
correlated t-tests were performed for height, weight, SMI, ankle plantar flexor strength, ankle dorsiflexor strength, mean grip 
strength, lower leg MEI, and lower leg CCI, whereas them Mann–Whitney U test was performed for age, BMI, and NRMS. 
Subsequently, Spearman’s rank correlation analysis was used to calculate correlation coefficients for the following indices: 
age, BMI, SMI, ankle plantar flexion muscle strength, ankle dorsiflexion muscle strength, average grip strength, lower leg 
CCI, and lower leg MEI for NRMS. Multiple regression analysis was performed on the combined population of both groups, 
with the relevant indices as explanatory variables and NRMS as the dependent variable. The forced entry method was used 
for each variable. After conducting multiple regression analysis, the variance inflation factor (VIF) was set to 10, and if it 
exceeded 10, the variable was excluded because of the strong influence of multicollinearity. Thereafter, to compare the trends 
of the items extracted by multiple regression analysis between the young and older groups, Spearman’s rank correlation 
analysis and a test of difference in correlation coefficients were used to determine any differences in correlation coefficients. 
The significance level was set at 5%. This study was approved by the ethics committee of the International University of 
Health and Welfare (approval No. 21-Ig-10). For the recruitment of participants in this study, permission was obtained from 
a senior manager to attend a meeting of the older adults organized by a local municipality in Kanagawa Prefecture. After 
distributing the recruitment guidelines and explaining the study to the potential research participants, we confirmed their 
willingness to participate and obtained their written consent.

RESULTS

The characteristics of the young and older groups are shown in Table 1, and correlations between the median values of 
IPAQ and PAQ-EJ (first quartile–third quartile) and NRMS are shown in Table 2. A significant negative correlation was 
found between physical activity and NRMS in both the young (r=−0.46 [p<0.05] for IPAQ and NRMS) and older (r=−0.59 
[p<0.05] for PAQ-EJ and NRMS) groups. NRMS was significantly lower in the young group (p<0.05). The characteristics 
of the young and older groups are shown in Table 3. Age, NRMS, lower leg CCI, and lower leg MEI were significantly 
lower in the younger group (p<0.05), whereas height and ankle plantar flexion muscle strength were significantly higher in 
the younger group (p<0.05). No significant differences were found in other indices. Mean grip strength (r=−0.42), lower leg 
CCI (r=0.64), and lower leg MEI (r=0.61) were significantly correlated with NRMS (p<0.05). The results of the multiple 
regression analysis are shown in Table 4. Multiple regression analysis was conducted using NRMS as the dependent variable 
and mean grip strength, lower leg CCI, and lower leg MEI as explanatory variables. Mean grip strength and lower leg CCI 
were not significant (p>0.05), whereas the standard partial regression coefficient for lower leg MEI was significant with 
β=0.50 (p<0.05) (adjusted R2: 0.46, p<0.05). VIF was 1.86. Figure 2 shows the correlation of lower leg MEI with NRMS in 
the young and older groups. In the younger group, lower leg MEI (r=0.48) was moderately correlated with NRMS (p<0.05). 
In the older group, lower leg MEI (r=0.59) was moderately correlated with NRMS (p<0.05). A test of the difference between 
the two groups for the correlation coefficient showed no significant difference (Z=0.44 [p>0.05]).
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Table 2.	 Relationship between physical activity and gait variability in task 1

Analysis Median (1st–3rd quartiles)
Correlation coefficient

NRMS
IPAQ 2,208 (1,683–4,321) −0.46*
PAQ-EJ 66.8 (42.9–98.2) −0.59*
Values are expressed as median (1st–3rd quartiles), *p<0.05.
IPAQ: International Physical Activity Questionnaire; PAQ-EJ: Physical Activity Questionnaire for 
Elderly Japanese; NRMS: Normalized root-mean-square.

Table 3.	 Characteristics of healthy young adults and older adults living in the community in task 2

Young group (n=19) Older group (n=19)

Gender (n)
Males 8 8
Females 11 11

Age (years)** 21.4 ± 3.1 73.1 ± 4.4
Height (cm)* 163.3 ± 8.0 156.7 ± 6.7
Body weight (kg) 56.1 ± 9.4 54.5 ± 7.6
BMI (kg/m2) 21.0 ± 2.6 22.2 ± 2.6
SMI (kg/m2) 6.6 ± 1.1 6.5 ± 0.8
Ankle strength  
(ft-Lbs/kg: %)

Plantar flexion* 91.1 ± 23.3 65.2 ± 26.7
Dorsal flexion 41.2 ± 10.0 39.0 ± 11.5

Grip strength (kgf) 30.1 ± 8.6 28.3 ± 8.3
Gait speed (m/s) 1.43 ± 0.22 1.41 ± 0.27
NRMS (m/s2)* 0.71 ± 0.08 0.82 ± 0.18
Lower leg CCI (%)* 30.5 ± 9.8 38.6 ± 11.8
Lower leg MEI (a.u.)* 47.8 ± 8.8 68.1 ± 15.8
Values are expressed as mean ± standard deviation (SD), *p<0.05, **p<0.01.
BMI: Body mass index; SMI: Skeletal muscle mass index; NRMS: Normalized root-mean-square; 
CCI: Co-contraction index; MEI: Muscle echo intensity.

Table 4.	 Results of the multiple regression analysis for normalized root-mean-square (NRMS)

Partial regression coefficient: B Standardized partial regression coefficient: β Adjusted R2 VIF
Constant 0.44
Lower leg CCI 0.002 0.23 1.50
Lower leg MEI 0.002 0.50* 0.46* 1.86
Grip strength 0.003 −0.09 1.41
*p<0.05.
CCI: Co-contraction index; MEI: Muscle echo intensity; VIF: Variance inflation factor.

Table 1.	 Characteristics of healthy young adults and older adults living in the community in task 1

Young group (n=25) Older group (n=18)
Gender (n) Males 12 8

Females 13 10
Age (years)** 22.3 ± 3.9 73.1 ± 4.5
Height (cm)** 164.7 ± 7.7 157.1 ± 6.9
Body weight (kg) 58.9 ± 10.3 54.6 ± 7.8
BMI (kg/m2) 21.6 ± 2.9 22.1 ± 2.6
Gait speed (m/s) 1.43 ± 0.19 1.42 ± 0.27
IPAQ (METs*min/week) 2,208 (1,683–4,321)
PAQ-EJ (METs*hr/week) 66.8 (42.9–98.2)
NRMS (m/s2)* 0.70 ± 0.13 0.81 ± 0.18
Values are expressed as mean ± standard deviation or median (1st–3rd quartiles), *p<0.05, **p<0.01.
BMI: Body mass index; IPAQ: International Physical Activity Questionnaire; PAQ-EJ: Physical 
Activity Questionnaire for Elderly Japanese; NRMS: Normalized root-mean-square.
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DISCUSSION

The first task in this study aimed to determine the relationship between gait variability and the amount of physical activity 
in the younger and older populations, to clarify the significance of assessing gait variability in older adults living in the 
community. McGibbon et al.19) showed that regarding gait, young persons have a lower limb control schema in which the 
pelvis leads the trunk, whereas older adults predominantly have a lower limb control schema in which the trunk leads the 
pelvis. This gait style makes it difficult for the older adults to cope with falls and stumbles. Lee et al.20) showed that the 
co-contraction of the trunk muscles is lower in the older than in younger and middle-aged participants in relation to gait. Al-
though co-contraction has been reported to increase as a compensatory measure6, 7), the degree of co-contraction is different 
between the trunk and lower limbs. Therefore, the lower co-contraction of the trunk in the older adults compared to that in the 
young suggests that the older adults have a less stable gait. Therefore, as in the previous studies, the older participants walked 
with more sway even at the same gait speed compared to the younger participants. In this study, IPAQ and PAQ-EJ, which 
are physical activity measures, both showed a significant negative correlation with gait variability. Generally, a decrease in 
physical activity depresses skeletal muscle function, such as muscle weakness, both in young and older adults21). In the case 
of the older population, the effects of aging also overlap, resulting in skeletal muscle disorders such as sarcopenia22). Despite 
the widely recognized benefits of habitual physical activity, many older adults do not meet the minimum amount of physical 
activity needed to stay healthy1). However, the results of this study showed that physical activity is related to gait variability, 
which may be one of the factors that can increase physical activity by intervening in gait variability.

In Task 2, a group comparison was conducted to identify differences in characteristics between the young and older 
groups. Thereafter, a correlation analysis and multiple regression analysis were conducted to identify the common factors that 
influence gait variability for both the young and the older adults. Post-hoc tests were used to compare and validate the trend of 
lower leg MEI against NRMS. The results showed that there were differences in NRMS, ankle plantar flexion strength, lower 
leg CCI, and lower leg MEI between the young and older groups, and that the older group had higher gait variability and 
lower physical function. These differences are related to degenerative changes due to the effects of aging. In addition, in Task 
1, physical activity and gait variability were related in both the young and older groups. From these results, correlation and 
multiple regression analyses were conducted to identify common factors affecting gait variability. The results showed that 
mean grip strength, lower leg CCI, and lower leg MEI were associated with NRMS. In the subsequent multiple regression 
analysis with NRMS as the dependent variable, lower leg MEI was significant with β=0.50.

In the absence of sarcopenia, it is generally accepted that a person can maintain a certain degree of walking ability even 
when muscle mass and muscle strength are reduced23). However, the older adults are likely to have a gait that is highly 
unsteady due to the universal dysfunction in the skeletal muscles that occurs with aging. In terms of motor function, grip 
strength is related to total body muscle mass24), which may be related to NRMS. In addition, the older adults tend to have 
a short stride length and a wide step distance, indicating a conservative gait strategy24). Co-contraction is involved in the 
background of this gait strategy, and it is significantly higher in the older than in the young adults with regard to gait control 
strategies5). Furthermore, patients with Parkinson’s disease, which inevitably results in gait disturbance, have a strong lower 

Fig. 2.	 Correlation between normalized root-mean-square (NRMS) and lower 
leg muscle echo intensity (MEI) in the younger and older groups.

Spearman’s rank correlation analysis was performed separately for each group.
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leg co-contraction25). This suggests that increased co-contraction is a type of strategy for maintaining postural stability, 
since co-contraction is believed to enhance postural maintenance6) and joint stiffness7). However, an excess of these factors, 
combined with a decrease in the torque exerted during gait26), prevents efficient gait. This suggests that NRMS and lower leg 
CCI are related, as co-contraction increases in those with greater gait variability in order to control gait variability, whether 
they are young or old.

Co-contraction is a common phenomenon that is related to neurological function, and it is associated with the Ia inhibitory 
response27). The regulation of neural function is mainly performed by the visual, vestibular, and proprioceptive sensory 
systems, of which the somatosensory system, which includes the proprioceptive sensory system, plays a major role10). The 
sensory input of proprioceptors is immediately and unconsciously adjusted to unpredictable movements of the support 
surface28). However, the older adults are often found to have reduced sensitivity29) of the proprioceptive sensory system. 
Therefore, it is important to understand the effects of co-contraction derived from the proprioceptive system on movement. 
Task 2 was focused on muscle quality, which reflects the degree of non-contractile tissue within skeletal muscle. As joint stiff-
ness may increase due to an increase in non-contractile tissue within skeletal muscle7), co-contraction is expected to increase 
in those with deteriorating muscle quality. Moreover, the older adults have more intramuscular fat infiltration compared 
with younger participants, which in addition to decreasing the proportion of contractile tissue, causes decreased propriocep-
tor sensitivity30), which may have caused excessive co-contraction in association with decreased Ia inhibition. As a result, 
significant differences in NRMS and lower leg MEI were found between the groups, suggesting that they were associated 
with NRMS. We compared whether the trend of lower leg MEI, which had the greatest influence in the multiple regression 
analysis, differed between the young and older groups, and found that lower leg MEI was significantly associated with NRMS 
in both groups. The test of difference between these two correlation coefficients showed no significant difference between 
the two groups. Although the results do not allow us to determine a causal relationship based on correlations between the 
two groups, the absence of differences in the correlation coefficients and the results obtained by multiple regression analysis 
suggest that lower leg MEI is a factor in gait variability.

In conclusion, our results indicate that lower leg MEI had the strongest influence on NRMS and there was no difference 
in the correlation between NRMS and lower leg MEI by the age group. Furthermore, lower leg muscle quality is one of the 
causes of gait variability in the qualitative evaluation of gait, suggesting that it is a useful index for predicting the state of 
gait variability.

A limitation of this study is that it did not examine the middle-aged group. Since skeletal muscle mass decreases over time 
with age, it seemed necessary to subdivide the sample into smaller groups to obtain more detailed data.
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