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Astrocytes play crucial roles in the brain and are involved in the neuroinflammatory
response. They become reactive in response to virtually all pathological situations in
the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND).
Astrocyte reactivity was originally characterized by morphological changes (hypertrophy,
remodeling of processes) and the overexpression of the intermediate filament glial fibrillary
acidic protein (GFAP). However, it is unclear how the normal supportive functions of
astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and
astrocyte reactivity take place over several years or decades, the issue is even more
complex and highly debated, with several conflicting reports published recently. In this
review, we discuss studies addressing the contribution of reactive astrocytes to ND. We
describe the molecular triggers leading to astrocyte reactivity during ND, examine how
some key astrocyte functions may be enhanced or altered during the disease process,
and discuss how astrocyte reactivity may globally affect ND progression. Finally we will
consider the anticipated developments in this important field. With this review, we aim to
show that the detailed study of reactive astrocytes may open new perspectives for ND.

Keywords: astrocyte reactivity, neuron-astrocyte interactions, neuroinflammation, Alzheimer’s disease,
Huntington’s disease, amyotrophic lateral sclerosis, Parkinson’s disease

Introduction

Astrocytes become reactive in response to virtually all pathological conditions in the central
nervous system (CNS), both following acute injuries (stroke, trauma) and during progressive
diseases (tumors, epilepsy and ND see Box 1 and Table 1). Astrocyte reactivity is observed in
many mammalian and bird species. In non-mammalian species, which have low number of or no
parenchymal astrocytes, it is unclear whether bona fide astrocyte reactivity exists (Appel, 2013). Yet,
in lampreys, newts and frogs, astrocyte-like cells react to injury and form a glial bridge promoting
axonal regeneration (Bloom, 2014). In Drosophila, glial cells with some typical astrocyte functions
display strong phagocytic activity and morphological changes following neuronal degeneration
(Freeman, 2015).

Astrocyte reactivity involves morphological, transcriptional and functional changes that we will
try to cover in this review. For the sake of clarity, we will focus primarily on Alzheimer’s (AD) and
Huntington’s diseases (HD), as well as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease
(PD). In particular, we aim to illustrate that astrocyte reactivity is a shared and central feature in
ND that requires further characterization.
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BOX 1 | Terminology and definitions

“Neuroinflammation” defines the state of reactivity of astrocytes and microglia induced by pathological conditions. It may be associated with the recruitment of
peripheral macrophages and lymphocytes. Reactive astrocytes and microglia mediate the innate immune responses in the brain (Heneka et al., 2014).

In this review, the term “astrogliosis” will not be used because it implies the notion of astrocyte proliferation. In fact, in most injury or disease models, astrocytes do
not proliferate (see Section Do Reactive Astrocytes Proliferate in ND?) and thus, reactive astrogliosis is a confounding term.

“Astrocyte reactivity” or “reactive astrocytes” refer to astrocytes that respond to any pathological condition in the CNS. Astrocytes are considered reactive when
they become hypertrophic and overexpress the intermediate filament GFAP. This “minimal definition” of reactive astrocytes is thus based on the two most universal
hallmarks of reactivity, but this does not exclude that additional transcriptional, morphological and functional changes occur in a disease-specific manner, as discussed
later in this review. Astrocyte reactivity involves the activation of a transcriptional program triggered by specific signaling cascades (see Section How Do Astrocytes
Become Reactive?) that results in long-lasting changes in morphology and function, persisting over several hours, days or even decades. This should be distinguished
from “activated astrocytes,”which are stimulated by exposure to neurotransmitters, for example. This transient response involves intracellular Ca2+ on the millisecond
to second time scale, and is sometimes accompanied by subtle morphological changes (Bernardinelli et al., 2014), but not long term increases in GFAP gene expression
or morphological hypertrophy.

“Glial scar” is a specific form of astrocyte reactivity, which is irreversible and involves major morphological remodeling of reactive astrocytes along the disrupted
parenchyma.

“Resting astrocytes” will be used to denote astrocytes that are not reactive. However, it does not mean that astrocytes are inactive; instead, it refers to a non-disease
state, or a “homeostically active” state.

TABLE 1 | Reactive astrocytes are found in vulnerable brain regions in animal models and patients with ND.

When Where References Comments

AD Patients Before clinical symptoms.
GFAP levels increase with Braak
stage

Entorhinal cortex and
hippocampus.
Gradual progression to temporal,
frontal and parietal lobes

Simpson et al., 2010; Carter
et al., 2012

Murine models May start before amyloid deposition.
Prominent when plaques are formed

Primarily around amyloid plaques.
(Brain region depends on the
model)

Heneka et al., 2005;
Duyckaerts et al., 2008;
Olabarria et al., 2010

Astrocytes located far from
plaques are atrophied in
3xTg-AD mice

HD Patients Already visible at grade 0 in
putamen.

Primarily in caudate and putamen.
Later in motor cortex, globus
pallidus, thalamus, hippocampus

Vonsattel et al., 1985;
Faideau et al., 2010

Murine models Late or no reactivity Striatum Tong et al., 2014; Ben Haim
et al., 2015

Strong reactivity in models with
neuronal death (Lenti-Htt82Q
or toxins)

ALS Patients Before motor symptoms Ventral and dorsal horns in the
spinal cord.
Lateral descending corticospinal
tracts, subcortical white matter,
cortical gray matter in the brain

Maragakis and Rothstein,
2006; Philips and
Robberecht, 2011

Murine models Before motor symptoms Pattern similar to that in patients Hall et al., 1998; Barbeito
et al., 2004; Maragakis and
Rothstein, 2006

PD Patients Follows dopaminergic cell death Substantia nigra, correlates with the
severity of neuronal loss

Forno et al., 1992; Damier
et al., 1993

MPTP- monkeys Follows dopaminergic cell death Substantia nigra Barcia et al., 2004

MPTP-mice
6-OHDA rats

Follows microglial activation, peaks
at 4–5 days after intoxication

Substantia nigra and striatum Sheng et al., 1993;
Kohutnicka et al., 1998;
Hirsch and Hunot, 2009

It has been very difficult to distinguish the contribution of
astrocytes from that of microglia because they usually become
reactive in concert and both are involved in neuroinflammation
(see definitions in Box 1). However, they have quite different
functions in the brain in normal conditions; therefore, they may
also play different roles during ND. Cell-type specific approaches

based on viral vectors or transgenesis offer a unique opportunity
to understand the roles of reactive astrocytes (Davila et al.,
2013). In this review, we will focus on reactive astrocytes in ND.
Excellent reviews recently published on microglia in ND can be
found elsewhere (Hanisch and Kettenmann, 2007; Heneka et al.,
2014).
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Reactive Astrocytes in ND: Definitions and
General Considerations

A Brief History
In 1856, Rudolf Virchow first described “neuroglia” as a
connective tissue with embedded nerve cells (Virchow, 1856).
The development of microscopic and histological techniques
by Camilo Golgi, Santiago Ramón y Cajal and Pio del Rio
Hortega later revealed the morphology of astrocytes and their
extraordinary diversity (Somjen, 1988; Kettenmann and Ransom,
2004). The first description of astrocyte reactivity also dates from
the nineteenth century, when Virchow reported that the spinal
cord tissue was more fibrillar in neurosyphilis patients than in
healthy individuals (Weigert, 1895; Oberheim et al., 2008). The
concept of astrocyte reactivity truly emerged with the discovery
of the intermediate filament (IF) protein GFAP (Eng et al., 1971)
and the development of immunohistological staining for this
protein (Eng et al., 2000). Strong GFAP expression in astrocytes
became the hallmark of reactivity (Bignami andDahl, 1976), even
though other IF such as vimentin and nestin are also upregulated
by reactive astrocytes.

Morphological Changes
Another cardinal feature of astrocyte reactivity is hypertrophy,
which was reported by early neuropathologists. Reactive
astrocytes display an enlarged cell body and processes
(Wilhelmsson et al., 2006). In addition, astrocyte arborization
is reorganized with reactivity: the number of primary processes
changes (Wilhelmsson et al., 2006) or they polarize toward the
site of injury (Bardehle et al., 2013) or toward amyloid plaques in
AD (see below).

Less is known about the thin distal processes in astrocytes
called perisynaptic processes (PAP), which contact synapses.
PAP are dynamic and they influence synaptic transmission in
physiological conditions (Oliet et al., 2001; Genoud et al., 2006;
Bernardinelli et al., 2014). It is experimentally challenging to
monitor morphological changes in PAP that are smaller than
the diffraction limit. New microscopy techniques will allow the
study of PAP with higher resolution in both resting and reactive
astrocytes (Panatier et al., 2014).

Astrocytes occupy separate and non-overlapping spatial
domains (Bushong et al., 2002). This organization seems fairly
insensitive to reactivity during ND because an increase in domain
overlap occurs only after severe insults such as recurring epilepsy,
but not in AD models (Oberheim et al., 2008).

Reactive Astrocytes in Commonly Studied ND
AD is the most common form of dementia, characterized by
cognitive deficits including learning impairment and memory
loss (Querfurth and Laferla, 2010). The brains of AD patients
display extracellular amyloid depositions composed of amyloid
β (Aβ) peptides and intracellular neurofibrillary tangles formed
by hyperphosphorylated Tau protein. AD is characterized by
severe neuronal loss; primarily located in the hippocampus
and the entorhinal cortex (Querfurth and Laferla, 2010). More
than 100 transgenic mouse models of AD are now available
(Duyckaerts et al., 2008, see also www.alzforum.org). Most

involve the expression of mutated amyloid precursor protein
(APP), presenilin 1 (PS1), PS2 and/or Tau, and they replicate
some neuropathological features and functional alterations of
AD as well as memory deficits (Gotz and Ittner, 2008).
Astrocyte reactivity can be detected in the brain of AD patients
with imaging and proteomic techniques before the onset of
symptoms (Owen et al., 2009; Carter et al., 2012). Similarly,
foci of reactive astrocytes are detected at early stages in
some mouse models, even before amyloid deposition (Heneka
et al., 2005). Reactive astrocytes are usually found around
amyloid plaques (Nagele et al., 2003; Wyss-Coray et al., 2003,
Table 1). However, plaques can also be devoid of reactive
astrocytes and patches of reactive astrocytes may be found in
the absence of plaques in patients (Simpson et al., 2010). In
addition, atrophied astrocytes may be located at a distance
from plaques in some mouse models (Olabarria et al., 2010, see
Tables 1, 2).

HD is a fatal genetic ND caused by an autosomal dominant
mutation, involving the expansion of glutamine (Q) repeats in
the protein huntingtin (Htt). HD patients present psychiatric,
cognitive and motor symptoms, the most characteristic being
progressive chorea (Vonsattel et al., 1985). HD is characterized
by the extensive loss of GABAergic neurons in the caudate
and putamen (striatum) and by mutant Htt (mHtt) aggregates.
Many HD transgenic mouse models exist, which were generated
by expressing mHtt under the endogenous Htt promoter
(knock-in) or using various transgenic constructs (see Table 2).
Astrocyte reactivity is an early feature of HD because GFAP
immunoreactivity is detected in the striatum of presymptomatic
carriers and it increases with disease progression (Faideau et al.,
2010). Strikingly, no clear evidence of astrocyte reactivity exists
in most HD models (Tong et al., 2014; Ben Haim et al., 2015,
Table 1). Instead, HD astrocytes show functional alterations
(see Section What Do Reactive Astrocytes Do or Fail to Do
During ND?) in the absence of the main features of reactivity
(hypertrophy and high GFAP expression).

ALS is characterized by the progressive loss of upper
motor neurons in the motor cortex and lower motor neurons
in the spinal cord and brainstem, resulting in progressive
muscle atrophy, weakness and spasticity (Rothstein et al., 1992).
Murine models overexpressing mutated forms of superoxide
dismutase 1 (mSOD1), identified in familial forms of ALS,
develop progressive motor neurodegeneration that mimics the
pathogenic features of ALS (Turner and Talbot, 2008, Table 2).
More recently, new genetic loci associated with familial ALS have
been identified, like the 43 kDa transactivation-response DNA-
binding protein (TDP-43), and new mouse models are being
developed (Robberecht and Philips, 2013). Reactive astrocytes are
observed in both ALS patients andmodels (Table 1). They appear
in vulnerable regions and the degree of reactivity correlates with
the level of neurodegeneration (Barbeito et al., 2004).

PD is characterized by the loss of dopaminergic neurons in
the substantia nigra (SN), resulting in dopamine deficiency in
the striatum and alteration of the basal ganglia circuitry. This
causes major motor symptoms, such as akinesia, bradykinesia,
tremor, rigidity and postural instability (Agid, 1991), as well as
non-motor alterations such as cognitive fluctuations (Witjas
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et al., 2002). The first animal models of PD were based on
toxins that specifically induce the degeneration of dopaminergic
neurons in the SN pars compacta (SNpc) in rodents or primates
(e.g., 6-hydroxydopamine [6-OHDA], 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine [MPTP] or rotenone). Transgenic
mice harboring genes mutated in familial PD (α-synuclein,
leucine-rich repeat kinase 2. . . ) were subsequently developed
(Beal, 2010, see Table 2). The involvement of microglial cells in
PD has been more extensively studied than that of astrocytes.
Yet, astrocyte reactivity is detected in the SNpc of patients with
PD, individuals intoxicated with MPTP and in animal models
(Forno et al., 1992; Hirsch and Hunot, 2009, Table 1).

Do Reactive Astrocytes Proliferate in ND?
The original definition of astrocyte reactivity included the notion
of proliferation. The idea that reactive astrocytes proliferate
is based on the misleading observation that the number of
GFAP+ cells increases after injury (Dimou and Gotz, 2014).
Most astrocytes in the adult mouse CNS express GFAP at
undetectable levels under physiological conditions. Upon injury
or disease, reactive astrocytes upregulate GFAP, leading to an
increased number of GFAP+ cells. Recent evidence based on
BrdU incorporation or Ki67 labeling reveals that astrocyte
proliferation is very limited, especially in ND. The exact value
depends on the model, age and detection method. For example,
reactive astrocytes do not proliferate in the APP/PS1dE9 mouse
model of AD (Kamphuis et al., 2012), and represent less than
3% of total proliferating cells in the APPPS1 mouse model of
AD (Sirko et al., 2013) and less than 7% in a model of ALS
(Lepore et al., 2008a). Proliferating astrocytes account for only
1% of total gray matter astrocytes in APPPS1 mice (Sirko et al.,
2013). In the temporal cortex of AD patients, GFAP+ cells
were carefully quantified by co-labeling with ubiquitous astrocyte
markers (glutamine synthase [GS] or aldehyde dehydrogenase 1
family, member L1). This analysis confirms that the high density
of GFAP+ cells is explained by enhanced GFAP expression and
cortical atrophy (Serrano-Pozo et al., 2013).

Can Astrocyte Reactivity be Reproduced In vitro?
With the development of in vitro systems to study astrocytes
(McCarthy and De Vellis, 1980), it became possible to study
reactive astrocytes in a dish. Human astrocytes can also be
grown in vitro, either from fetuses or biopsies (Sharif and
Prevot, 2012) or generated from induced pluripotent stem
cells, including from patients (Krencik and Ullian, 2013).
Generally, primary astrocytes are exposed to cytokines such
as interleukins (IL), tumor necrosis factor alpha (TNFα) and
interferon gamma (IFNγ), which induce many transcriptional
and functional changes (Sofroniew, 2009; Sofroniew and Vinters,
2010). Describing them all is beyond the scope of this review.
The main limitation to in vitro studies is that astrocytes in a dish
show signs of reactivity, even in the absence of stimulus. They
express high levels of GFAP and usually have a flat, polygonal
morphology, very different from the bushymorphology observed
in situ. This precludes the identification of the hallmarks of
astrocyte reactivity. Co-culture with neurons triggers a stellate
morphology and low GFAP expression, suggesting that neurons
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release factors that maintain astrocytes in a resting state (see
Section The Molecular Triggers of Reactivity). More recently,
new methods have been developed to reduce astrocyte reactivity
in vitro, such as exposure to heparin-binding EGF-like growth
factor (Foo et al., 2011) or 3D polymer matrix (Puschmann et al.,
2013). Given the above-mentioned limitations, we will focus on
results obtained in animal models, or even more relevant, in
patient brains.

How Do Astrocytes Become Reactive?

The Molecular Triggers of Reactivity
Astrocyte reactivity is triggered by any alteration in brain
homeostasis. Astrocytes are equipped with many receptors
and intracellular signaling cascades to respond quickly to
changes in their environment (Buffo et al., 2010; Burda and
Sofroniew, 2014). They express many receptors, including
pattern recognition receptors (PRR), that detect abnormal
signals in the extracellular space (viral or bacterial molecules,
serum proteins, aggregated proteins such as Aβ. . . ), increased
concentrations of some molecules (cytokines, chemokines,
purines) and even the absence of “normal” signals from
neighboring cells (growth factors, neurotransmitters. . . ) (Buffo
et al., 2010; Burda and Sofroniew, 2014; Kigerl et al., 2014).
Indeed, astrocytes, like microglia, seem to be actively maintained
in a resting state. For instance, knocking out fibroblast growth
factor (FGF) receptors or β1 integrin (a subunit of the integrin
receptor family that binds extracellular matrix molecules)
in astrocytes, results in astrocyte reactivity in absence of
pathological stimuli (Robel et al., 2009; Kang et al., 2014).

Extracellular molecules inducing astrocyte reactivity have
primarily been studied in acute injury models involving scar
formation (Burda and Sofroniew, 2014). Such acute lesions
involve the breach of the blood-brain-barrier (BBB) and
infiltration of immune cells. By contrast, these events occur
very progressively in ND, if ever (Zlokovic, 2008). Therefore,
although some molecular triggers are shared between acute
injuries andND,molecules such as endothelins or serum proteins
are probably not involved in the initiation of astrocyte reactivity
in ND.

The exact molecular triggers that occur during the initial
stages of ND, before significant neurodegeneration takes
place, are unknown. It is probable that glial cells (both
astrocytes and microglial cells) can detect even mild neuronal
dysfunction (altered neurotransmission, release of stress signals,
and abnormally folded proteins). Indeed, astrocytes are very well
positioned at the tripartite synapse to detect abnormal synaptic
activity and microglial cells permanently monitor the brain
parenchyma. Once activated by such signals, glial cells further
release active molecules to set up a reactive state. For example,
purines, pro-inflammatory cytokines and growth factors may be
released by reactive astrocytes and, in even larger amounts by
activated microglia (Buffo et al., 2010, see Section Release of
Active Molecules).

Importantly, in ND, mutant proteins (e.g., mHtt, mSOD1)
may be directly expressed by astrocytes or toxic proteins
(Aβ, hyperphosphorylated tau, α-synuclein) can be taken up

by astrocytes and activate them (see Figure 1). Lentiviral-
mediated expression of mHtt specifically in striatal astrocytes
increases GFAP expression and induces cellular hypertrophy
(Faideau et al., 2010). Similarly, the expression of SOD1G86R, α-
synucleinA53T, or tau (either WT or P301L mutant) in astrocytes,
induces their reactivity (Gong et al., 2000; Dabir et al., 2006;
Gu et al., 2010). The precise molecular mechanisms linking
the accumulation of intracellular toxic proteins in astrocytes to
reactivity remain to be characterized (see Figure 1). Cytosolic
PRR that can detect intracellular “danger associated molecular
patterns” have been described in microglial cells, but much
less is known about their role in astrocytes (Heneka et al.,
2014).

Other molecular triggers of reactivity (e.g., cytokines, growth
factors, purines), bind to their cognate receptors at the astrocyte
membrane and activate various intracellular signaling cascades.
These include the Janus Kinase/Signal Transducer and Activator
of Transcription (JAK/STAT) pathway, the Nuclear Factor of
Kappa light polypeptide gene enhancer in B-cells (NF-κB)
pathway, the calcineurin (CN) pathways and the Mitogen-
Activated Protein Kinase (MAPK) pathway (Figure 1).

The JAK/STAT3 Pathway
The JAK/STAT3 pathway is a ubiquitous cascade that
predominantly mediates cytokine signaling in cells. It regulates
the expression of genes involved in many functions including
cell growth, proliferation, differentiation and inflammation.
Cytokines of the interleukin family (e.g., IL-6, ciliary
neurotrophic factor [CNTF] and leukemia inhibitory factor)
signal through specific cell-surface receptors possessing the
glycoprotein 130 receptor (gp130) subunit. Upon binding,
they trigger the assembly of multimeric receptors, leading to
the phosphorylation and nuclear translocation of STAT3, and
the transcription of its target genes (Levy and Darnell, 2002
and see Figure 1 for a detailed description of the pathway).
Interestingly, the JAK/STAT3 pathway also controls the onset of
astrogliogenesis during brain development (He et al., 2005), by
promoting the expression of mature astrocyte genes such as gfap
and S100β (Kanski et al., 2014).

It is well established that the JAK/STAT3 pathway mediates
astrocyte reactivity and scar formation in models of acute
injuries (Okada et al., 2006; Herrmann et al., 2008). Fewer
studies have been performed in ND models. Phospho-STAT3
(pSTAT3) is detected in the nucleus of reactive astrocytes (as
well as microglia and motor neurons) in the spinal cord of
mouse models and patients with ALS (Shibata et al., 2009,
2010). STAT3 accumulates in the nucleus of reactive astrocytes
in the hippocampus of transgenic mouse models of AD and
in the striatum of murine and primate models of HD (Ben
Haim et al., 2015). Activation of the STAT3 pathway seems
to be a universal feature of astrocyte reactivity in ND models,
shared between disease models, brain regions and animal
species (Figure 2). Pharmacological inhibition of JAK2 in the
MPTP mouse model of PD significantly decreases pSTAT3
and GFAP levels, suggesting that the JAK/STAT3 pathway is
required to induce astrocyte reactivity (Sriram et al., 2004).
However, this pathway is active in all brain cells; therefore,
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FIGURE 1 | Main extracellular stimuli and intracellular signaling
pathways leading to astrocyte reactivity in ND. Dysfunctional
neurons, activated microglia, and astrocytes themselves release a wide
range of molecules, which bind specific receptors at the astrocyte plasma
membrane. These signals activate intracellular pathways such as the
JAK/STAT3 pathway (in red), the NF-κB pathway (in orange), the
CN/NFAT pathway (in purple), or the MAPK pathway (in green). The
JAK/STAT3 pathway is activated by interleukins such as IL-6 or CNTF.
Upon cytokine binding, the kinase JAK is activated and STAT3 is recruited
to the gp-130 receptor. JAK phosphorylates STAT3, which dimerizes and
translocates to the nucleus, where it binds consensus sequences (STAT
responsive element, SRE) in the promoter region of its target genes. In
astrocytes, the JAK/STAT3 pathway regulates the transcription of gfap,
vimentin, and stat3 itself. STAT3 also induces the expression of SOCS3,
the endogenous inhibitor of the JAK/STAT3 pathway, which mediates an
inhibitory feedback loop. The NF-κB pathway is activated by
pro-inflammatory cytokines such as TNFα and IL-1β. The canonical NF-κB
pathway involves the activation of the IKK complex by receptor-bound
protein kinases, leading to the phosphorylation of IκBα, the master
inhibitor of NF-κB. Upon phosphorylation, IκBα is polyubiquinated and
targeted to the proteasome for degradation. The NF-κB subunits p50 and
p65 then translocate to the nucleus, where they activate the transcription
of various target genes such as inducible nitric oxide synthase and cox2.

Like the JAK/STAT3 pathway, NF-κB induces the transcription of its own
inhibitor, IκBα. The CN/NFAT pathway is activated by cytokines such as
TNFα or by glutamate. CN is a Ca2+-dependent phosphatase with many
regulatory effects on the NF-κB pathway depending on the initial trigger
and cellular context. CN also activates NFAT by dephosphorylation. NFAT
binds specific promoter sequences and activates the expression of target
genes (cox2). The MAPK pathway is activated by growth factors and
cytokines which initiate a phosphorylation cascade. Upon activation,
ERK1/2, p38 and c-jun also regulate gene transcription through the
activation of a specific set of transcription factors (TF). ND are
characterized by intracellular and/or extracellular depositions of pathologic
proteins (such as Aβ, Tau, and mHtt, which are shown in blue). In ND,
pathological proteins can either be endogenously expressed or
internalized by astrocytes. They represent “danger associated molecular
patterns” that bind specific pattern recognition receptors (PRR) at the
membrane or within astrocytes. These abnormal proteins can interfere
with intracellular signaling pathways, activating or inhibiting various
signaling proteins (represented as lightning, see Section Additional levels
of Complexity and Figure 3). The precise molecular mechanisms involved
in astrocytes are mostly unknown. These complex signaling cascades
strongly affect the astrocyte transcriptome and lead to astrocyte reactivity.
Abbreviations: NFAT RE, NFAT responsive element; GF-R, Growth factor
receptor; GPCR, G-protein coupled receptor.

non-specific effects of JAK2 inhibitors on other cell types
cannot be ruled out. To overcome this limitation, we used
lentiviral vectors to overexpress suppressor of cytokine signaling

3 (SOCS3), the endogenous inhibitor of the JAK/STAT3 pathway,
selectively in astrocytes of the adult mouse brain. SOCS3
overexpression prevented the nuclear accumulation of STAT3
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FIGURE 2 | Activation of the JAK/STAT3 pathway is a common
feature of astrocyte reactivity in various ND models. Images of brain
sections from several models of AD and HD (APP/PS1dE9 mice,
3xTg-AD mice, Hdh140 mice, and the murine and primate
lenti-Htt82Q-based models of HD). For all ND models, STAT3 (green)

accumulates in the nucleus of reactive astrocytes labeled with GFAP (red)
in specific vulnerable regions (as indicated at the bottom). The first line
shows the merged STAT3 (green)/GFAP (red) staining in age-matched
control animals for each model. Scale bars: 20μm (mouse) and 40μm
(primate). Adapted from Ben Haim et al. (2015).

and GFAP upregulation in mouse models of ND. Furthermore,
SOCS3-expressing astrocytes displayed a resting morphology,
showing that the JAK/STAT3 pathway is responsible for astrocyte
reactivity in these models (Ben Haim et al., 2015). Interestingly, a
recent paper showed that the Drosophila ortholog of STAT3 also
modulates the reactivity of glial cells following injury (Doherty
et al., 2014). Therefore, the JAK/STAT3 pathway is a conserved
and central pathway for astrocyte reactivity.

The NF-κB Pathway
The NF-κB pathway is another pathway associated with
neuroinflammation. It is involved in many cellular processes
including immune responses, inflammation, cell division and
apoptosis (Mattson and Meffert, 2006 see Figure 1 for a detailed
description of the pathway). This pathway is activated by several
known pro-inflammatory agents (e.g., lipopolysaccharide [LPS],
IL-1β, TNFα) (Kaltschmidt et al., 2005). The NF-κB pathway is
found activated during ND. Following microinjection of Aβ1-
42 oligomers into the rat cortex, NF-κB activation is detected in
some GFAP+ astrocytes, along with cyclooxygenase 2 (COX2)
and IL-1β, two NF-κB target genes (Carrero et al., 2012). NF-
κB accumulates in astrocyte nuclei in the R6/2 model of HD

(Hsiao et al., 2013) and in the spinal cord of ALS patients (Migheli
et al., 1997). However, experiments involving an NF-κB-GFP
reporter construct in ALS mice demonstrate that this pathway is
predominantly active in microglial cells in the spinal cord (Frakes
et al., 2014). In fact, the NF-κB pathway seems to be active in
many cell types other than reactive astrocytes during ND. NF-κB
is activated in dopaminergic neurons in the SNpc of PD patients
(Hunot et al., 1997), in peripheral immune cells in patients with
HD (Trager et al., 2014) and, in hippocampal and entorhinal
cortex neurons of AD patients, but not in glial cells (Terai
et al., 1996; Kaltschmidt et al., 1997; Ferrer et al., 1998). Overall,
this ubiquitous cascade is found activated in various cell types
including astrocytes but these observations do not prove that NF-
κB is required for astrocyte reactivity. In a mouse model of ALS,
Crosio et al. found that inhibiting NF-κB signaling selectively in
astrocytes only transiently attenuated their reactivity at the onset
of disease (Crosio et al., 2011).

Overall, the NF-κB pathway is activated in ND and plays a
key role in microglial activation, but this cascade does not seem
essential to initiate astrocyte reactivity. Further studies in other
models are needed to understand the role of NF-κB pathway in
astrocyte reactivity during ND.
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The Phosphatase Calcineurin
The Ca2+/calmodulin-dependent serine/threonine phosphatase
CN regulates gene expression by modulating transcription
factors such as nuclear factor of activated T-cells (NFATs) and
NF-κB (Furman and Norris, 2014). CN is a ubiquitous protein,
although it is expressed at high levels in the brain. It regulates
growth, differentiation and various cellular processes in T-cells,
osteoclasts and myocytes (Hogan et al., 2003 and see Figure 1 for
a detailed description of the pathway).

CN is activated in inflammatory conditions. Several studies
have linked the CN/NFAT pathway to astrocyte reactivity, in
particular in AD. Indeed, CN immunoreactivity is high in
reactive astrocytes in aged mice and around amyloid plaques
both in AD patients and mouse models (Furman and Norris,
2014). Activated NFAT1 and 3, two downstream targets of CN,
are found in both neurons and astrocytes in AD brains (Abdul
et al., 2009).

The effects of CN on astrocyte reactivity are extremely
complex and context-dependent because CN can both trigger
and prevent reactivity (Furman and Norris, 2014). On the
one hand, overexpression of constitutively active CN (caCN)
in primary rat hippocampal astrocytes induces morphological
and transcriptional changes reminiscent of astrocyte reactivity
in vivo (Norris et al., 2005). Viral-mediated overexpression
of VIVIT, a blocking peptide that inhibits NFAT, attenuates
astrocyte reactivity around amyloid depositions in APP/PS1dE9
mice (Furman et al., 2012). But on the other hand, caCN
expression in astrocytes reduces GFAP induction following brain
injury or LPS injection (Fernandez et al., 2007), and in APP/PS1
mice (Fernandez et al., 2012). This discrepancy between the
pro- and anti-reactivity action of CN may be controlled by its
signaling partners (Fernandez et al., 2012; Furman and Norris,
2014): its downstream targets (NF-κB vs. NFAT for example)
as well as its activators. Indeed, Aβ and IGF-1 both activate
CN in cultured astrocytes, but they have opposite effects on
the NF-κB pathway (Pons and Torres-Aleman, 2000; Lim et al.,
2013).

Overall, CN appears to modulate rather than induce astrocyte
reactivity. Whether the effects of CN are conserved in other
models and ND remains to be assessed.

The MAPK Pathway
The binding of growth factors (such as FGF, EGF, and TGFα),
cytokines or extracellular matrix proteins to their specific cell-
surface receptors activates the MAPK pathway (Jeffrey et al.,
2007). This is mediated by the activation of small GTP-ase
proteins (RAS) and the successive phosphorylation of MAP3K,
MAP2K, and MAPK. There are three main phosphorylation
cascades, with p38, ERK1/2 or JNK as downstream effectors
(see Figure 1 for a detailed description of the pathway). All
result in the activation of different transcription factors by
phosphorylation. Cellular stress and extracellular matrix proteins
such as integrins activate the c-jun N-terminal kinase (JNK)
cascade, whereas cytokines such as IL-1β activate p38 (Jeffrey
et al., 2007).

The MAPK pathway is activated in many cell types in ND
patients and models. Reactive astrocytes contain active forms of

p38, JNK and ERK in mouse models and/or in patients with
ALS (Migheli et al., 1997; Tortarolo et al., 2003; Bendotti et al.,
2004; Chung et al., 2005). However, in ALS mice, p38 is also
activated in motor neurons and microglial cells (Tortarolo et al.,
2003). Similarly, p38 and JNK are activated both in neurons
and reactive astrocytes in the brain of patients with various
tauopathies (Ferrer et al., 2001). In AD patients, phosphorylated
forms of p38 are observed in neurons and glial cells around
plaques (Hensley et al., 1999) but only in microglial cells in a
mouse model (Koistinaho et al., 2002). Several MAPK inhibitors
have been tested in an attempt to reduce neuroinflammation
in pathological conditions; however, they are thought to act on
reactive microglia (Kaminska et al., 2009).

Overall, although the MAPK pathway is activated in
many cell types in ND patients and mouse models, to
the best of our knowledge, there is no evidence showing
that it is directly involved in the initiation of astrocyte
reactivity in ND.

Additional Levels of Complexity
Interactions between Pathways
There are many levels of crosstalk between these intracellular
signaling pathways (Figures 1, 3). For instance, depending on
the specific cellular environment, STAT3 and NF-κB pathways
may interfere with each other through direct physical interaction,
perform reciprocal inhibition through their respective inhibitors,
or cooperate in the regulation of transcription of target genes
(Grivennikov and Karin, 2010; Oeckinghaus et al., 2011).
Similar interactions between STAT3 and ERK have been
reported in vitro (Jain et al., 1998). In astrocyte cultures,
the stimulation of purinergic receptors by specific agonists
results in STAT3 phosphorylation, suggesting crosstalk between
STAT3 and purinergic signaling cascades (Washburn and Neary,
2006). Similarly, several members of the MAPK family may
interact with the NF-κB pathway. For example, p38 is a
co-factor for NF-κB activation (Hoesel and Schmid, 2013).
However, most of these mechanisms were described in cell
lines, using cytokine stimulation or expression of constitutively
active mutant proteins. Whether these interactions occur in
reactive astrocytes in vivo remains to be demonstrated, especially
in ND.

In addition, transcription factors such as STAT3 can also
bind non-consensus sequences and interact with co-factors or
epigenetic regulators, which represent an additional level of
transcriptional regulation (Hutchins et al., 2013). Zamanian
et al. recently showed that astrocyte reactivity induced by LPS
injection or ischemia in the mouse brain induces the expression
of hundreds of genes (Zamanian et al., 2012). Only a subset of
these genes was common between the twomodels, illustrating the
diversity of the transcriptional changes that may occur in reactive
astrocytes, depending on the trigger and cellular environment
(see Figure 3).

MicroRNA
MicroRNAs (miRNA) are non-coding RNA involved in the post-
transcriptional regulation of gene expression. Several studies
have linked changes in miRNA expression to astrocyte reactivity
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FIGURE 3 | Complex interactions between intracellular cascades
result in a unique pattern of astrocyte reactivity in ND. (1) Many
signals can trigger astrocyte reactivity (see Section How do Astrocytes
become Reactive? and Figure 1) such as cytokines, purines or
abnormal epitopes like aggregated proteins. Astrocytes may also react
to the absence of “resting signals” from neighboring cells, which
occurs with neuronal death in ND. (2) These molecular signals are
detected by specific receptor complexes at the astrocyte membrane,
which activate several signaling cascades such as the JAK/STAT3
pathway, the NF-κB pathway, and the MAP kinase pathway (see also
Figure 1). These pathways and their effectors interact either directly or
indirectly, in the cytoplasm, in the nucleus, or on DNA promoter
regions (see Section Additional Levels of Complexity). Recent studies
support the idea that these cascades eventually converge on the
JAK/STAT3 pathway, triggering a transcriptional program of reactivity in

astrocytes. This program is modulated at several levels. (3)
Disease-specific proteins (mHtt, mSOD1) endogenously expressed in
astrocytes as well as internalized aggregated proteins (Aβ) can directly
interfere with these signaling cascades or with transcriptional activity.
(4) Several environmental factors may also affect the transcriptional
program in reactive astrocytes, such as nuclear factors (other
transcription factors, chromatin state) and environmental factors (age,
sex). In the brain, dialog with other cell types or the specific brain
regions involved is another potential level of modulation. These
complex signaling cascades result in (5a) common features of
astrocyte reactivity such as the upregulation of GFAP and cellular
hypertrophy and (5b) disease-specific outcomes. This scheme illustrates
how several signals can converge on a central signaling cascade that,
in turn, is modulated in a disease- and environment-specific manner to
produce a particular functional outcome.

(Bhalala et al., 2013). For example, the expression of particular
miRNA increases in parallel with markers of reactivity, in the
brains of patients and models of AD (Li et al., 2011) and
in mouse astrocytes after spinal cord injury (Bhalala et al.,
2012). Furthermore, miR145 reduces GFAP expression (Wang
et al., 2015), whereas miR181 controls the expression of several
cytokines in astrocytes (Hutchison et al., 2013). These miRNAs
can also modulate signaling cascades including the NF-κB (Cui
et al., 2010) and JAK/STAT pathways (Witte and Muljo, 2014).
Overall, miRNAs, by regulating gene networks, add another
level of control to astrocyte reactivity, which requires further
investigation in ND.

The Effects of Mutant Proteins
Interestingly, mutant proteins involved in familial forms of
ND may also interfere directly with intracellular cascades and
thus affect signaling that reaches the nucleus (Figure 3). For
example, wild-type Htt plays a role in NF-κB nuclear transport
(Marcora and Kennedy, 2010) andmHtt impairs NF-κB signaling
in astrocytes (Chou et al., 2008). In addition, mHtt interacts
with the inhibitor of κB kinase (IKK) and inhibits IKK activity
and NF-κB signaling (Khoshnan et al., 2004). Finally, ND are
associated with dysfunction of the ubiquitin proteasome system
(UPS, see Section Processing of Mutant Proteins), which is
responsible for the degradation of IκB, the master inhibitor of
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NF-κB (Oeckinghaus et al., 2011, Figure 1). JAK proteins can
also be targeted to the UPS by SOCS3 (Kershaw et al., 2014).
Alterations in the UPS may thus indirectly influence the activity
of several signaling cascades within astrocytes.

In conclusion, astrocyte reactivity can be triggered by many
extracellular or intracellular signals. Although several signaling
pathways are activated in reactive astrocytes, they seem to
converge on the JAK/STAT3 pathway (Figure 3). Other cascades
such as the NF-kB pathway or CN may regulate, rather than
induce, astrocyte reactivity in ND. These signaling pathways
result in massive transcriptional changes that may affect many
astrocyte functions.

What Do Reactive Astrocytes Do or Fail to
Do during ND?

Insights from Cytokine-induced Astrocyte
Reactivity
As a first attempt to elucidate the functional changes occurring
in reactive astrocytes, cytokines and pro-inflammatory agents
were overexpressed directly in the brain to induce reactivity.
This was achieved by the injection of recombinant proteins,
viral vector-mediated gene transfer or through transgenic mice
overexpressing the protein of interest. Clearly, many functional
changes are triggered by exposure to these molecules (Sofroniew,
2014). In addition to astrocytes, microglial cells also become
activated and peripheral immune cells can be recruited within
the brain parenchyma. Interestingly, reactivity can be selectively
induced in astrocytes, leavingmicroglial cells virtually unaffected,
by overexpressing the cytokine CNTF (Lavisse et al., 2012),
or through the genetic ablation of β1-integrin in astrocytes
(Robel et al., 2009). Such approaches have contributed to identify
functional changes occurring in reactive astrocytes, including
changes in glutamate homeostasis (Escartin et al., 2006; Beurrier
et al., 2010), energy metabolism (Escartin et al., 2007; Carrillo-
De Sauvage et al., 2015) and K+ homeostasis (Seidel et al., 2014;
Robel et al., 2015); see Liberto et al. (2004) for a general review.

More relevant to ND, experiments have also been performed
with disease-causing agents like Aβ or mHtt to decipher the
functional changes occurring in reactive astrocytes during ND.

Insights from Disease Models
In the following paragraphs, we will present several astrocyte
functions that are known to be modified by reactivity, instead
of describing each ND separately, to illustrate the existence of
shared mechanisms between several ND.

Glutamate Homeostasis
Alteration of glutamate uptake is probably one of the best
documented and earliest described dysfunction of astrocytes
in ND (Maragakis and Rothstein, 2004; Soni et al., 2014).
Indeed, astrocytes are responsible for most glutamate uptake
at synapses, through transporters encoded by excitatory amino
acid transporter gene 1 and 2 (EAAT1 and 2, also called GLAST
and GLT1 in rodents) (Danbolt, 2001). Inefficient glutamate
uptake leads to over-stimulation of glutamate receptors, which
causes excitotoxic cell death in neurons. Excitotoxicity is a

well-described pathological mechanism in ND (Maragakis and
Rothstein, 2004).

Pioneering work from the Rothstein laboratory showed that
glutamate transport is impaired in synaptosomes from patients
with ALS (Rothstein et al., 1992). EAAT2 protein levels are low
in the spinal cord and motor cortex of patients with familial
or sporadic ALS (Rothstein et al., 1995) and animal models
expressing mSOD1 (Bendotti et al., 2001; Howland et al., 2002),
even before neuronal loss (Howland et al., 2002).

EAAT2 mRNA (Arzberger et al., 1997) and protein (Faideau
et al., 2010) levels are also decreased in the caudate and
putamen of patients with HD, depending on the disease stage
(Faideau et al., 2010). In the prefrontal cortex of patients with
HD, the uptake of glutamate is significantly impaired (Hassel
et al., 2008). Such alterations are reproduced in mouse and fly
models of HD (Lievens et al., 2001, 2005). Importantly, selective
expression of mHtt in striatal astrocytes is sufficient to reduce
GLT-1 expression, alters glutamate uptake and is associated with
the dysfunction of striatal neurons (Faideau et al., 2010) and
motor abnormalities (Bradford et al., 2009). Thus, alteration
of glutamate uptake in astrocytes contributes to the neuronal
toxicity observed in HD.

Alteration of glutamate homeostasis is also thought to
contribute to the pathogenesis of AD. Binding of [3H] aspartate
(a transportable analog of glutamate that does not bind to
glutamate receptors) is reduced in the midfrontal cortex of
patients with AD (Masliah et al., 1996). In a transgenic mouse
model of AD, aspartate binding and glutamate transporter
levels are lower than in WT littermates (Masliah et al.,
2000). However, mRNA levels of glutamate transporters were
unaffected in this model, suggesting that post-transcriptional
modifications are involved. Indeed, in protein lysates from
AD brains and Aβ-treated synaptosomes, EAAT2 is oxidized,
which may impair its function (Lauderback et al., 2001).
In addition, alternative EAAT2 splice variants with reduced
glutamate transport capability (Scott et al., 2011) and abnormal
detergent-insoluble EAAT2 (Woltjer et al., 2010) are found
in vulnerable brain regions of AD patients. Finally, in brain
slices, Aβ1–42 treatment results in the internalization of GLT-
1, which reduces glutamate clearance by astrocytes (Scimemi
et al., 2013). Therefore, transcriptional, post-transcriptional and
post-translational mechanisms account for the dysregulation of
EAATs in AD.

The low expression and poor functionality of EAATs appears
to be a truly universal feature of ND. Expression of the human tau
protein under the GFAP promoter decreases EAAT expression
in the brainstem and the spinal cord and impairs glutamate
transport in synaptosomal preparations from the spinal cord
(Dabir et al., 2006). The selective expression of α-synucleinA53T
in astrocytes also reduces GLT-1 levels in both pre-symptomatic
and symptomatic mice and triggers the death of dopaminergic
neurons in the SNpc (Gu et al., 2010).

Once taken up from the synaptic cleft by astrocytes, glutamate
is metabolized into glutamine by GS. Glutamine is then
transported back to neurons and used for the production of
glutamate andGABA (Danbolt, 2001). GS expression is low in the
temporal cortex of patients with AD (Le Prince et al., 1995) and
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in the hippocampus of 3xTg-ADmice (Olabarria et al., 2011). GS
mRNA levels are also lower in R6/2mice (Lievens et al., 2001) and
in BACHDmice (Boussicault et al., 2014) than inWT littermates.
In the mouse hippocampus, the reduction in GS expression in
reactive astrocytes triggers GABA depletion and neuronal hyper-
excitability (Ortinski et al., 2010). Therefore, alterations of the
glutamate-glutamine cycle may directly contribute to neuronal
dysfunction in ND.

Altogether, it is well established that glutamate homeostasis
is altered in ND, both in patients and animal models. In
addition to its action on synaptic receptors, glutamate also
serves as a metabolic signal to promote glucose uptake (Pellerin
and Magistretti, 1994). Therefore, any alteration of glutamate
homeostasis is likely to affect brain energy metabolism.

Energy Metabolism
Astrocytes are involved in complex metabolic interactions with
neurons (Allaman et al., 2011). Their strategic location at
the interface between intracerebral blood vessels and synapses
make them ideally positioned to deliver neurons with blood-
borne metabolic substrates, according to their energy needs
(see Belanger et al., 2011, for review). It is still unclear how
the morphological changes associated with reactivity affect
blood vessels coverage and metabolite uptake by astrocytes.
Several metabolic pathways such as the glutamate-glutamine
cycle, cholesterol metabolism and glutathione production, are
compartmentalized between neurons and astrocytes. This confers
astrocytes with a pivotal regulatory role. Energy deficits are a
common hallmark of various ND (Lin and Beal, 2006), suggesting
that some metabolic interactions are altered when astrocytes
become reactive in ND.

Glucose metabolism
Glucose is by far the preferred energy substrate for the brain.
According to the astrocyte-to-neuron lactate shuttle hypothesis,
in conditions of increased neuronal activity, more glucose is
taken up by astrocytes and oxidized through glycolysis and
redistributed to neurons in the form of lactate (Pellerin and
Magistretti, 1994). Positron emission tomography (PET) imaging
shows that cerebral glucose metabolism is impaired in HD
and AD patients (Grafton et al., 1992; Fukuyama et al., 1994).
However, it is not known whether such metabolic deficits
originate from reactive astrocytes.

A comprehensive autoradiography analysis suggests that
regional glucose metabolism is reorganized in aged BACHD
mice (decreased glucose uptake in the striatum, increased in
the hypothalamus). Neuron-astrocyte insert co-cultures were
performed to identify the cellular origin of such deficits. They
showed that expression of mHtt in astrocytes does not affect their
own rate of glucose uptake. However, it impairs glucose uptake
in neurons, regardless of their genotype, suggesting that HD
astrocytes indirectly regulate neuronal metabolism by diffusible
factors (Boussicault et al., 2014). In ALS, lactate was identified
as one of the molecules that are released differently when
astrocytes are reactive. SOD1G93A mice express lower levels of
the astrocytic lactate transporter Slc16a4 than WT mice, which
reduces lactate release in the spinal cord. Decreased lactate

production is also observed in spinal astrocytes from familial
ALS patients (Ferraiuolo et al., 2011), and may be deleterious to
neurons relying on this metabolic supply.

Astrocyte metabolism can be studied by NMR on brain
extracts after i.p. injection of 13C-labeled acetate in animal
models because this compound is metabolized preferentially by
astrocytes (see Section Reactive Astrocytes as Biomarkers).
Astrocytic “hyper-metabolism,” characterized by high
incorporation of 13C into metabolic intermediates is observed
in the brain of 7-month old 3xTg-AD mice (Sancheti et al.,
2014) and in the cortex of a mouse model of a tauopathy (Nilsen
et al., 2013). But opposite changes are observed in the frontal
cortex in a rat model of AD (McGill-R-thy1-APP) (Nilsen et al.,
2014). Also in favor of a decreased metabolic activity in reactive
astrocytes, the transfer of glutamine to glutamate is reduced in
3xTg-AD mice (Sancheti et al., 2014). Similar conflicting effects
of Aβ on astrocyte oxidative metabolism were reported in culture
(see Allaman et al., 2010, and references therein). Overall, the
metabolic changes occurring in reactive astrocytes during ND
are quite contrasted, depending on the ND, the animal model
and the stage of the disease considered.

Besides glucose uptake, many studies report mitochondrial
dysfunction in ND (Lin and Beal, 2006). Some studies suggest
that not only neurons display mitochondrial failure in ND,
but reactive astrocytes too. Motori et al. performed an elegant
imaging study of reactive astrocytes following stab wound
injury. They reported that mitochondria undergo more fission
events in reactive than in resting astrocytes (Motori et al.,
2013). The exposure of pro-inflammatory cytokines had the
same effect on mitochondria in vitro and resulted in impaired
respiratory activity and reactive oxygen species (ROS) production
(Motori et al., 2013). Transcriptomic analysis of astrocytes
from AD patients indicates that mitochondrial genes, such
as those involved in tricarboxylic acid cycle, are expressed
at lower levels than in astrocytes of age-matched control
individuals (Sekar et al., 2015). The exposure of astrocytes to
Aβ reduces their mitochondrial membrane potential, which
activates toxic enzymes such as poly (ADP-ribose) polymerase
1 and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, a potent pro-oxidant enzyme (Abeti et al., 2011).
Similarly, mitochondrial respiration is altered in astrocytes
isolated from the spinal cord of ALS rats, probably because
of increased oxidative stress (Cassina et al., 2008). Therefore,
although transient beneficial changes occur in reactive astrocytes
during ND, overall, they display altered metabolism that
may result in ROS production (see Section Antioxidants
and ROS).

Cholesterol metabolism
Cholesterol, the most common steroid in humans, is a
structural component of cell membranes and a precursor of
steroid hormones. It also contributes to synapse formation and
neuronal activity; therefore, defects in cholesterol homeostasis
may have severe consequences on brain function (Pfrieger
and Ungerer, 2011). Cholesterol synthesis and degradation are
highly compartmentalized in astrocytes and neurons, respectively
(Pfrieger and Ungerer, 2011). In particular, astrocytes express
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high levels of apolipoprotein E (ApoE) that carries cholesterol to
neurons (Bu, 2009).

The ε4 allele of the ApoE gene is the major risk factor for
sporadic AD. It increases the probability of developing AD
by a factor of 3–4 (Corder et al., 1993). ApoE influences the
pathogenesis of AD at multiple levels, by regulating cholesterol
metabolism, APP processing and Aβ clearance (Bu, 2009). ApoE
is a chaperone for the binding of Aβ to the low density
lipoprotein receptor or low density lipoprotein receptor-related
protein 1 on astrocytes (Koistinaho et al., 2004). This is an
important route for Aβ clearance (see Section Processing of
Mutant Proteins). In astrocytes from aged APP/PS1dE9 mice,
there is a widespread reduction in the expression of enzymes and
transporters linked to cholesterol metabolism including ApoE,
suggesting a decrease capacity to clear Aβ in these mice (Orre
et al., 2014).

Cholesterol biosynthesis is low in the brain of several mouse
models of HD (Valenza et al., 2010). In primary astrocytes
from HD mice, mRNA levels of genes for cholesterol biogenesis
and efflux are substantially lower than in control astrocytes. In
addition, lower amounts of ApoE are secreted by HD in vitro and
it forms smaller lipoprotein particles in the cerebrospinal fluid of
HD mice (Valenza et al., 2010). The impairment in cholesterol
biosynthesis correlates with the number of CAG repeats, the
amount of mHtt (Leoni and Caccia, 2014) and is eventually toxic
to HD neurons (Valenza et al., 2015).

Connexin-based networks of astrocytes
Astrocytes form multicellular networks connected by their gap
junctions composed of connexins. These networks are involved
in K+ buffering but also deliver metabolic substrates to active
synapses (Rouach et al., 2008).

The expression of astrocyte connexin (Cx) and astroglial
coupling through gap junction channels is changed in reactive
astrocytes in ND (Giaume et al., 2010). Cx43 expression is high in
the caudate of HD patients (Vis et al., 1998) and around amyloid
plaques in the cortex of AD patients (Nagy et al., 1996). Similarly,
Cx43 expression is higher in the spinal cord of SOD1G93A mice
(Cui et al., 2014), in two mouse models of AD (Mei et al., 2010)
and in the MPTP model of PD (Rufer et al., 1996), than in their
respective controls. Cx30 expression is also altered in NDmodels
and patients, although the direction of the change is context
dependent. Cx30 is expressed at low levels in the striatum of a
rat and primate pharmacological model of PD (Charron et al.,
2014) but is highly expressed in a mouse model of AD (Mei
et al., 2010) and in AD patients (Nagy et al., 1996). However, in
most cases, the functional effects on the astrocyte network and
especially on metabolite trafficking was not assessed (Escartin
and Rouach, 2013). Increased coupling may be beneficial for the
delivery of metabolites. However, Cx also form hemichannels,
through which several active molecules or gliotransmitters are
released (Giaume et al., 2010; Bosch and Kielian, 2014). High
Cx expression in reactive astrocytes in ND may thus lead to the
excessive release of ATP or glutamate (Bosch and Kielian, 2014).
This would maintain microglial cells in an active state and cause
excitotoxicity in nearby neurons (see Section Release of Active
Molecules and Figure 4).

Ion Homeostasis
Buffering of K+
Astrocytes buffer K+ by specific channels and transporters, which
are enriched in PAP and vascular endfeet. Themaintenance of K+
homeostasis by astrocytes is essential for synaptic transmission
and appears to be altered in ND. ThemRNA expression of several
K+ channels is lower in astrocytes isolated from APP/PS1dE9
than from WT mice (Orre et al., 2014). Protein levels of Kir4.1,
an inward rectifier K+ channel, are decreased in the spinal cord
of ALS mice (Kaiser et al., 2006) and in the striatum of R6/2 and
zQ175 mice, two models of HD (Tong et al., 2014). Restoration
of Kir4.1 levels through viral gene transfer in striatal astrocytes
improves some of the neurological features in R6/2 mice (Tong
et al., 2014). Importantly, astrocytes do not display the hallmarks
of reactivity in these HD mice (see Table 1), suggesting that
astrocytes can be dysfunctional before being “fully” reactive.

Ca2+ homeostasis
Several studies have reported alterations of Ca2+ homeostasis
in reactive astrocytes in ND models, especially in AD (Vincent
et al., 2010). Spontaneous Ca2+ transients are more frequent in
slices from Tg2576 mice overexpressing APP than in controls
(Pirttimaki et al., 2013). Hyperactive Ca2+ transients and waves
can also be observed by two-photon live imaging with Ca2+ dyes
in several mouse models of AD (Takano et al., 2007; Kuchibhotla
et al., 2009; Delekate et al., 2014). Astrocytes from SOD1G93A ALS
mice also display enhanced Ca2+ transients following stimulation
of mGluR5 receptors (Martorana et al., 2012) or exposure to ATP
(Kawamata et al., 2014). Store-operated accumulation of Ca2+ in
the endoplasmic reticulum may be responsible for these altered
Ca2+ responses (Kawamata et al., 2014).

Deregulation of Ca2+ in reactive astrocytes may elicit
profound changes in various Ca2+-dependent processes such as
intracellular signaling cascades, proteolysis and gliotransmitter
release.

Release of Active Molecules
Astrocytes interact with neighboring cells by releasing many
molecules involved in cell-to-cell signaling, trophic support or
antioxidant defense. The overall “secretome” of astrocytes is
strongly altered by their reactivity (Figure 4). Some of these
neuroactive molecules like glutamate, purines or GABA are
neurotransmitters, and are thus called gliotransmitters when
released by astrocytes (Araque et al., 2014).

Gliotransmitters
The release mode of gliotransmitters and their physiological
relevance is a matter of intense debate (Araque et al., 2014;
Sloan and Barres, 2014). The study of gliotransmission in situ
is particularly difficult because most of these molecules are also
released by neurons.

Glutamate is one of the best studied gliotransmitters. FRET-
based imaging shows that cultured astrocytes release glutamate
in response to recombinant Aβ1–42 or Aβ isolated from the
brain of AD patients. This phenomenon is Ca2+-dependent and
is deleterious to neighboring neurons (Talantova et al., 2013).
Glutamate release elicited by mechanical stimulation is more
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FIGURE 4 | The secretome of reactive astrocytes. Astrocytes secrete
many active molecules that influence neuronal survival and synaptic activity.
Reactivity affects the pattern of secreted molecules, and thus alters
neuron-astrocyte communications. In ND, reactive astrocytes may secrete
higher levels of antioxidants, such as glutathione and its precursors or
metabolic substrates. These changes would promote neuron survival.
However, reactive astrocytes may also release fewer trophic molecules such

as cholesterol, growth factors or glutamine and produce more ROS than
resting astrocytes. The regulation of glutamate and GABA homeostasis may
also be altered by reactivity, due to a change in their release but also their
uptake. Intracellular Ca2+ levels are deregulated in ND, which may stimulate
the release of gliotransmitters such as glutamate and ATP. Reactive
astrocytes also produce more cytokines, which activate microglial cells or act
as paracrine factors, maintaining glial cells in a chronically reactive state.

important in cortical astrocytes isolated from BACHDmice than
in their WT counterparts (Lee et al., 2013). Interestingly, the
cytokine TNFα plays many regulatory roles at the excitatory
synapse; it directly scales synaptic transmission and potentiates
glutamate release by astrocytes (see Santello and Volterra,
2012, for review). TNFα levels are elevated in patients and
animal models of ND (see Section Cytokines and Inflammatory
Molecules), which may stimulate the non-physiological release
of glutamate by reactive astrocytes. Unexpectedly, glutamate
release in response to TNFα is impaired in hippocampal slices
from AD mice harboring numerous Aβ plaques and reactive
astrocytes (Rossi et al., 2005). The authors hypothesized that the
intracellular cascades downstream from the TNFα receptor were
altered in reactive astrocytes in this model (Rossi et al., 2005).
Overall, additional studies are still needed, especially in vivo,
to determine precisely how the release of glutamate by reactive
astrocytes is changed in ND, and how it modulates synaptic
transmission (Agulhon et al., 2012).

GABA is yet another gliotransmitter that was recently
implicated in ND. Reactive astrocytes release more GABA than
resting astrocytes, which contributes to cognitive impairment
in two mouse models of AD (Jo et al., 2014; Wu et al., 2014).
Excessive GABA released by reactive astrocytes results in the

tonic inhibition of dentate gyrus granule cells in the hippocampus
of AD mice. Inhibition of GABA synthesis or pharmacological
blockade of GABA transporters restores synaptic plasticity and
memory deficits in these mice (Jo et al., 2014; Wu et al., 2014).
By contrast, GABA release by astrocytes appears to be defective
in HD. Electrophysiological recordings on slices show that both
GABAA (postsynaptic) and GABAB (presynaptic) currents are
lower in R6/2 and zQ175 mice than in control mice. This results
in a lower GABA-mediated tonic inhibition of striatal neurons.
Pharmacological manipulation of the GABA transporter-3 (GAT-
3), which is preferentially expressed by astrocytes, suggests that
HD astrocytes have an impaired capacity to release GABA
through GAT-3 (Wojtowicz et al., 2013).

Purines are another class of gliotransmitters, comprising ATP
and its metabolite adenosine, which is generated extracellularly
by ectonucleotidases. Stimulation of primary astrocyte cultures
with Aβ induces the release of ATP (Jung et al., 2012) via Cx43
hemichannels (Orellana et al., 2011). Recently, it was shown
that reactive astrocytes around amyloid plaques in the cortex of
APPPS1 mice release more ATP via hemichannels than their WT
counterparts. ATP, degraded into adenosine, acts as an autocrine
signal on astrocyte P2Y1 receptors and elicits Ca2+ hyperactivity
(Delekate et al., 2014). Cultured astrocytes from SODG93A mice
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also release more ATP than those from WT mice, which is toxic
to co-cultured motor neurons (Kawamata et al., 2014).

Cytokines and inflammatory molecules
The levels of pro-inflammatory cytokines are higher in vulnerable
brain regions and in the cerebrospinal fluid in ND patients than
in healthy individuals (Lucin and Wyss-Coray, 2009; Heneka
et al., 2014). However, many cell-types such as activatedmicroglia
or peripheral immune cells may produce these molecules.
Transcriptional analysis performed on laser-captured GFAP+
reactive astrocytes from APP/PS1dE9 mice reveal that these
cells express high levels of several cytokines (Orre et al.,
2014). The number of genes induced and the fold-increase in
expression are higher in astrocytes than in microglial cells,
showing that reactive astrocytes may contribute significantly to
the production of cytokines during AD. However, the absolute
expression level of these cytokines remains lower in reactive
astrocytes than in microglia. Some of these cytokines act as
recruiting signals for peripheral immune cells or promote BBB
permeability (Farina et al., 2007; Sofroniew, 2015). In ALS, a
major increase in the transcription of inflammatory molecules
is well established, including in astrocytes derived from both
familial and sporadic forms of the disease (Haidet-Phillips et al.,
2011). These astrocytes are toxic to motor neurons in co-culture
systems.

In microglia, the maturation of some cytokines like IL-
1β is operated in the cytosol by the inflammasome. Aβ

phagocytosis activates the NOD-like receptor protein (NLRP) 3
inflammasome in these cells (Halle et al., 2008), thereby linking
the internalization of pathologic proteins with the release of pro-
inflammatory cytokines in ND. Only two recent studies suggest
that in astrocytes, stimulation of the inflammasome also triggers
IL-1β production (Minkiewicz et al., 2013; Zeis et al., 2015).

Finally, reactive astrocytes overexpress molecules of the
complement system in AD mice (Orre et al., 2014), which can
alter dendrite morphology, Ca2+ homeostasis and excitatory
synaptic responses in neurons, at least in vitro (Lian et al.,
2015). In AD and HD patients, components of the complement
system are overexpressed (Singhrao et al., 1999; Lian et al., 2015);
however they are not necessarily produced by astrocytes only.

Trophic factors
Astrocytes secrete various factors exhibiting trophic effects on
neurons, such as growth factors (e.g., CNTF, brain-derived
neurotrophic factor [BDNF], nerve growth factor [NGF], FGF),
neurosteroids, and adhesion molecules involved in neurite
outgrowth (Muller et al., 1995; Sofroniew and Vinters, 2010).
Inadequate synthesis and release of such factors may contribute
to neuronal toxicity observed in HD. The expression of mHtt in
primary cultures of cortical astrocytes impairs BDNF production
in astrocytes. Levels of mature BDNF in the medium are thus
low under these conditions, which limits neurite development
of primary cortical neurons (Wang et al., 2012). Similarly,
transcription and release of the chemokine (C-C motif) ligand
5 (CCL5/RANTES), which promotes neurite outgrowth and
neuronal survival, is also impaired by the expression of mHtt
in cultured astrocytes (Chou et al., 2008). CCL5/RANTES

accumulates in the cytosol of astrocytes in HD patients and
in two mouse models of HD (Chou et al., 2008). Although
reactive astrocytes secrete more trophic factors such as NGF in
ALS rodent models and patients (Pehar et al., 2004; Ferraiuolo
et al., 2011), it may nonetheless have unexpected detrimental
consequences on nearby neurons. Indeed, vulnerable motor
neurons in ALS express the specific p75 neurotrophin receptor
isoform, and its stimulation by NGF triggers apoptosis instead of
trophic actions (Pehar et al., 2004).

Antioxidants and ROS
Astrocytes are important for defense against ROS because they
express many detoxifying enzymes and transporters (Vargas
and Johnson, 2009; Allaman et al., 2011). They produce high
levels of antioxidants for neurons, including ascorbic acid (AA,
also known as vitamin C), glutathione and its precursors. The
antioxidant action of astrocytes is crucial for neurons, because
oxidative respiration produces high levels of ROS. Indeed,
oxidative stress contributes to neuronal dysfunction in several
ND (Belanger et al., 2011). The expression of many detoxifying
enzymes and transporters are controlled by the master regulator
NF-E2 related factor-2 (Nrf2), a transcription factor which
translocates to the nucleus and binds specific promoter sequences
in response to oxidative stress (Vargas and Johnson, 2009).
Reactive astrocytes found in the spinal cord of early symptomatic
ALS rats show high levels of Nrf2 expression and nuclear
translocation (Vargas et al., 2005). Although high Nrf2 activity
may be beneficial for neurons exposed to oxidative stress,
this endogenous antioxidant response does not offer sufficient
protection. Indeed, Nrf2 activity can be further enhanced in
astrocytes by genetic manipulation, which improves disease
outcome in animal models of ALS (Vargas et al., 2008), PD (Chen
et al., 2009; Gan et al., 2012), and HD (Calkins et al., 2010).

The release of AA by astrocytes is altered in HD (Rebec, 2013).
In the R6/2 mouse model of HD, extracellular AA levels are
lower than in age-matched WT mice but only during behavioral
activity (Rebec et al., 2002). Accordingly, mHtt expression in
astrocytes (and not in neurons) is sufficient to trigger oxidative
stress in neurons by diffusible factors (Boussicault et al., 2014). In
fact, reactive astrocytes may not only produce fewer antioxidant
molecules during ND, they may also release more pro-oxidant
factors. Exposure to Aβ stimulates the pentose phosphate
pathway in astrocytes in vitro; yet they release more ROS than
in control conditions and are toxic to co-cultured neurons even
without physical contact (Allaman et al., 2010). Furthermore,
reactive astrocytes overexpress inducible NO synthase (NOS),
including in the brain of AD patients (Heneka et al., 2014). Aβ

peptides also cause a loss of mitochondrial membrane potential
in astrocytes, which is associated with the activation of NADPH
oxidase and excessive ROS production (Abramov et al., 2004).
Accordingly, mitochondria from mSOD1 astrocytes produce
large amounts of superoxide radicals, causing motor neuron
death in co-culture, which is prevented by pre-incubation with
antioxidants and NOS inhibitors (Cassina et al., 2008). Similarly,
rodent astrocytes expressing a mutant form of TDP43 induce
nitrosative stress in motoneurons and kill them (Rojas et al.,
2014). Overall, ROS production by reactive astrocytes exposed
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to toxic or mutant disease-specific proteins seems to be another
deleterious mechanism common to several ND.

Processing of Mutant Proteins
Aggregation of intra- or extra-cellular misfolded proteins is a
central feature of ND. However, the exact role of aggregate
formation is still debated. Soluble forms of mutant proteins are
now considered to be the most toxic forms, and their aggregation
may be instead a protective mechanism that prevents them
from interfering with important intracellular partners (Ross and
Poirier, 2004).

Misfolded proteins are degraded by two major intracellular
pathways: autophagy and the UPS. Autophagy involves the
formation of intra-cytoplasmic vesicles that may also envelop
organelles. Engulfed elements are completely degraded by
proteases such as cathepsins after fusion with a lysosome.
Alternatively, the UPS forms a protease complex to which
proteins are addressed by specific ubiquitin tags. Both pathways
are altered in ND (Dantuma and Bott, 2014; Ghavami et al.,
2014).

The UPS has been extensively studied in neurons in models
of ND and is even a target of neuroprotection (Margulis and
Finkbeiner, 2014; Popovic et al., 2014). Much less is known about
the UPS in astrocytes (Jansen et al., 2014). Protein aggregates
are mainly found in neurons, suggesting that astrocytes are more
efficient than neurons at handling toxic proteins (Jansen et al.,
2014). Indeed, a study based on a reporter system showed that
the UPS is more active in glial cells than in neurons in vitro
and in vivo (Tydlacka et al., 2008). During ND, the UPS in
astrocytes may become less efficient than in healthy conditions
because UPS subunits are down-regulated in astrocytes from
AD patients (Simpson et al., 2011). In addition, during ND,
reactive astrocytes may express a specific form of the proteasome,
called the immunoproteasome, which is formed by the cytokine-
inducible subunits β1i, β2i, and β5i. The immunoproteasome is
detected in reactive astrocytes around amyloid plaques in AD
patients and APP/PS1dE9 mice (Orre et al., 2013) and in the
spinal cord of SODG93A mice (Puttaparthi and Elliott, 2005).
The immunoproteasome is involved in antigen presentation
(Jansen et al., 2014), but its functional role in reactive astrocytes
during ND is not yet known. Invalidation of the B1i subunit of
the immunoproteaseome does not influence disease outcome in
SODG93A mice (Puttaparthi et al., 2007).

In AD, reactive astrocytes play yet another role in the
clearance of extracellular Aβ. More than a decade ago, it was
shown that astrocytes are able to internalize amyloid plaques
and Aβ peptides (Funato et al., 1998; Nagele et al., 2003;
Wyss-Coray et al., 2003). They do so by phagocytosis or
by internalizing Aβ bound to membrane receptors, including
ApoE receptors (Koistinaho et al., 2004; Thal, 2012, see Section
Cholesterol Metabolism). The astrocytic protein ApoE also
promotes Aβ extrusion through the BBB or along the perivascular
space (Bu, 2009, and see Section Cholesterol Metabolism).
Intracellular vesicles containing Aβ are addressed to lysosomes
for degradation and the enhancement of lysosomal biogenesis
selectively in astrocytes attenuates amyloid-related disease in a
mouse model of AD (Xiao et al., 2014).

Aβ may also be degraded extracellularly, and astrocytes
produce some Aβ-degrading enzymes such as insulin-degrading
enzyme (IDE), neprilysin or matrix metalloproteinase 2 and
9 (MMP9). Neprilysin and IDE are overexpressed in reactive
astrocytes in contact with plaques in AD brains (Apelt et al.,
2003; Dorfman et al., 2010) and MMP9 is overexpressed in
mouse models of AD (Yan et al., 2006). However, reactive
astrocytes may eventually become overwhelmed as the disease
progresses because they undergo cell lysis and form extracellular
deposits containing neuronal-derived Aβ peptides (Nagele et al.,
2003).

Alternatively, it was suggested that reactive astrocytes may
contribute to Aβ production by overexpressing β-site APP
cleaving enzyme 1 (BACE1), the rate limiting enzyme for Aβ

production. Strong BACE1 expression is observed in reactive
astrocytes in patients and several mouse models of AD, and
following exposure to pro-inflammatory cytokines, which can
directly activate the BACE1 promoter (Cole and Vassar, 2007).
However, it is unknown how the amount of Aβ produced by
astrocytes compares with the large pool of Aβ generated by
neurons.

Regarding HD, we found that blocking astrocyte reactivity
by overexpressing SOCS3 significantly promoted the formation
of mHtt aggregates in the mouse striatum (Ben Haim et al.,
2015). A recent study performed in Drosophila also reported that
reactive glia are able to phagocyte mHtt expressed in neurons
(Pearce et al., 2015). These results suggest that reactive astrocytes
may participate in the processing of mHtt and its aggregation
in neurons, but the exact molecular mechanisms need to be
established.

How Do Reactive Astrocytes Globally
Contribute to ND?

We have seen that many changes occur in astrocytes during
ND, which makes it extremely difficult to get a clear view of
their impact on the disease. In addition, the reactive status of
astrocytes is not always directly reported in studies. Therefore,
to evaluate the overall contribution of reactive astrocytes
to ND, experimental designs that interfere with astrocyte
reactivity provide a valuable insight into this difficult question
(Table 3).

Intermediate Filament KO
Given that the upregulation of IF is a hallmark of astrocyte
reactivity, transgenic mice knockout (KO) for GFAP or Vim
or double KO were initially generated and tested in acute
injuries. Disruption of reactive astrocyte cytoskeleton was also
studied in ND models and was found to shorten the lifespan
of the SOD1H46R mouse model of ALS (Yoshii et al., 2011).
Studies involving the genetic ablation of GFAP and vimentin in
APP/PS1dE9 mice gave conflicting results, with one reporting
increased amyloid load and dystrophic neurites (Kraft et al.,
2013), and another showing no effect on amyloid load in the
cortex (Kamphuis et al., 2015). However, knocking out IF affects
several basal functions in astrocytes (Shibuki et al., 1996) and
results in many transcriptional changes (Kamphuis et al., 2015).
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TABLE 3 | Main genetic approaches to block reactive astrocytes in mouse models of ND.

Approach Construct ND ND model Effect on astrocyte
reactivity

Effects on disease
outcomes

References

Disruption of
cytoskeleton in
reactive astrocytes

gfap−/− ALS SOD1H46R mice No change in vimentin protein
levels
No data on astrocyte
morphology

Shorter lifespan
No effect on motor
symptoms

Yoshii et al., 2011

gfap−/− vimentin−/− AD APP/PS1dE9 mice Lower astrocyte hypertrophy Higher amyloid load
More dystrophic neurites

Kraft et al., 2013

No effect on amyloid load Kamphuis et al., 2015

Ablation of
proliferating
astrocytes

gfap-tk ALS SOD1G93A No change in the number of
GFAP+ cells in the ventral SC
No data on astrocyte
morphology

No effect on survival,
disease onset, duration
No effect on motor function
No effect on neuronal loss

Lepore et al., 2008a

Inhibition of the
JAK/STAT3 pathway

lenti-socs3 HD Lenti-Htt82Q Lower GFAP and vimentin
expression (mRNA and protein)
Resting-like morphology

No effect on neuronal loss
More mHtt aggregates

Ben Haim et al., 2015

Inhibition of the
NF-kB pathway

hGFAP-Cre x IKKβ fl/fl ALS SOD1G93A mice No data on astrocyte
phenotype

No effect on survival
No effect on motor
performances

Frakes et al., 2014

AAV-IκBα-SR ALS SOD1G93A mice No data on astrocyte
phenotype

No effect on survival
No effect on motor
performances
No effect on neuron survival
in vitro

Frakes et al., 2014

hGFAP-IκBα-DR ALS SOD1G93A mice Temporary lower number of
GFAP+ cells (at disease onset)

No effect on survival
No effect on motor
performances

Crosio et al., 2011

lenti-DN-IKKγ HD R6/2 mice No data on astrocyte
phenotype

Improved motor and
cognitive deficits,
Less severe MSN atrophy

Hsiao et al., 2013

Inhibition of
CN/NFAT signaling

AAV-VIVIT AD APP/PS1dE9 Trend of lower GFAP levels
(protein)
Reduced astrocyte
hypertrophy

Improved cognitive deficits
Improved synaptic
transmission
Lower amyloid load

Furman et al., 2012

Constitutive
activation of CN

mGFAP-caCN AD APP/PS1 Fewer GFAP+ cells
Lower GFAP levels (protein and
mRNA)
Reduced astrocyte
hypertrophy around plaques

Reduced cognitive deficits
Lower amyloid load

Fernandez et al., 2012

Abbreviations: AAV, adeno-associated viral vector; caCN, constitutively active form of calcineurin; DN, dominant negative; IκBα, nuclear factor of kappa light polypeptide gene enhancer
in B-cells inhibitor alpha; IKKβ, IκBα kinase alpha; MSN, medium-sized spiny neurons; SC, spinal cord; SR, super repressor; tk, thymidine kinase; DR, degradation resistant.

Upregulation of IF is only a hallmark of reactivity; therefore,
their removal from astrocytes will not necessarily block other
molecular cascades associated with reactivity.

Ablation of Proliferative Astrocytes
Another strategy developed to evaluate the contribution of
reactive astrocytes to CNS injury is the ablation of proliferating
astrocytes. This approach involves the expression of the viral
enzyme thymidine kinase (TK) under the GFAP promoter, in
presence of the drug ganciclovir (Bush et al., 1999). Ganciclovir is
metabolized by TK-expressing cells into a base analog that blocks

DNA replication, thus inducing the death of proliferating cells.
This system has been extensively used to evaluate the effects of
glial scar formation in acute injury models (Sofroniew, 2009).
These studies demonstrate that glial scar-forming astrocytes act
as a barrier to limit immune cell extravasation in the CNS
parenchyma. However, in the progressive SOD1G93A mouse
model of ALS, ablation of proliferating astrocytes has no
effect on disease outcomes (Lepore et al., 2008a), probably
because of the small number of proliferating astrocytes in
this model (see Section Do Reactive Astrocytes Proliferate
in ND?).
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Manipulation of Intracellular Signaling Pathways
A third strategy to study reactive astrocytes is to block
intracellular signaling pathways controlling reactivity.

The JAK/STAT3 Pathway
Several transgenic mice have been generated to block the
JAK/STAT3 pathway in reactive astrocytes. They are based on
the conditional KO of STAT3 following the expression of the
Cre recombinase under the GFAP or nestin promoter (Okada
et al., 2006; Herrmann et al., 2008). Most of these studies have
focused on acute injuries with glial scar formation and found that
reactive astrocytes mainly exert beneficial functions. By contrast,
few studies have investigated the contribution of the JAK/STAT3
pathway in reactive astrocytes in ND, using pharmacological
or viral-based approaches. In the MPTP mouse model of PD,
pharmacological inhibition of JAK2 reduces astrocyte reactivity.
However, this inhibitor does not influence tyrosine hydroxylase
levels in the striatum, suggesting that reactive astrocytes do not
contribute to dopaminergic loss in this model (Sriram et al.,
2004). In a mouse model of HD, viral-mediated overexpression
of SOCS3 in reactive astrocytes did not influence neuronal
death but promoted the formation of mHtt aggregates (Ben
Haim et al., 2015). This intriguing result suggests that reactive
astrocytes affect the processing and aggregation of mHtt, which
is key pathological mechanism in HD (see Section Processing of
Mutant Proteins).

The NF-κB Pathway
In ALS, two independent studies reported that inhibition of
the NF-κB pathway in reactive astrocytes does not influence
disease phenotype in SOD1G93A mice (Crosio et al., 2011; Frakes
et al., 2014). To block this pathway in astrocytes, Frakes et al.
crossed mice KO for IKKβ in astrocytes (GFAP-Ikkbflfl) with
SOD1G93A mice or they overexpressed a dominant negative form
of IκBα (AAV-IκB-SR) in astrocytes by viral gene transfer. The
inhibition of the NF-κB pathway in reactive astrocytes did not
influence motor neuron survival in culture or in the spinal cord
of SOD1G93A mice (Frakes et al., 2014), probably because this
pathway is mainly active in microglia.

The role of the NF-κB pathway in reactive astrocytes has
also been studied in HD. A dominant negative form of IKKγ

(DN-IKKγ) was overexpressed by lentiviral gene transfer in
the striatum of R6/2 mice to block NF-κB signaling. DN-IKKγ

overexpression improved motor performance and prevented
shrinkage of striatal neurons in HD mice (Hsiao et al., 2013).
However, DN-IKKγ expression was not restricted to astrocytes
and may thus have acted in other cell types such as microglia.

The CN/NFAT Pathway
CN is activated upon inflammatory stimulation and regulates
gene expression through the transcription factors NFATs andNF-
κB (Furman and Norris, 2014). Expression of caCN in astrocytes
of APP/PS1 mice reduces astrocyte reactivity, Aβ levels and
the number of amyloid plaques. These effects are associated
with improved cognitive functions (Fernandez et al., 2012). The
beneficial effects of CN are mediated by the inhibition of the
NF-κB pathway and subsequent production of pro-inflammatory

cytokines (Fernandez et al., 2012). Viral-mediated gene transfer
of the blocking peptide VIVITwas used to inhibit NFAT signaling
in hippocampal astrocytes in APP/PS1dE9 mice (Furman et al.,
2012). VIVIT limited astrocyte hypertrophy, prevented the
accumulation of Aβ and improved synaptic plasticity and
cognitive functions in AD mice (Furman et al., 2012). These
results suggest that reactive astrocytes play detrimental roles in
AD. However, VIVIT may be secreted by infected astrocytes;
therefore, it is not possible to exclude the involvement of other
cell types, especially because CN is permanently activated in
neurons in the Tg2576 mouse model of AD (D’Amelio et al.,
2011).

In conclusion, several approaches have been used to determine
the contribution of reactive astrocytes to ND progression. The
overall picture is still unclear because reactive astrocytes have
been shown to be beneficial, detrimental or to have no effect,
depending on the experimental approach chosen, the molecular
target (e.g., IF, signaling cascades) and the disease model
(Table 3). Some of these approaches rely on pharmacological
inhibitors or transgenic mice lacking cell-type specificity or that
might involve developmental effects (with non-inducible Cre
expression for example). To better delineate the roles of reactive
astrocytes in ND, it will be interesting to target pivotal signaling
cascades and to use cell-type specific and versatile tools like
viral vectors to interfere with astrocyte reactivity in different ND
models.

Ongoing Questions, Future Directions

Heterogeneity of Reactive Astrocytes
One of the next challenges in the field is to deal with the
functional heterogeneity of astrocytes. Indeed, like neurons,
astrocytes display remarkable heterogeneity regarding their
density, morphology (Emsley and Macklis, 2006), transcriptional
profile (Bachoo et al., 2004), and expression of transporters,
channels, receptors and transcription factors (Matyash
and Kettenmann, 2010). Astrocyte reactivity is also quite
heterogeneous both between and within brain regions (Anderson
et al., 2014). Such heterogeneity is best explored in acute injury
models, because injury can be inflicted in different brain regions.
In the spinal cord for example, astrocytes from the ventral horn
do not migrate into a dorsal stab wound, even for very close
lesions (Tsai et al., 2012). Even within the same sub-region of
the mouse cerebral cortex, astrocytes respond heterogeneously
to stab wound injury. A very elegant study based on live two-
photon microscopy demonstrated that almost all astrocytes
become hypertrophic and overexpress GFAP following injury;
however, some had their processes polarized toward the lesion,
others proliferated (less than 15%), and some remain static
(Bardehle et al., 2013). In ND, reactive astrocytes in contact with
plaques have amore pronounced reactive morphology than those
at a distance, which correlates with larger transcriptional changes
(Orre et al., 2014). In the 3xTg-AD model of AD, astrocytes at
distance from plaques may even be atrophic (Olabarria et al.,
2010). Overall, the heterogeneity of reactive astrocytes at the
regional, sub-regional and cellular level needs to be thoroughly
investigated in animal models and patients taking advantage
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of modern techniques such as two-photon microscopy and
cell-specific transcriptomic analysis. Indeed, it remains unclear
how such heterogeneity is established during development
or disease and how it contributes to the local vulnerability of
neighboring neurons in ND (Molofsky et al., 2012).

Reactive Astrocytes in the Clinics
Reactive Astrocytes as Biomarkers
Given that astrocytes are able to sense even mild neuronal
dysfunction and to become reactive, they represent attractive
biomarkers for the diagnosis and monitoring of ND. Reactive
astrocytes can be imaged in brain slices or in living mice
by the expression of a reporter gene (GFP, luciferase) under
the control of the GFAP promoter (see O’Brien et al., 2013,
for a complete review). For clinical applications, non-invasive
image techniques to monitor reactive astrocytes are still under
development.

PET provides a way to quantify neuroinflammation through
radiolabeled tracers that bind to glial cells. The most common
target for neuroinflammation is the peripheral benzodiazepine
receptor or translocator protein 18 kDa (TSPO) (see Chauveau
et al., 2008). Activated microglia express high levels of TSPO but,
as recently demonstrated, reactive astrocytes also overexpress
this protein (Lavisse et al., 2012). Therefore, TSPO radioligands
do not discriminate between reactive microglia and reactive
astrocytes, but they are nonetheless a valuable imaging approach
to identify early neuroinflammation in ND patients (Venneti
et al., 2006). Radiotracers that target astrocyte metabolism,
such as [1-11C]-octanoate (Kuge et al., 2000) and [2-18F]-
fluoroacetate (Marik et al., 2009) have also been evaluated in
models of glioblastoma and ischemia. It remains to be established
whether they can detect progressive astrocyte reactivity in ND
patients. Another molecular target is monoamine oxidase B
(MAO-B), which is highly expressed in reactive astrocytes. The
binding of 11C-DED, a MAO-B radioligand is high in patients
with ALS (Johansson et al., 2007), and patients with mild
cognitive impairment or AD (Carter et al., 2012). However,
this enzyme is also found in serotonergic neurons, which could
contribute to this signal. Overall, new PET radiotracers with
higher specificity for reactive astrocytes are needed and recent
transcriptomic studies on reactive astrocytes may help to identify
new targets.

Nuclear magnetic resonance (NMR) techniques are an
attractive alternative to monitor astrocyte reactivity in situ.
Increased T1 relaxation time is observed by magnetic resonance
imaging (MRI) in acute models of ischemia and excitotoxicity.
Arundic acid, an inhibitor of astrocyte reactivity, normalizes it,
but the molecular basis for such changes in NMR signals is
unclear (Sibson et al., 2008). NMR-spectroscopy (MRS) allows
the quantification of abundant brain metabolites, including myo-
inositol, glutamine and choline which are enriched in glial cells.
In a model of selective astrocyte reactivity in the rat brain, myo-
inositol and choline levels are higher whereas glutamine levels
are lower than in controls, suggesting that reactivity leads to
the complex re-structuring of metabolic pathways (Carrillo-De
Sauvage et al., 2015). High concentrations of myo-inositol are
also commonly observed in ND models and patients, which

correlates with neuroinflammation (Choi et al., 2007). However,
the exact contribution of reactive astrocytes to these NMR signals
is unknown because of the concomitant activation of microglial
cells or other pathological events in ND.

More cellular selectivity may be achieved by MRS techniques
after the infusion of 13C-labeled metabolic substrates such as
glucose or acetate. Indeed, acetate is preferentially oxidized by
astrocytes and its metabolic fate can be monitored by MRS
(De Graaf et al., 2011). Furthermore, the rate of astrocytic
tricarboxylic acid cycle and of the glutamate/glutamine cycle
can be estimated by modeling (Lebon et al., 2002). 13C-acetate
injection coupled with ex vivo MRS analysis was performed
recently in several rodent models of AD (see Section Cholesterol
Metabolism). 13C-MRS may be translated to the clinics although
it remains quite an expensive and sophisticated approach (Ross
et al., 2003).

Reactive Astrocytes as Therapeutic Targets
The above-mentioned changes in reactive astrocytes make
these cells alternative or complementary therapeutic targets
to neurons for ND (Escartin and Bonvento, 2008). For
example, strategies enhancing glutamate uptake in astrocytes
may prevent excitotoxicity, which is common to all ND (Soni
et al., 2014). High-throughput screening identified β-lactam
antibiotics as potent inducers of glutamate uptake by astrocytes
(Rothstein et al., 2005). The β-lactam antibiotic ceftriaxone is
neuroprotective in vitro and in vivo in models of ALS (Rothstein
et al., 2005) and HD (Miller et al., 2008). A phase I clinical trial
with ceftriaxone in ALS patients gave promising results, but they
were not confirmed in the phase II-III stage (Cudkowicz et al.,
2014). Another astrocyte-based therapeutic strategy involves
grafting astrocyte progenitors close to vulnerable neurons to
provide them with global support (Lepore et al., 2008b).
Interestingly, some pharmacological agents tested or used in
clinics to target neurons may also affect astrocyte functions.
Indeed, neurons and astrocytes share many membrane receptors,
transporters and signaling pathways. For example, activators
of the Nrf2 pathway like curcumin may enhance antioxidant
defense in the brain by acting within astrocytes (Vargas and
Johnson, 2009).

Therapeutic strategies tested so far for ND have largely
focused on neurons and have been mostly unsuccessful to
date (Huang and Mucke, 2012; Wild and Tabrizi, 2014). Only
symptomatic treatments are offered to patients and their efficacy
of some decreases with disease progression (e.g., acetylcholine
esterase inhibitors for AD, L-DOPA supplementation for PD).
No treatment truly prevents neurons from degenerating. In light
of their many actions on neurons, strategies targeting reactive
astrocytes may effectively sustain neuronal function and hence
survival during ND. However, given the complex changes that
occur in reactive astrocytes during ND, complete ablation of
astrocyte reactivity may be counterproductive because these
cells also display beneficial adaptative changes during disease.
Identifying the complex interplay between shared intracellular
pathways mediating reactivity and disease specific signals may
enable the design of selective therapeutic cocktails to engage
reactive astrocytes in protective actions (Figure 3).

Frontiers in Cellular Neuroscience | www.frontiersin.org 19 August 2015 | Volume 9 | Article 278

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Ben Haim et al. Reactive astrocytes in neurodegenerative diseases

Conclusions

Overall, this review illustrates the multifaceted and complex roles
of reactive astrocytes during ND. Astrocyte reactivity appears
as a conserved response that is initially beneficial but is later
corrupted by disease-specific alterations. Huge progress has
been made recently as a result of the heightened interest in
glial cells, and the development of innovative and cell type-
specific approaches. However, these cells remain enigmatic,
and many aspects of their physiology need to be clarified.
Although the molecular pathways leading to astrocyte reactivity
during ND have been described, it is crucial to elucidate what
disease-, region- and environmental-specificmechanisms control

the functional outcomes associated with astrocyte reactivity
(Figure 3). In any case, considering reactive astrocytes as key
partners in neuronal dialog during ND opens new avenues for
neuroscience and biomedical research.
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