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SUMMARY

Tau hyperphosphorylation is thought to underlie tauopathy. Working in a Drosophila tauopathy 

model expressing a human Tau mutant (hTauR406W, or Tau*), we show that zinc contributes to 

the development of Tau toxicity through two independent actions: by increasing Tau 

phosphorylation and, more significantly, by directly binding to Tau. Elimination of zinc binding 

through amino acid substitution of Cys residues has a minimal effect on phosphorylation levels yet 

essentially eliminates Tau toxicity. The toxicity of the zinc-binding-deficient mutant Tau* 

(Tau*C2A) and overexpression of native Drosophila Tau, also lacking the corresponding zinc-

binding Cys residues, are largely impervious to zinc concentration. Importantly, restoration of 

zinc-binding ability to Tau* by introduction of a zinc-binding residue (His) into the original Cys 

positions restores zinc-responsive toxicities in proportion to zinc-binding affinities. These results 

indicate zinc binding is a substantial contributor to tauopathy and have implications for therapy 

development.

INTRODUCTION

Tau protein aggregation is found in several types of neurodegenerative diseases collectively 

termed “tauopathy,” which includes Alzheimer’s disease (AD), frontotemporal lobar 

degeneration chromosome 17, Pick’s disease, corticobasal degeneration, and the progressive 

supranuclear palsy (Brunden et al., 2009; Iqbal et al., 2005). AD, the most common and 

severe form of dementia, is alone an enormous burden to our everaging society.
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Tau is a microtubule-associated protein that can bind to microtubules and regulate their 

dynamics. Under normal physiological conditions, Tau exhibits low levels of 

phosphorylation (Buée et al., 2000); however, it is hyperphosphorylated in several disease 

states. The abnormally hyperphosphorylated state of Tau protein can cause it to dissociate 

from the microtubule and aggregate into paired helical filaments (PHFs) (Kuret et al., 2005; 

Mazanetz and Fischer, 2007), leading to multiple downstream events and culminating in 

neuronal cell death (von Bergen et al., 2005). Because a detailed mechanism for Tau toxicity 

remains elusive, designing effective therapies for tauopathies continues to be a challenge.

Transition metals, such as copper (Cu), iron (Fe), and zinc (Zn), are indispensable for 

numerous fundamental biological processes but are toxic when homeostasis is disrupted 

(Nelson, 1999). Increasing evidence indicates that they may also be involved in human 

neurodegenerative diseases (Bush, 2003; Lovell et al., 1998). It has been known for decades 

that abnormally aggregated Tau proteins (PHFs) or so-called neurofibrillary tangles 

codeposit with several transition metals (Good et al., 1992), and compromised metal 

homeostasis has been demonstrated to be closely linked with the pathogenesis of AD and 

tauopathy in vivo (Atwood et al., 2000; Bush, 2003; Lang et al., 2012; Lovell et al., 1998). It 

was proposed that these metals, in particular zinc, could induce Tau hyperphosphorylation 

(Egaña et al., 2003; Kim et al., 2011; Sun et al., 2012) by activating kinases such as Raf/

mitogen-activated protein kinase kinase and inhibiting phosphatases like PP2A (Kim et al., 

2011; Sun et al., 2012; Xiong et al., 2013). Additionally, zinc has been reported to interact 

with Tau directly in vitro (Mo et al., 2009), although the in vivo significance of this direct 

interaction is not known. Encouraging results from phase II clinical trials showed that 

clioquinol (CQ), an old antibiotic that can act as a metal-chelating agent, slowed AD 

development (Ritchie et al., 2003), and recently, an improved derivative of CQ, PBT2, 

offered even more promising results (Faux et al., 2010; Lannfelt et al., 2008).

In a genetic screen to identify metal homeostasis genes that might be involved in tauopathy, 

we discovered zinc transporters ZIP1 and ZnT1 as modifiers using a previously established 

Drosophila tauopathy model (Wittmann et al., 2001). Subsequent experiments revealed zinc 

affects Tau by two different means. It can bind Tau directly, affecting Tau’s properties and 

behaviors in a way that contributes to Tau toxicity. Also, through a mechanism distinct from 

binding, zinc is also involved in increased Tau phosphorylation. This latter effect appears to 

make a less important contribution to Tau toxicity. We conclude that, in addition to 

hyperphosphorylation, which has already been linked to tauopathies, direct zinc binding is 

another critical factor in Tau toxicity.

RESULTS

Zinc Reduction through Genetic or Dietary Measures Can Partially Rescue Drosophila 
Tauopathy

To investigate possible connections between metal genes and tauopathy, we set up a genetic 

screen to examine their interactions via a Drosophila tauopathy model using the bipartite 

upstream activating sequence (UAS)/Gal4 system. This fly tauopathy model uses 

hTauR406W (hereafter Tau* for short), a mutant Tau found in some FTDP-17 patients 

(Reed et al., 1997; Saito et al., 2002; van Swieten et al., 1999), and displays increased 
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toxicity over wild-type Tau (Wittmann et al., 2001). A collection of overexpression or RNAi 

lines of genes likely relevant to metal homeostasis (Cu, Zn, and Fe) (Table S1) were 

analyzed. Elav-Gal4 was used to drive the expression in the CNS. Change of eye roughness 

and lifespan were used as selection criteria in the screening. Several zinc transporter genes, 

but not genes related to other metals, were found to present consistent rescuing or enhancing 

effects, suggesting they act as the modifiers of Drosophila tauopathy. Notably, 

overexpression of dZnT1, a membrane zinc exporter (Wang et al., 2009), or inhibition of 

dZIP1, a membrane zinc importer (Lang et al., 2012), could partially suppress the rough-eye 

phenotype of Tau* flies (Figures 1A, Tau*/ZnT1-OE and Tau*/ZIP1-RNAi, S1A, and S1B), 

whereas the eye phenotype was slightly enhanced by overexpression of ZIP1 or inhibition of 

ZnT1 (Figures 1A, Tau*/ZIP1-OE and Tau*/ZnT1-RNAi, S1A, and S1B). In the absence of 

Tau*, these genetic perturbations alone did not produce noticeable eye phenotypes (Figure 

S1C) or obvious survival disadvantage (Figure S1D). Similar effects of the zinc transporters 

on Tau* toxicity were also observed when Tau* expression was directed in the eye using 

Gmr-Gal4 (Figure S1E). A quantification of head transition metal levels by inductively 

coupled plasma-mass spectrometry (ICP-MS) revealed zinc homeostasis was indeed 

specifically perturbed by these genetic interventions (Figure S1F), and RT-PCR reactions 

were performed to confirm the efficiencies of these genetic manipulations (Figure S1G).

Considerable improvements were observed in the lifespan and brain degeneration. 

Overexpressing ZnT1 or knocking down ZIP1 significantly elongated the lifespan of Tau* 

flies, whereas overexpressing ZIP1 and, to a much-lesser extent, knocking down ZnT1 

shortened the lifespan (Figure 1B). Tau* expression in Drosophila CNS causes 

vacuolization, reflecting neuronal loss and degeneration. ZIP1 overexpression or ZnT1 

RNAi exacerbated the vacuolization level, whereas ZnT1 overexpression or ZIP1 

knockdown significantly reduced the number of brain vacuoles (Figures 1C1 and 1C2). 

Therefore, genetically perturbing zinc transporters could significantly affect the 

neurodegenerative phenotypes in fly brains.

Having established that genetic modification of zinc transporters could suppress the defects 

of Tau* flies, we explored the possibility of tauopathy treatment by regulating dietary zinc 

uptake. Dietary zinc levels were controlled by the addition of ZnCl2 or CQ, a hydrophobic 

metal chelator (Adlard et al., 2008; Li et al., 2010), to the fly food. Metal (Cu, Fe, Mn, and 

Zn) content in these fly brains was measured by ICP-MS to confirm that the dietary 

regulation really produced the anticipated metal level changes (Figures S2A and S2B). Of 

note, the zinc-fed flies showed marginally reduced iron levels, implying that there could be a 

coregulation or interaction mechanism between zinc and iron (Solomons, 1986). CQ also 

slightly increased copper content, but, as previously reported, most of the copper is 

apparently unavailable for use so that, even when total cellular copper is increased, a state of 

copper deficiency is still created by CQ (Li et al., 2010).

Similar to what we observed as above in the genetic perturbation experiments, zinc addition 

significantly enhanced the Tau* toxicity (Figures S2C1 and S2C2), shortening the lifespan 

of Tau* flies (Figure S3A), whereas CQ partially rescued Tau* toxicity in Drosophila eyes 

(Figures S2C1 and S2C2) and elongated the lifespan (Figure S3B). As a control, wild-type 

flies (Elav-Gal4 > w−) that were treated with the same levels of metals showed no obvious 
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lifespan changes (Figure S3C). The neurodegeneration process of Tau* flies was also 

accelerated by zinc in the brain and eyes and partially mitigated by CQ (Figures S2D, S3D1, 

and S3D2). A quantification of the degenerative vacuoles formed per brain is shown in 

Figure S3D2.

Similar zinc effects were also observed in hypophosphorylated Tau mutants such as 

TauR406W/S262A/S356A (Tau*S2A) and TauR406W/S202A (Tau*S202A; Nishimura et 

al., 2004; Figures S3E and S3F). Whereas these hypophosphorylated Tau* mutants have 

greatly reduced toxicity and longer lifespans, their lifespans could still be significantly 

shortened by zinc and rescued by CQ in the case of Tau*S202A flies (Tau*S202A has 

stronger toxicity than Tau*S2A but less than Tau*). These results from genetic and dietary 

rescue studies indicate that changes in zinc homeostasis can have a partial but significant 

influence on the overall progression of tauopathy in vivo.

Zinc Increases Tau Phosphorylation Level

We next investigated how zinc could affect Tau toxicity. In AD and other tauopathies, 

accumulation of abnormally phosphorylated Tau is a hallmark of these diseases and is 

involved in fibril formation and neuron loss (Alonso et al., 1996, 2004; Hernández and 

Avila, 2007; Necula and Kuret, 2004). Hyperphosphorylations at serine and proline sites or 

threonine and proline sites have been found in disease samples (Yen et al., 1995), and 

several studies have suggested possible connections between zinc and Tau 

hyperphosphorylation (Boom et al., 2009; Sun et al., 2012). We thus analyzed Tau 

phosphorylation with a set of phospho-specific antibodies such as AT180, CP13, PHF-1, 

12E8, and AT270, which could recognize different Tau phospho-epitopes of Tau (Dias-

Santagata et al., 2007; Nishimura et al., 2004; Wittmann et al., 2001) (Figure 2A, table). 

Western blot results show that the AT180, CP13, and PHF-1 signals were reduced after CQ 

treatment and increased after zinc treatment (Figure 2A, image), three phosphorylation sites 

that have been previously demonstrated as important contributors to Tau toxicity.

When we genetically perturbed zinc homeostasis in the brain, similar changes of 

phosphorylation levels were also observed at these three sites (Figure 2B). Specifically, zinc 

importer ZIP1 RNAi or zinc exporter ZnT1 overexpression resulted in a reduction of 

phosphorylation at sites recognized by CP-13, AT180, and PHF-1 antibodies, and ZIP1 

overexpression or ZnT1 RNAi gave exactly the opposite results.

We conclude that zinc could indeed affect Tau phosphorylation in the fly tauopathy model, 

possibly due to its effects on Tau phosphorylation pathways (Boom et al., 2009; Sun et al., 

2012). But whether this phosphorylation alteration solely explains the effect of zinc on Tau 

toxicity still remained unanswered.

Zinc Directly Induces Tau Protein Aggregation In Vitro

Because zinc can bind to Tau in vitro via two Cys residues (C291 and C322; Mo et al., 

2009), we wondered if zinc binding played a role in tauopathy. We used circular dichroism 

(CD) spectroscopy to test whether this binding could induce a secondary structure change in 

Tau protein. CD spectra of Tau* proteins coincubated with different metals (Cu, Fe, and Zn) 

did show that zinc acted as a strong promoter of Tau* conformational change (Figure 3A): 
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the negative peak at 200 nm was reduced significantly whereas a red shift of the peak was 

also observed with zinc, indicating a structural change from the random coil. Although 

copper and iron also exhibited slight effects on Tau conformation at a higher concentration 

as reported previously (Ma et al., 2005, 2006), these metals failed to show any obvious 

effects at the lower concentration (5 μM) (Figure 3A). On the other hand, metal chelator CQ 

could effectively reverse the conformational change induced by zinc, returning Tau to its 

natural conformation (Figure 3B), as indicated by the observed changes in the 200 nm 

negative peak. This reversible process of CD changes suggested a potential physical binding 

between zinc and Tau. Conformations of hypophosphorylated Tau mutants such as 

Tau*S2A and Tau*S202A (Nishimura et al., 2004) could similarly be affected by zinc at the 

low concentration (5 μM; Figures 3C and 3D).

We next tested whether even lower zinc levels could induce Tau conformation change. Zinc 

concentrations as low as 0.25 or 0.5 μM, comparable to physiological zinc levels 

(Mocchegiani et al., 2005), could still induce significant changes in Tau* conformation 

(Figure 3E). The stronger promoting effect of zinc on Tau fibrillization was also confirmed 

by the Thioflavin T (Th-T) fluorescence assay (Figure 3F), wherein Th-T displayed an 

increased fluorescence when bound to aggregated Tau. The presence of heparin further 

enhanced the Th-T signals in general.

We additionally used transmission electron microscope (TEM) to visualize possible zinc-

induced polymerizations of Tau proteins. Before incubation with metal ions, some 

background signals could sometimes be observed, likely resulting from small amounts of 

oligomers formed during protein preparation (Figure 3G). After metal incubation, Tau* 

proteins could be seen to form small aggregates in almost all samples (Figure 3G, green 

arrowheads). However, longer filament-like structures could only be found in the sample 

with zinc (Figure 3G, in Zn panel, green arrow). Zinc therefore, at least in vitro, could 

directly induce Tau* protein conformation change and promote its polymerization.

Removal of Zinc Binding Effectively Eliminates Tau Toxicity

Because zinc is an essential nutritional element, removing it entirely from a cell or organism 

is unfeasible. Dramatic loss, as well as increase, of intracellular zinc inevitably results in cell 

death. To better demonstrate in vivo whether the direct zinc binding to Tau is functionally 

relevant, site-specific mutagenesis was utilized to replace potential zinc-binding sites (Mo et 

al., 2009) (Figure 4A, C291A and C322A, red sites) in the Tau* protein. Single mutants 

C291A and C322A and double mutant C291A/C322A (Tau*C2A for short) were generated 

and compared with Tau*S2A (Figure 4A, S262A and S356A, green sites) or Tau* itself for 

toxicities. C291A and C322A single-substitution mutants displayed almost identical 

phenotypes as Tau*C2A double mutant (Figure S4). Here, we will present only Tau*C2A as 

examples. As a control, we showed that the mutant Tau*C2A exhibited a similar CD profile 

as that of Tau* (Figure S5A), suggesting little conformation change results from these 

amino acid replacements. Immunostaining also revealed that Tau*C2A colocalizes with 

microtubules in the Drosophila motor neuron axon and muscle, similar to Tau* and 

Tau*S2A (Figures S5B1 and S5B2). Further, coimmunoprecipitation confirmed all three 

proteins (Tau*, Tau*C2A, and Tau*S2A) are able to bind to the microtubule components, 
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again suggesting normal functions are retained in Tau*C2A (Figure S5C). However, in vitro 

CD spectra analysis indicated Tau*C2A is no longer able to bind to zinc (Figure 4B), in 

contrast to Tau* (Figure 4C) and Tau*S2A (Figure 4D).

Ectopically expressed Tau*C2A and Tau*S2A displayed dramatically reduced levels of 

toxicity in fly eyes in comparison to Tau* (Figures 4E, S5D, and S5E). In the lifespan 

assays, we also observed similarly prolonged survival of Tau*C2A (mean lifespan about 60 

days) and Tau*S2A flies (mean lifespan about 63 days), when compared with Tau flies 

(mean lifespan about 30 days) (Figure 4F). In order to rule out differences in protein 

expression, we determined that all three chosen lines express comparable amounts of target 

proteins. Brain sections from Tau*, Tau*C2A, and Tau*S2A flies were additionally 

examined for vacuole formations. Far fewer vacuoles were found in Tau*C2A and Tau*S2A 

flies brains, indicating a great reduction of Tau*-induced neurodegeneration (Figures 4G1 

and 4G2).

Loss of Zinc Binding Confers Tau Inertness to Zinc Changes

If loss of toxicity for Tau*C2A is the result of loss of zinc binding, and for Tau*S2A from 

phosphorylation reduction, we expect the zinc responses of Tau*C2A, Tau*S2A, and Tau* 

flies to be different. Indeed, unlike that of Tau* and Tau*S2A flies, zinc could not 

appreciably affect the lifespan of Tau*C2A flies (Figure 5A). However, for similarly 

nontoxic Tau*S2A, which is able to bind zinc, zinc-responsiveness was still apparent 

(Figure 5A). Paraffin brain sections also revealed that zinc could not influence the toxicity 

of Tau*C2A: when treated with zinc, the neurodegeneration in Tau*C2A flies did not 

noticeably worsen as measured by the number of vacuoles formed in the brains (Figures 5B1 

and 5B2).

The effect of zinc on these Tau* variants was reproduced with in vitro binding assays. When 

incubated with zinc, both Tau*S2A and Tau* formed aggregates whereas Tau*C2A failed to 

do so (Figure 5C, arrowheads for small aggregations and arrows for filament-like 

aggregations). Polymerization of these Tau* variants was also examined in vivo. Zinc 

treatment significantly increased the amount of Tau in the insoluble fraction for both Tau* 

and Tau*S2A (Figure 5D) but without obvious effect on Tau*C2A (Figure 5D).

Interestingly, normal Drosophila Tau (dTau) lacks Cys (Figure S6A). Therefore, it is likely 

that the zinc-binding Cys residues may not be necessary for normal Tau functions, 

consistent with our CD and microtubule binding results as reported above. However, it 

would be worthwhile to test whether the toxicity from dTau overexpression is responsive to 

zinc level change. Again, as we observed with Tau*C2A, dTau toxicity is largely insulated 

from zinc level alterations (Figure S6B).

Taken together, these results indicate loss of zinc binding effectively suppresses Tau toxicity 

from deleterious zinc-modulating effects.
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Restoration of Zinc Binding to Tau Correlatively Restores Its Toxicity and Zinc 
Responsiveness

One caveat associated with mutating Cys to Ala in Tau* is that, in addition to loss of zinc 

binding, the amino acid substitution might also affect other biological aspects of Tau. To 

address this question, we made additional Tau* mutants: Tau*C291H and Tau*C2H 

(C291H and C322H). We reasoned that, if loss of zinc binding is indeed the sole factor 

attributed to the decrease in toxicity, Tau*C291H (relative to Tau*C291A) or Tau*C2H 

(relative to Tau*C2A) may regain zinc-binding ability as histidine residues are also often 

utilized by proteins to bind zinc. If this were the case, we would expect these mutants to 

restore zinc-responsive toxicity in Tau. When assayed by fluorescence quenching, the two 

Tau* mutants exhibited better zinc response than the non-zinc binding Tau*C2A, though 

neither as well as Tau* itself. Tau*C2H, in particular, binds zinc significantly more weakly 

(Figure 6A). Both exhibited very little toxicity under normal conditions when assayed by 

longevity (Figures 6B and 6C). However, when the zinc levels were increased, Tau*C291H 

and to a lesser extent Tau*C2H regained toxicity (Figures 6B and 6C). In fact, in the 

survival assay, elevated zinc concentrations caused Tau*C291H to exhibit a level of toxicity 

nearly comparable to that of Tau* under nonelevated zinc concentrations. Brain sectioning 

revealed similar results (Figures 6D1 and 6D2). These results are in contrast with what was 

observed with C to A changes, which were relatively insulated from zinc alterations. The 

correlation between Tau* toxicity and zinc-binding ability, together with the Tau*C2A and 

dTau results, provide strong support for our model that the toxicity loss associated with 

mutating cysteine residues results from an attenuation or loss in zinc binding, but not other 

factors.

Zinc Binding and Phosphorylation Are Two Independent Events for Tau

If zinc binding is essential for the manifestation of Tau toxicity, we asked if zinc binding 

might increase Tau phosphorylation, resulting in elevated toxicity, whereas loss of zinc 

binding could reduce phosphorylation. If this were the case, our zinc-binding mutant 

Tau*C2A would show lower levels of phosphorylation. To explore this possibility, we 

examined the phosphorylation levels of Tau*C2A, Tau*S2A, and Tau* proteins by 

immunoblotting. To our surprise, Tau*C2A maintained comparable levels of 

phosphorylation with that of Tau*. In fact, both Tau* and Tau*C2A showed much higher 

phosphorylation levels than Tau*S2A (Figure 7A), whose loss of toxicity is attributed to 

phosphorylation reduction (Nishimura et al., 2004). Likewise, we also observed comparable 

phosphorylation among Tau*, Tau*C291H, and Tau*C2H (Figure 7B). These results 

indicate that the reduced toxicity observed in Tau*C2A is not due to Tau phosphorylation 

changes; instead, it is caused by the abolished zinc binding per se.

As previously demonstrated, Tau*C2A toxicity is relatively insulated from changes in zinc 

concentration. However, when we probed the phosphorylation levels of Tau*C2A in vivo, 

we found that, similar to Tau*, it still displayed the zinc-induced increase in phosphorylation 

at several phospho-epitopes (Figure 7C), confirming that zinc binding to Tau and zinc’s 

enhancing effect on Tau phosphorylation are indeed two distinct and separable actions. 

Phosphorylation in Tau*S2A is also affected by zinc exposure (Figure 7C), indicating Tau 

phosphorylation is at least partially independent of PAR-1, because phosphorylation of S2A 

Huang et al. Page 7

Cell Rep. Author manuscript; available in PMC 2015 January 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



is not attributed to PAR-1 (Nishimura et al., 2004). Consistently, previous findings indicate 

zinc regulates Tau phosphorylation indirectly, likely through affecting several kinase 

pathways, like Erk (Kim et al., 2011), p70S6K (An et al., 2005), and phosphatase PP2A 

(Sun et al., 2012; Xiong et al., 2013). In summary, our results have uncoupled zinc binding 

and zinc-induced phosphorylation as two independent factors in Tau toxicity.

DISCUSSION

Zinc contributes to Tau’s toxicity by two independent ways. First, zinc indirectly affects Tau 

phosphorylation likely through the action of kinase or phosphatase pathways. In another, 

more important aspect, it directly binds to Tau and serves a critical role for Tau toxicity. By 

mutating zinc-binding residues of Tau, we were able to distinguish between zinc’s two 

modes of action. Amazingly, removal of zinc binding almost completely abolishes Tau 

toxicity, suggesting that zinc binding and hyperphosphorylation equally contribute to 

tauopathy. We propose that appreciable Tau toxicity requires both the presence of 

hyperphosphorylation and zinc binding (Figure S7).

Previously, zinc’s effect on Tau was assumed to be auxiliary (Boom et al., 2009; Budimir, 

2011; Greenough et al., 2013). The lack of in vivo evidence and the indispensability of zinc 

for normal cellular functions made evaluating zinc’s role in tauopathy a challenge. Through 

our set of carefully designed experiments, we were able to clearly separate the 

phosphorylation effect and zinc-binding effect and establish zinc’s key role in the 

pathogenesis of tauopathy. The effect of zinc binding is otherwise hard to discern due to the 

concomitant effect of zinc on Tau phosphorylation and because zinc modulation, by genetic 

or chemical measures, must be limited to avoid causing detrimental effects in vivo.

Although our results show that zinc has an effect on Tau hyperphosphorylation pathways, 

this effect appears to be less important to Tau toxicity than zinc binding directly to Tau. This 

conclusion is clearly supported by results from the reduced toxicity of the Tau*C2A mutant, 

which cannot bind zinc but exhibits normal zinc-responsive phosphorylation. Despite zinc-

responsive phosphorylation changes, Tau*C2A phenotypes are not much affected by zinc 

level alterations. In comparison, Tau*S2A, which shows reduced levels of phosphorylation 

but maintains its ability to bind zinc, shows greater toxicity in response to increases in zinc.

Previous in vitro studies show that the two Cys residues altered in Tau*C2A may be also 

involved in intramolecular and intermolecular Cys-Cys crosslinking actions. Specifically, 

substitution of C291A suppresses intracellular disulfide bond formation and leads to 

elevated intermolecular crosslinking and toxicity, whereas C322A diminishes toxicity 

(Schweers et al., 1995). According to the crosslinking model, C291A should be more toxic 

than even the normal Tau. However, in our hands, both C291A and C322A presented little 

toxicity in vivo, suggesting the change of crosslinking cannot explain the loss of toxicity 

here. To further show that it is indeed zinc binding that contributes to Tau toxicity, we 

further made Tau*C291H and Tau*C2H mutants. These two mutants should not have the 

proposed crosslinking ability as conferred by Cys residues in Tau*; however, they displayed 

zinc-responsive toxicity as Tau*, in accordance with their zinc-binding abilities.
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Several metals (copper, iron, and zinc) possess the ability to bind Tau peptides and induce 

aggregations in vitro (Boom et al., 2009; Ma et al., 2005, 2006; Mo et al., 2009; Yamamoto 

et al., 2002), yet no genetic evidence has ever been given to substantiate the functional 

relevance of these interactions in vivo. In this study, we used a Drosophila model to verify 

these interactions between metals and tauopathy. Only zinc among the three transition 

metals listed showed a toxicity-enhancing effect in vivo. It is possible that the other metals 

bind Tau with less affinity and the internal cellular environment does not provide high 

enough levels of these ions.

Religa et al. (2006) reported that elevated cortical zinc is a feature of advanced AD, 

correlating with increased cognitive deterioration and highest plaque burden. We found Aβ 

expression itself is sufficient to induce zinc accumulation in the fly head (Lang et al., 2012), 

whereas little overall increase was observed in tauopathy flies (data not shown). Therefore, 

in AD, a combination of Aβ plaque and tauopathy, with the increased zinc level as a result 

of Aβ accumulation, could accelerate late Tau toxicity development, leading to advanced 

AD.

The apparent zinc involvement in both tauopathy and Aβ-generated toxicity (Cherny et al., 

2001; Lang et al., 2012; Suh et al., 2000) has led researchers to question whether zinc 

reduction would be even more effective in AD treatment. Indeed, chelating therapy at the 

organismal level has shown some promising signs in AD clinical trials (Budimir, 2011; 

Duce and Bush, 2010). Our use of CQ also significantly improved the pathological findings 

of Tau flies. However, because zinc is such an important cofactor ubiquitously involved in 

many fundamental biological reactions, reduction of zinc to a critical level may substantially 

affect the corresponding processes and become deleterious to organism’s survival. Indeed, 

interfering with the expression of some of the zinc transporters can even lead to the death of 

the organism. Thus, although zinc reduction is effective in mitigating Tau toxicity, zinc’s 

full role in tauopathy may not be fully uncovered due to limited physiologically allowable 

zinc reduction. In other words, the reduction of Tau toxicity is significantly less dramatic 

through zinc reduction than zinc binding removal, suggesting Tau’s zinc binding is with 

relatively high affinity and zinc-Tau binding is still prevalent even under reduced zinc 

conditions. Compared to the organism-wide zinc reduction through dietary uptake 

limitation, more stringent restriction of zinc in only pathologically affected regions is worth 

consideration. In addition, a much more effective therapy would involve specifically 

perturbing the interaction between Tau and zinc, for example, with a small molecule 

inhibitor that binds to Tau’s zinc-binding region. Our current study is an important step 

forward toward understanding the etiology of tauopathy and may aid in the future design of 

more-effective treatment strategies.

EXPERIMENTAL PROCEDURES

Drosophila Stocks and Genetics

General fly stocks used in this study were obtained from the Bloomington Drosophila Stock 

Center. UAS-TauR406W (UAS-Tau*), UAS-TauR406W (S202A) (UAS-Tau*S202A), and 

UAS-TauR406W(S2A) (UAS-Tau*S2A) flies were as previously described (Nishimura et al., 

2004). For all the physiological and biochemical assays, Gmr-Gal4 flies were crossed with 
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UAS-Tau* flies to ectopically express Tau* in the eyes, and Elav-Gal4 flies were crossed 

with UAS-Tau* flies to express Tau* in the CNS. Flies were raised in standard corn meal 

food under 25(±1)° C unless noted.

Chemical Treatment and Lifespan Recording

For lifespan recordings, newly eclosed adults were raised on standard corn media with or 

without metal or other chemical supplements. In metal treatment experiments, a final 

concentration of 1 mM ZnCl2, 1 mM FAC (ammonium ferric citrate), or 0.25 μM CuCl2 was 

added to the diet; in CQ treatment, flies were fed with 0.5 μM CQ diluted from a stock 

solution dissolved in DMSO, and in this case, 1% DMSO was used as the corresponding 

control. Lifespans were recorded at 25° C. At least 100 flies were used for each individual 

experiment.

Site-Directed Mutagenesis and Fly Transformation

pUAST vector containing human Tau(R406W) (Tau*) was used as the template to generate 

various Tau mutants via site-directed mutagenesis. Constructs were sequence confirmed and 

transformed into fly w1118(w−) background. Multiple transgenic lines were obtained and 

inserts confirmed by genomic PCR. Protein expression levels were determined by western 

blot with Tau5 antibodies (mouse 1:1,500; Invitrogen).

Immunoblotting

To analyze phosphorylation levels of Tau proteins, adult fly heads were homogenized in the 

lysis buffer as described (Nishimura et al., 2004). Protein extracts were separated by 12% 

SDS-PAGE. The samples on polyvinylidene fluoride membranes were then incubated with 

antibodies at the following dilutions: 5A6 (mouse 1:2,000), PHF-1 (mouse 1:1,500), CP13 

(rabbit 1:2,000), AT270 (mouse 1:1,500), AT180 (rabbit 1:1,500), 12E8 (mouse 1:2,500), 

22C10 (mouse 1:500), Tau5 (mouse 1:1,500), and actin (mouse 1:1,500). PHF-1 and 5A6 

were from the Hybridoma Bank (University of Iowa), and the other antibodies were derived 

as described (Nishimura et al., 2004) or purchased from Invitrogen. Secondary antibodies 

were peroxidase-labeled antimouse immunoglobulin G (IgG), or anti-rabbit IgG, and signals 

were developed by enhanced chemiluminescence (Pierce). Nonionic detergent soluble and 

insoluble Tau fractions were prepared following a previously described method (Khurana et 

al., 2010). Equivalent amounts of soluble and insoluble proteins from different groups were 

loaded for the western blotting and probed by Tau5 (mouse 1:1,500) and actin (mouse 

1:1,500) antibodies.

Protein Expression, Purification, and Circular Dichroism Spectra Measurement

Human Tau(R406W) 0N4R form of Tau*, Tau*C2A, Tau*C2H, Tau*C291H, and Tau*S2A 

coding regions were cloned into pMXB10 (New England Biolabs) vector. Proteins were 

purified by chitin beads (NEB) as described (Venter et al., 2011; Wang et al., 2010) and 

concentrations measured by the BCA kit (Thermo Scientific). In the CD assay, proteins were 

incubated with zinc or other metals at 37° C in 0.01 M PBS (pH = 7.4) buffer containing 1 

mM dithiothreitol (DTT). CD spectra were measured in the far ultraviolet region (190–260 

nm) and recorded by the Jasco J-715 Spectropolarimeter.
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Th-T-Binding Assay

To analyze metal-induced Tau polymerization, freshly prepared 0.6 μmol Tau* protein 

(about 24 μg) was incubated with or without metals (5 μM Cu, Fe, or Zn) in 200 μl 20 mM 

Tris-HCl buffer containing 1 mM DTT (pH = 7.4) for 1 week. Th-T (Sigma-Aldrich) 

solution was freshly prepared, filtered, and then added to a final 20 μM concentration. 

Fluorescence of Th-T was recorded at 440 nm excitation and 480 nm emission by the 

luminescence spectrometer (SYNERGY4; Gene Company; Mo et al., 2009).

Fluorescence Quenching Assay

We assayed 0.05 μg purified protein in 500 μl buffer (0.01 M PBS; 1 mM DTT [pH = 7.4]) 

for changes in fluorescence intensity. Zinc was added stepwise, and emission readings were 

collected. Fluorescence was monitored at ~348 nm following excitation at 280 nm using a 

F4500 Fluorescence Spectrometer (Zundel et al., 1998).

Histology

For paraffin sections, fly heads were fixed in Carnoy fixation solution (ethanol: 

chloroform:acetic acid = 6:3:1) for 4 hr at the room temperature, then dehydrated 

sequentially by 100% ethanol for 30 min twice, dry ethanol (100% ethanol dried with 

desiccant) and methyl benzoate each for 1 hr, and stepwise embedded in melted paraffin. 

The paraffin-embedded fly heads were sectioned into 8 μm continuous sections. 

Hematoxylin-eosin (ZSGB-BIO) staining was used to facilitate the observation of the 

vacuoles in the brain samples.

TEM and Scanning Electron Microscopy

Freshly prepared Tau proteins were incubated overnight with or without metals at 37° C in 

0.01 M PBS buffer containing 1 mM DTT (pH = 7.4). Uranyl-acetate-negative staining was 

performed to facilitate subsequent TEM observations. Aggregate formation was examined 

by transmission electron microscope (H-7650B). Scanning electron microscopy analysis of 

fly eyes was performed as described previously (Chatterjee et al., 2009) with FEI Quanta 

200.

Metal Content Analysis

Sixty adult heads were collected, and metal contents were assayed using the ICP-MS XII 

(Thermo Electron) as described previously (Tang and Zhou, 2013). Data were normalized 

with weights of the samples.

Statistics

Data are presented as mean ± SEM. Differences among groups were analyzed by the IBM 

SPSS v13.0 with Student’s t (comparison of two groups) or ANOVA test (three groups or 

more). *p < 0.05; **p < 0.01. Differences between lifespans were analyzed by the log rank 

method using the GraphPad Prism 5 software, *p < 0.05; **p < 0.01; ***p < 0.0001; not 

significant (n.s.): p > 0.05.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genetic Alteration of Zinc Transporter Expression Significantly Modulates the 
Phenotypes of Tau Flies
(A) SEM photos of Tau* flies showing the modulating effect of zinc transporters on the 

eyes. Elav-Gal4 was used to drive Tau* expression in both CNS and eyes. The scale bar 

represents 100 μm. OE, overexpression.

(B) Modulating effect of zinc transporters on the lifespans of Tau* flies. Elav-Gal4 was used 

to express Tau* in the flies’ CNS. Log rank test: Tau*/ZIP1-OE versus Tau*, p < 0.0001; 

Tau*/ZIP1-RNAi versus Tau*, p < 0.0001; Tau*/ZnT1-OE versus Tau*, p < 0.0001; Tau*/

ZnT1-RNAi versus Tau*, p < 0.01.

(C1 and C2) Hematoxylin and eosin (H&E)-stained paraffin brain sections of these Tau* 

flies. Green arrows indicate only some of the many degenerative vacuoles formed in the 

brain. The scale bar represents 50 μm. (C2) is the quantification of (C1). Data represent 

mean ± SEM; *p < 0.05; **p < 0.01.
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Figure 2. Zinc Limitation Decreases Tau Phosphorylation
(A) Tau phosphorylation under different metal or CQ treatments. Antibodies 12E8, AT180, 

CP13, AT270, and PHF-1, as listed in the table, were used to detect different phospho-

epitopes of Tau*. 5A6 was used to indicate the total Tau protein level, and 22C10 was used 

as an additional loading control.

(B) Genetic modulation of zinc transporter genes similarly alters Tau phosphorylation. 

Phosphorylation levels of different epitopes of Tau* protein were detected by western blots. 

Results are reproducible in three independent western blotting experiments, and only one is 

shown here.
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Figure 3. Zinc Interacts with Tau and Induces Tau Conformation Change and Aggregation In 
Vitro
(A) Circular dichroism (CD) spectra of Tau* proteins coincubated with different metals. 5 

μM copper (Cu), 5 μM iron (Fe), and 5 μM zinc (Zn) were used. Protein concentration: 70 

μg/ml.

(B) CD spectra of Tau* proteins incubated with Zn and CQ. 5 μM Zn was used to induce 

conformation change, and 5 or 10 mM CQ was used to reverse the zinc effects. Protein 

concentration: 70 μg/ml.

(C and D) CD spectra of Tau*S202A and Tau*S2A incubated with different metals at the 

“low concentration” (5 μM). Protein concentration: Tau*S2A: 70 μg/ml; Tau*S202A: 90 

mg/ml.

(E) CD spectra of Tau* proteins under even lower Zn concentrations. Note lower 

concentrations of Tau* protein (40 μg/ml) and zinc (0.25 μM) were used. The reaction 

systems were dialyzed to remove zinc and concentrated by polyoxyethylene before 

measuring their CD spectra.

(F) Th-T fluorescence was used to detect Tau polymerization. Tau* proteins were incubated 

with 5 μM Zn, 5 μM Cu, and 5 μM Fe, respectively, in the presence or absence of 1 μmol/ml 

heparin as a polymerization inducer. Shown here are fluorescence signal changes after 7 

days of incubation. Data represent mean ± SEM. **p < 0.01.

(G) TEM images of Tau* proteins coincubated with different metals. Arrowheads indicate 

possible Tau oligomers, and big arrows indicate small filaments formed by Tau 

aggregations. Protein concentration: Tau*: 70 μg/ml. The scale bar represents 200 nm.
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Figure 4. Zinc Binding Is Essential for Tau Toxicity
(A) A sketch of Tau* protein showing all the relevant residues described in this work. The 

two zinc-binding Cys sites (Cys291 and Cys322) are represented in red, whereas the two 

phosphorylation sites (Ser262 and Ser356) in green. For simplicity, C2A was used to 

indicate Tau* protein containing Cys291Ala and Cys322Ala substitutions and S2A Tau* 

protein with Ser262Ala and Ser356Ala changes.

(B–D) CD spectra of Tau* (protein concentration: ~8 μg/ml), Tau*C2A (protein 

concentration: ~8 μg/ml), and Tau*S2A (protein concentration: ~10 μg/ml) proteins 

coincubated with zinc. Arrows mark the approximate 200 nm peak. Apparent zinc-induced 

conformation changes appeared in Tau* and Tau*S2A, but not Tau*C2A.

(E) Tau*C2A flies have much less affected eyes. Shown are eye scanning electron 

microscopy images of Tau*, Tau*S2A, and Tau*C2A flies. Gmr-Gal4 was used to drive the 

eye expression of Tau. The scale bar represents 100 μm.

(F) Tau*C2A flies have a much longer lifespan (comparable to that of Tau*S2A flies) than 

Tau*. Elav-Gal4 was used to drive Tau* expression in CNS. The difference between Tau* 

and Tau*C2A or Tau*S2A lifespans was significant, p < 0.0001 (log rank test).

(G1 and G2) H&E-stained paraffin brain sections of Tau*, Tau*C2A, and Tau*S2A flies. 

The scale bar represents 50 μm. Green arrowheads indicate some of the degenerated 

vacuoles. Statistical analysis of the results is shown in G2. Data represent mean ± SEM; **p 

< 0.05.
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Figure 5. Substitution of Zinc Binding Residues Essentially Eliminates the Zinc Responsiveness 
of Tau Toxicity
(A) Lifespans of Tau*C2A flies are essentially inert to zinc changes. Shown here are Tau*, 

Tau*S2A, and Tau*C2A flies under zinc treatment. Elav-Gal4 was used to express proteins 

in the CNS. Tau*-NF versus Tau*-Zn, p < 0.0001; Tau*S2A-NF versus Tau*S2A-Zn, p < 

0.0001; Tau*C2A-NF versus Tau*C2A-Zn, p ≈ 0.05. NF, normal food.

(B1 and B2) Brain degeneration is not significantly affected by zinc treatment in Tau*C2A 

flies. Shown here are H&E-stained paraffin brain sections of Tau*, Tau*C2A, and Tau*S2A 

flies under zinc treatment. The scale bar represents 50 μm. Green arrowheads indicate some 

of the many degenerated vacuoles. A quantitative and statistical analysis of B1 is shown in 

B2. Data represent mean ± SEM and were compared with NF group within each genotype. 

*p < 0.05; **p < 0.01. n.s., p > 0.05, not significant.

(C) Tau*C2A does not respond to zinc incubation in vitro. TEM images of Tau*, Tau*S2A, 

and Tau*C2A proteins coincubated with zinc are presented. The scale bar represents 200 

nm. The concentrations of Tau*, Tau*S2A, and Tau*C2A were adjusted to ~50 μg/ml 

before the metal incubation.

(D) Zinc treatment increases the insoluble species of Tau protein in vivo. Insoluble Tau 

fractions were extracted from fly heads using the extraction buffer containing 1% SDS and 

detected by Tau5 antibody. Actin was used as a control to show comparable loadings among 

samples.
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Figure 6. Restoration of Zinc Binding to Tau Regains Correlatively Its Zinc Responsiveness
(A) Various forms of Tau* upon zinc binding as detected by intrinsic fluorescence 

quenching. Fluorescence excited at 280 nm was measured after 5 min equilibration.

(B) Lifespan of Tau*C291H flies versus zinc. Zinc supplementation can enhance 

Tau*C291H toxicity to a level approaching that of Tau under normal diets. Elav-Gal4 was 

used to drive Tau expression. Tau*-NF versus Tau*-Zn, p < 0.0001; Tau*C291H-NF versus 

Tau*C291H-Zn, p < 0.0001.

(C) Lifespan of Tau*C2H flies. Comparing with that of Tau*C2A, the lifespan of Tau*C2H 

flies can still be affected by zinc. Tau*C2H-NF versus Tau*C2H-Zn, p < 0.01.

(D1 and D2) Brain degeneration was also affected by zinc treatment in Tau*C291H and 

Tau*C2H flies. Shown here are H&E-stained paraffin brain sections of Tau*, Tau*C291H, 

and Tau*C2H flies under zinc treatment. A quantitative and statistical analysis is shown in 

D2. The scale bar represents 50 μm. Green arrowheads indicate only some of the many 

degenerated vacuoles. Data represent mean ± SEM; *p < 0.05; **p < 0.01.
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Figure 7. Zinc Binding to Tau and Its Effect on Tau Phosphorylation Are Two Independent 
Events
(A) Tau*C2A undergoes similar phosphorylation as Tau*. Shown are phosphorylation levels 

of Tau*, Tau*S2A, and Tau*C2A proteins as detected by western blots.

(B) Tau*C2H and Tau*C291H also undergo similar phosphorylation as Tau*. Shown are 

phosphorylation levels of Tau*, Tau*C2A, and Tau*C291H proteins.

(C) Phosphorylation of Tau*C2A is similarly affected by zinc. Elav-Gal4 was used to 

express the proteins in CNS. Tau5 was used to indicate the total Tau level, and actin was 

used as an additional loading control.
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