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Abstract

Background—Preterm delivery and sub-optimal fetal growth are associated with each other and 

affect both mother and infant. Our aim was to determine (i) whether there are detectable 

differences in DNA methylation between early and late gestation and (ii) whether changes in DNA 

methylation from entry are associated with spontaneous preterm delivery with and without 

reduced fetal growth.

Methods—We conducted a case-control study nested within a large prospective cohort. Gene 

specific methylation was measured by Methyl-Profiler PCR Array in a Human Breast Cancer 

Signature Panel of 24 genes from maternal peripheral leukocytes genomic DNA at entry and 3rd 

trimester (sampled at 16 and 30 weeks of gestation, respectively). Clonal bisulfite DNA 

sequencing was performed to confirm the changes in selected genes (CYP1B1, GADD45A and 
CXCL12). Multivariable analysis was used for data analysis.

Results—There was significantly decrease in DNA methylation in 15 of 24 genes during the 3rd 

trimester in cases of spontaneous preterm delivery (n=23) as compared to the controls (n=19) 

(p<0.05–p<0.01 for each gene). Similar results were observed by bisulfite sequencing for 3 genes. 

The change in DNA methylation between late and early gestation was significantly different in 

cases (overall decrease in methylation was −4.0 ± 1.5%) compared to the controls (overall increase 

in methylation was 12.6 ± 2.19%, p<0.0001). A graded pattern of DNA methylation was observed 

in 15 genes. Cases who delivered preterm with reduced fetal growth had the lowest level of 

methylation, cases delivering preterm without reduced fetal growth were next and term controls 

were highest in methylation (p for trend <0.05 to p<0.01 for each gene). Cases of preterm delivery 

also had significantly lower dietary choline intake.
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Conclusions—These data suggest that epigenetic modification is associated with an increased 

risk of spontaneous preterm delivery, spontaneous preterm delivery with reduced fetal growth in 

particular.
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Introduction

Preterm delivery complicates 10–12% of all US births and is a serious health problem for 

both mother and infant [1–4]. Infants delivered preterm are also at an increased risk of low 

birth weight (LBW, <2500 g), being small-for-gestational age (SGA), or otherwise reduced 

in their utero growth when compared to infants delivered at term [2,5]. While SGA is a 

common reason for an indicated preterm delivery, reduced fetal growth is also associated 

with an increased risk of spontaneous preterm delivery [2,6]. Apart from medically indicated 

preterm delivery, the underlying causes and mechanisms of spontaneous preterm delivery 

remain largely unknown [7].

DNA methylation is the best understood mechanism and the most common marker used in 

epigenetic studies [8]. Alternation in DNA methylation of certain genes plays an important 

role in many pathological conditions that modify disease risk during pregnancy [9,10] as 

well as in the non-pregnant state [11,12]. Epigenetic changes influence several pregnancy 

outcomes including preterm birth, the duration of gestation and the growth trajectory of the 

fetus, infant and child [13–15]. In most cases specimens are often, but not exclusively, 

neonatal and obtained at delivery [9,14–16]. Prospective data on changes in maternal DNA 

methylation during pregnancy and their influence on fetal growth and gestation in human 

pregnancy are both limited and inconsistent [9,14,16].

Cancer and pregnancy have many parallels including the need to establish a nutrient supply 

for tissue growth and differentiation and to evade immune surveillance [17]. Recent reports 

suggested that some tumor-related genes are expressed during pregnancy [18–21]. For 

example, pre-eclampsia associated stressors (the inflammatory cytokines IL-6 and TNF-α, 

hypoxia and angiotensin II) induce expression of Growth Arrest and DNA Damage-

inducible 45 genes (GADD45a) in human placental explants [18]. Cord blood DNA 

methylation of tumor genes (CDKN1C, EPHA1, MPL) is associated with childhood body 

size [19]. In animal models, some cancer related genes (e.g., transformation related protein 

53 (p53) have multiple functions (oxidative stress, inflammation) that can alter the outcome 

of pregnancy (e.g., preterm birth) [20,21]. Thus, we analyzed DNA methylation in 24 genes 

from a Human Breast Cancer Signature Panel. Many genes in this panel influence the course 

of pregnancy; their dysfunctional expression or mutation is related to fetoplacental 

abnormalities during gestation (see S1 Table). We used maternal peripheral leukocytes DNA 

to examine (i) Whether there are detectable differences in DNA methylation between early 

and late gestation; (ii) Whether changes in DNA methylation from entry are associated with 
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spontaneous preterm delivery with and without reduced fetal growth and (iii) Whether 

dietary nutrient intake including folate and choline are different between cases and controls.

Materials and Methods

Study design and subjects

We conducted a case-control study nested within the Camden Study, a large prospective 

epidemiological study of young, generally healthy pregnant women residing in one of the 

poorest cities in the continental United States [22]. The underlying cohort of study 

participants enrolled between 1996 and 2006 were recruited from among patients enrolling 

at the Osborn Family Health Center, Our Lady of Lourdes Medical Center and St John the 

Baptist prenatal clinic in Camden, NJ. The study protocol was approved by the institutional 

review board at the University of Medicine and Dentistry of New Jersey (which later became 

Rowan University - School of Osteopathic Medicine in 2013). Informed written consent was 

obtained from each participant at enrollment after explanation of the nature and purpose of 

the study.

A total of 3.5% of the women who had serious non-obstetric problems (e.g., Lupus, type 1 

or 2 diabetes, seizure disorders, malignancies, acute or chronic liver disease, drug or alcohol 

abuse and psychiatric problems) were not eligible. Eighty percent of the patients who were 

eligible agreed to participate. A total of 8.3% of participants dropped out after enrollment 

due either to a move from the area or to an early pregnancy loss. A final total of 2,379 

participants whose pregnancy culminated in a live birth were used to randomly select cases 

of spontaneous preterm delivery and controls whose infants were delivered at term.

Data and blood samples collection

Data on socioeconomic, demographic, lifestyle and anthropometric variables were obtained 

at entry to prenatal care (13.5 ± 0.7 weeks of gestation), and updated at gestational weeks 20 

and 28. Ethnicity was self-defined. Blood samples were collected at entry (16.1 ± 0.7 

gestational weeks, mean ± SE) and during the 3rd trimester (29.5 ± 0.5). A standardized 

protocol for biological specimen collection is used for the Camden Study. Briefly, whole 

venous blood was collected into EDTA - containing Vacutainer tubes (Becton, Dickinson 

and Company, Franklin Lakes, NJ) and centrifuged to allow for collection of plasma and the 

buffy coat. The buffy coat enriched in white blood cells was used for DNA extraction. All 

buffy coats were prepared under optimal conditions within 2 hr after blood collection and 

immediately aliquoted and stored at −80°C and not thawed until analyzed.

Dietary data

A 24-hour recall of the previous day’s diet was obtained at entry to care, week 20 and 28 

gestation processed with databases from the Campbell Institute of Research and Technology 

(Campbell Soup Company) in Camden as described previously [23]. The database generates 

data for more than 70 nutrients including choline (free and total) intake using the United 

States Department of Agriculture (USDA) Nutrient Database for Standard Reference (http://

www.nal.usda.gov/fnic/foodcomp), the Continuing Survey of Food Intakes by Individuals, 
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and USDA database for the choline contents of common foods (release two, 2008) (http://

www.ars.usda.gov/sp2UserFiles/place/80400525/Data/choline/cholh01.pdf).

Definition of cases and controls

Preterm delivery is defined as delivery at <37 completed weeks of gestation based upon the 

last menstrual period confirmed or modified by ultrasound evaluation [24]. Detailed 

information identifying women with spontaneous preterm delivery, and medically indicated 

preterm delivery as well as fetal growth measures including infant birth weight, length, the 

circumferences of head and chest were obtained from the prenatal, labor, deliver and 

newborn records. Information on reproductive history including prior preterm delivery as 

well as the medical events during the current pregnancy was also obtained by interview 

and/or abstracted from clinical records.

Total preterm delivery was 10.1% in the underlying cohort (cases=240). Spontaneous 

preterm delivery was defined by the presence of intact membranes and regular contractions 

and by the absence of induction of labor or an elective caesarean section. Preterm premature 

rupture of membrane (PROM) was defined as rupture of membranes before the onset of 

labor in the spontaneous preterm group. Women with medically indicated preterm delivery 

(20% of total preterm), those with a multiple pregnancy and/or with a prior history of 

preterm delivery were excluded from sample selection. Cases of spontaneous preterm 

delivery (n=23) and term controls (n=19) were randomly selected by SAS PROC 

SURVEYSELECT (SAS Institute, Inc., Cary, NC) to assure that distribution of maternal 

characteristics was similar in cases and controls.

Infant weight below the 25th percentile for gestational age was defined as reduced fetal 

growth using a standard that adjusted for maternal parity, ethnicity and infant gender 

[25,26].

Analytic procedures for DNA methylation and bisulfite sequencing

Genomic DNA (gDNA) was extracted from buffy coat of blood using Blood & Cell Culture 

DNA kit according to manufacturer’s instruction (Qiagen, Frederick, Maryland), quantified 

by NanoDrop 2000 Spectrophotometer (Thermo Scientific, Wilmington, DE) and examined 

on 0.7% agarose gel electrophoresis for DNA integrity. Samples showing an A260/A280 

ratio >1.7, but <1.9, and a major band around 30 kb were used. Gene specific methylation 

was measured by Methyl-Profiler PCR Array in a Human Breast Cancer Signature Panel of 

24 genes (see detailed information in S1 Table) (Catalogue MeAH012A, Qiagen). The assay 

is fast and provides accurate detection of DNA methylation status at selected CpG islands. It 

is based on the MethylScreen method of combined digestion of methylation-sensitive type II 

enzyme (HpaII/HhaI) and methylation-dependent type IV enzyme (McrBC) coupled to real-

time PCR analysis of post-digested gDNA and was performed in triplicate as described 

previously [27,28]. Primers were designed, evaluated and provided by Qiagen.

The data processing was completed by web-based software provided by the manufacturer 

(Qiagen). Cycle threshold (Ct) values for each condition were used to calculate un-

methylated (UM), fully methylated (FM) and intermediately methylated (IM) DNA such that 

UM, FM and IM sum to 1.0 for a given sample. The final results were the proportion (%) of 
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methylated (sum of FM and IM) DNA to the total of unmethylated DNA (UM). All 

experiments were conducted blind without knowledge of case control status.

We selected three genes (CYP1B1, GADD45A and CXCL12) which showed significant 

differences by Methyl-Profiler PCR Array to confirm DNA methylation using sodium 

bisulfite modification followed by PCR-cloning-DNA sequencing [29]. Briefly, maternal 

gDNA (0.3 μg) were treated by sodium bisulfite using EZ DNA methylation kit (Zymo 

Research, Irvine, CA). Bisulfite treatment of denatured DNA converts all unmethylated 

cytosines to uracils, leaving methylated cytosines unchanged, and allowing for quantitative 

measurement of cytosine methylation status [30]. Three genes above were amplified by PCR 

with primers designed for modified gDNA using MethylPrimer software [31] and the 

following primer sets were used:

Gene Primer seq (5′ --> 3′)

CXCL12 Upstream gttttttattggtttttatttagtttt

Downstream acctttaaccttctcaaactcc

CYP1B1 Upstream tttgggttgaggaaggtgtt

Downstream caaccaaccaaccttcacct

GADD45A Upstream ggttgagggttggtaggataatt

Downstream cctactttctacactcactcacaaac

Statistical analysis

Maternal characteristics between cases and controls were compared by Student’s t tests (for 

continuous variables) and x2 tests or Fisher’s exact test (for categorical variables). 

Multivariate analysis of variance (MANOVA) was used to assess the significance of linear 

trend and compare mean levels of DNA methylation among cases and controls after the 

adjustment for potential confounding variables. The same method was used to test 

differences among subgroups of the cases - women who delivered a preterm infant with or 

without reduced fetal growth versus controls. The Bonferroni procedure was used to correct 

for multiple comparisons. The general linear model procedure (SAS, Proc GLM) was used 

for MANOVA. A class variable was coded for all cases, or cases with and without reduced 

fetal growth and controls. The dependent variable was DNA methylation (%) for each gene 

examined. All multivariable adjusted data are presented as means ± SE. Potential 

confounding variables including maternal pre-pregnancy BMI, age, parity, cigarette 

smoking, ethnicity and infant gender were controlled when appropriate. A dummy variable 

was created for ethnicity. Potential confounders were defined as those which altered the 

adjusted odds ratio or means by at least 10%, and assessed by comparing crude and adjusted 

data. The statistical significant level was defined as p<0.05. All statistical analyses were 

performed using SAS v.9.1 (SAS Institute, Inc., Cary, NC).
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Results

Maternal characteristics including age, pre-pregnancy BMI, parity, cigarette smoking and 

infant gender were not significantly different between cases and controls (Table 1). As 

expected, cases of spontaneous preterm delivery had significantly shorter gestations at 

delivery (p<0.0001), lower infant birth weights (p<0.0001) and more were African 

American (52.17%) than controls (15.79%, p<0.05). In addition, two cases of spontaneous 

preterm delivery were complicated by preeclampsia (8.7%). The proportion with reduced 

fetal growth (birth weight <25th percentile for gestational age) was different in cases (n=7, 

30.4%) and controls (n=1, 5.2%, p=0.0541 by Fisher’s exact test).

Selected dietary nutrients intake in cases and controls

We tested dietary nutrient intake between cases and controls. We found that dietary free and 

total choline intake at entry were significantly lower in preterm delivery cases without 

reduced fetal growth (p<0.05 vs. cases with reduced fetal growth for free and total choline; 

p<0.01 vs. controls for total choline) (Table 1). Cases with and/or without reduced fetal 

growth also had lower folate intake including dietary and dietary plus prenatal supplements 

as well as lower betaine intake, although the differences were not significant. Dietary 

macronutrients and total other B vitamins were not different among groups.

Gene specific methylation

Adjusted mean DNA methylation (%) is shown by case-control status in Table 2 at entry, 

DNA methylation tended to be lower in the cases but differences were not statistically 

significant (p>0.05 for each gene, Table 2). During the 3rd trimester cases had lower DNA 

methylation in all 24 genes, the differences were statistically significant in 15 of 24 genes 

(62.5%) thus suggesting decreased overall methylation (p<0.045 to p<0.003, Table 3). When 

results from all 24 genes were combined, the overall mean methylation (%) between cases 

(mean ± SE, 15.84 ± 1.81) and controls (37.04 ± 8.07) was also highly significant (p<0.01).

A different pattern for the change in DNA methylation between entry and 3rd trimester was 

observed in cases and controls (Figure 1). Cases showed decreased methylation (overall 

changes in methylation of 24 genes combined was −4.0 ± 1.5% (mean ± SE, ranging from 

−20.8 to +2.9%, Figure 1B). Whereas controls showed the opposite, with significantly 

increased methylation (overall changes in methylation was +12.6 ± 2.2%, ranging from −5.4 

to +45.3%, p<0.0001 vs. cases, Figure 1A). Significant changes for individual genes were 

found in 2 genes (ABCB1 and DSC3, p=0.023 and p=0.038, respectively).

Clonal bisulfite sequencing analysis

To confirm above observation, we next selected three genes (CYP1B1, GADD45A and 

CXCL12) from a subset of the same sample at 3rd trimester (n=5 for each group) and 

conducted bisulfite sequencing of CpG sites in the same regions examined by the Methyl-

Profiler PCR array above using the same subjects. Clonal bisulfite sequencing of CYP1B1 
gene is shown as an example (Figure 2A). Cases of preterm had a decreased percentage of 

methylated CpG sites in all 3 genes as compared to the controls but only CYP1B1 
methylation was statistically significant (p=0.038, Figure 2B); DNA methylation in these 3 
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genes (Figure 2C, data shown are extracted from data shown in Table 3) showed that cases 

had decreased DNA methylation (p<0.05 for GADD45A, p<0.01 for CXCL12, Figure 2C). 

Thus, the presence of DNA hypomethylation in cases of preterm delivery was consistent 

revealed by both technologies of clonal bisulfite sequencing and the Methyl-Profiler PCR 

Array.

Reduced fetal growth and DNA demethylation

To identify whether DNA methylation was associated with reduced fetal growth, we divided 

cases into subgroups of spontaneous preterm delivery - those with and those without reduced 

fetal growth - comparing them to term controls (Table 4). Owing to longer gestation 

duration, controls delivered at term had infants with significantly greater birth weight, 

length, head and chest circumferences as compared to cases with and cases without reduced 

fetal growth. Only birth weight and length were significantly different between the cases 

(p<0.05).

A graded pattern of maternal DNA methylation was obtained with the lowest methylation 

level observed in cases delivering preterm with reduced fetal growth, followed by cases 

delivering preterm without reduced fetal growth. The highest methylation level was found in 

controls all of whom delivered AGA infants at term (Table 5). The mean DNA methylation 

in 15 of 24 genes was significantly different when each subgroup of cases with and without 

reduced fetal growth was compared to controls (p for trend <0.048 to p<0.003 for each gene, 

Table 5).

Discussion

Our findings showed DNA hypomethylation in 15 of 24 tumor-related genes during the 3rd 

trimester in women with spontaneous preterm delivery, particularly when accompanied by 

reduced fetal growth. In addition, there was a gradation in DNA hypomethylation among 

cases -such that cases who delivered preterm with reduced fetal growth had the lowest levels 

of methylation, cases without reduced fetal growth were next followed by controls - all of 

whom delivered at term.

The study was prospective; cases with spontaneous preterm delivery and term controls were 

randomly selected from a large, well characterized cohort studied from entry to care until 

delivery. Women with a prior history of preterm delivery, the strongest risk factor, were not 

included; other potential confounders including maternal age, pre-pregnancy BMI, ethnicity, 

parity, cigarette smoking and infant gender were controlled. Two assays, one from early and 

the other from later in pregnancy, were conducted blind to the case-control status to 

minimize systematic bias. The results were confirmed by clonal bisulfite sequencing for 3 of 

the genes. Thus, the differences detected are novel, and robust as well as independent of 

many known risk factors and biases.

Altered DNA methylation and spontaneous preterm delivery

Our finding of an association between 3rd trimester DNA hypomethylation to spontaneous 

preterm contributes to the limited information on the topic. It is entirely plausible but not yet 
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proven that some behavioral (diet, smoking, stress) and other factors (ethnicity, BMI) that 

increase risk for preterm delivery do so by altering DNA methylation.

Prior research showed that lower DNA methylation in long interspersed nuclear element-1 

(line-1) from maternal white blood cells during the 1st but not the 2nd trimester was 

associated with shorter gestation duration amounting to 0.45 weeks on average (95% CI 

0.12, 0.78) and a 3- to 4-fold increased risk of preterm birth [16]. Several studies analyzed 

DNA methylation in cord blood collected at delivery to link with preterm delivery and fetal 

growth, with mixed results [9,14–15]. Parets et al identified 29 CpG sites that were 

associated with preterm birth <34 weeks in fetal leukocyte DNA from African American 

gravidae. Mean methylation was decreased in 19 CpG sites (66%); the methylation in other 

10 CpG (34%) sites was increased compared to term births [14]. In contrast, Liu et al 

reported cord blood DNA methylation measured by pyrosequencing did not differ in any of 

9 genes from differential methylation regions (DMR) when women with a spontaneous 

preterm delivery, a prior history of preterm delivery or a medically indicated preterm 

delivery were compared to one another [9]. This study, however, did not include term 

deliveries as a comparison group.

DNA hypomethylation and reduced fetal growth

Our preliminary observations suggest that epigenetic alternations, as indicated by DNA 

hypomethylation, could be associated with fetal growth and development. SGA and reduced 

fetal growth are common in preterm delivery, both are associated with perinatal and 

childhood morbidity and have lifelong consequences for increased cardiovascular risk in 

both mother and offspring [1,2]. Our data thus imply that hypomethylation of maternal DNA 

during gestation could be more pronounced with severely restricted fetal growth but this is 

speculative on our part.

Maternal nutritional status at conception and during pregnancy regulates DNA methylation 

and influences fetal growth and development in animal models [32]. In human studies, 

decreased cord blood DNA methylation of MEG2 and IGF2 was observed in low birth 

weight infants and mediated by maternal depressed mood [33]. Cord blood DNA 

methylation showed some association with body composition in childhood [19]. However, 

Tobi et al found no difference in DNA methylation in several genetic loci including IGF2 in 

individuals who were born preterm with and without SGA [15]. Likewise, risk factors 

related to SGA (preeclampsia and smoking) also did not differ in methylation status [15]. 

Although these data are not from maternal samples, they do suggest that DNA methylation 

potentially influences fetal growth and that epigenetic changes other than methylation may 

be involved in fetal and childhood growth.

DNA methylation, an epigenetic modification to the genome, can influence gene 

transcription, genomic stability and the regulation of other cellular processes [8,12,34]. 

Altered DNA methylation or mRNA expression of tumor-related genes occurs in many non-

tumor states [21,33,35,36]. Previous studies have linked the function of tumor-related genes 

with pregnancy and fetal development (see S1 table). For example, hypermethylation of the 

adenomatous polyposis coli (APC gene promoter (a tumor suppressor gene) in human term 
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placenta suggests that silencing of tumor suppressor genes is an integral part of normal 

placental development [35].

The physiological demands of pregnancy are a metabolic and cardiovascular ‘stress test’ 

[1,37]. Women who fail the test may be predisposed to adverse pregnancy outcome such as 

preterm delivery [5,37]. We have previously reported that poor maternal nutritional status, 

imbalanced metabolism, increased oxidative stress and/or an exacerbated inflammatory 

response all are associated with a number of adverse pregnancy outcomes including preterm 

delivery and SGA [38–41]. Choline is an essential nutrient [42–47]. Both human studies and 

animal models suggest that choline intake during pregnancy has the potential to modify 

epigenetic states in the offspring with implications for adult health and later chronic disease 

risk [48–52]. We observed that dietary free and total choline intakes at entry were 

significantly lower in cases of preterm delivery (Table 1). This work provides evidence for 

the need to examine the extent to which dietary nutrients also affect DNA methylation. 

Although none of the women delivered infants traditionally described as SGA (<10th 

percentile), our data suggest that it would be important to examine maternal 

hypomethylation in such cases. Thus, we hypothesize that epigenetic modification is a 

maternal response to a dramatically changed environment. A poor adaptation or incomplete 

compensation can induce DNA hypomethylation and other alterations which increase 

susceptibility to preterm delivery, particularly with reduced fetal growth.

We acknowledge some limitations. DNA methylation varies with cell or tissue type and 

peripheral blood cell composition can as well affect levels of DNA methylation [53–58]. We 

used maternal peripheral blood samples for DNA methylation without the adjustment for the 

proportion of white cell types. However, for the past decades, whole blood cells (buffy coat) 

have been widely used for research because they are easily accessible and provide the 

greatest amount of DNA for analysis. In our study, samples were obtained prospectively 

from generally healthy women, starting in early pregnancy, and collected in the same 

manner before the women delivered preterm (cases) or at term (controls). Several factors 

reported to be associated with DNA methylation including age, BMI, race and smoking 

status were controlled in our analysis [59–63] thus potentially reducing variation from many 

known factors other than white cell type.

In addition, we used a standard that adjusts for maternal ethnicity and other factors related to 

fetal growth restriction. Using a standard that adjusted for ethnicity is controversial given 

that environmental or behavior exposures more common in certain ethnic groups might be 

causing poor fetal growth [64–67]. This topic should be addressed in future epigenetic 

research.

Conclusion

Our finding support the idea that epigenetic dysregulation may be one of underlying 

mechanisms for spontaneous preterm delivery particularly with reduced fetal growth. These 

data are potential significant for the identification of women at risk of preterm delivery. 

More importantly, because DNA methylation is modifiable and potentially reversible, the 
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identification of modifiable factors like diet that modulate or influence epigenetic regulation 

holds promise for new insights into the prevention of this critical problem.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The changes of DNA methylation (%) between entry and the 3rd trimester in spontaneous 

preterm delivery cases and controls.

Models were adjusted for maternal age, pre-pregnancy BMI, ethnicity, parity and cigarette 

smoking. Shown are mean ± SE. * p<0.05; † p<0.0001.

A. Controls showed significantly increased methylation (overall increase in methylation was 

12.6 ± 2.19%).

B. Cases showed the opposite with decreased methylation compared to the controls (overall 

decrease in methylation was −4.0 ± 1.5%, p<0.0001).
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Figure 2. 
DNA methylation by clonal bisulfite sequencing and by Methyl-Profiler PCR array in a 

subset of the same sample. Shown are mean ± SE. * p<0.05.

A: Clonal bisulfite sequencing of the CYP1B1 gene as an example of 3 genes in cases and 

controls (n=5 for each): selected genomic regions were analyzed (208-bp, 28 CpG sites, 

+733/+940 to mRNA 5′ end, 2p22.2, Genbank accession number NM_000104). PCR 

amplification of MethylScreen shown in black bar within exon 2 (pink bar). Half arrowheads 

indicate the PCR primer pair used for Na bisulfate modification-cloning-sequencing. Each 
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row represents an individual clone from the post-bisulfite PCR product. Each column 

represents a CpG site. Filled circles (in red) indicated methylated CpG sites.

B: Percent of methylated CpG sites in all 3 genes (CYP1B1, GADD45A and CXCL12) in 

cases and controls (n=5 for each) by clonal bisulfite sequencing. The methylated % was 

calculated separately from each clone and the average total number of clones for cases and 

controls were plotted in the histogram graph panel.

C: DNA methylation at 3rd trimester by Methyl-Profiler PCR array analysis in the same 

subjects of 3 genes.
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Table 1

Maternal diet and other characteristics for cases of spontaneous preterm delivery and term controls*.

All preterm cases Preterm cases and 
reduced fetal growth

Preterm cases and 
AGA

Term controls and 
AGA

n 23 7 16 19

Age (yr.) 21.5 ± 1.0 21.6 ± 1.9 21.9 ± 1.4 22.2 ± 1.3

BMI (kg/m2) 26.4 ± 1.4 22.3 ± 1.8 28.0 ± 1.3 25.7 ± 1.2

Nullipara 7 (30.43) 3 (42.86) 4 (25.00) 8 (42.11)

Cigarette smoking 4 (17.39) 1 (14.29) 3 (18.75) 2 (10.53)

Ethnicity

 Hispanic 9 (39.13) 3 (37.50) 6 (37.50) 11 (57.89)

 African American 12 (52.17) 3 (37.50) 9 (56.25) 3 (15.79)

 Caucasian 2 (8.70) 1 (14.29) 1 (6.25) 5 (26.32)

Preeclampsia 2 (8.69) 2 (28.57) 0 0

Gestational age at delivery (weeks) 34.3 ± 0.4 34.6 ± 0.7 34.5 ± 0.7 39.2 ± 0.3†‡

Infant birth weight (g) 2609 ± 170 2137 ± 225 2866 ± 159 3605 ± 150†‡

Infant gender (male) 9 (39.13) 1 (14.29) 8 (50.00) 9 (47.36)

Reduced fetal growth

<10th percentile for gestation 0 0 0 0

<25th percentile for gestation 7 (30.43) 7 (100) 0 1 (5.26)

Dietary nutrients intake at entry (per 
day)

Total Fat (g) 81.7 ± 5.0 89.4 ± 8.4 77.5 ± 6.0 77.0 ± 6.3

Protein (g) 87.3 ± 6.7 81.9 ± 11.2 89.5 ± 8.1 86.0 ± 8.4

Carbohydrate (g) 290.7 ± 16.3 279.9 ± 27.5 297.5 ± 19.8 301.1 ± 20.7

Free choline (mg) 52.5 ± 5.4 63.9 ± 6.1 48.7 ± 4.4§ 57.9 ± 4.6

Total choline (mg) 314.0 ± 32.0 404.1 ± 49.6 262.0 ± 35.7§¶ 408.9 ± 37.3

Betaine (mg) 132.8 ± 17.6 106.5 ± 31.5 145.5 ± 21.3 131.8 ± 22.3

Total other B Vitamins (mg) 10.3 ± 1.7 9.5 ± 2.8 10.5 ± 2.0 8.3 ± 2.1

Folate (μg) 300.5 ± 50.7 308.7 ± 60.3 288.4 ± 43.4 327.7 ± 45.3

Folate (supplement, μg) 238.6 ± 96.8 339.7 ± 167.3 238.1 ± 120.5 479.4 ± 125.7

Total folate (diet and supplement, μg) 539.2 ± 106.2 648.4 ± 182.2 526.5 ± 131.3 807.1 ± 136.9

*
Data are means ± SE or n (%). Reduced fetal growth for gestation was defined as infant birth weight <25th percentile for gestational age, using a 

standard which adjusts for parity, infant gender and ethnicity. AGA, infant birth weight was appropriate for gestational age. Data for dietary 
nutrient intakes were adjusted for total energy intake. Total other B vitamins include vitamins B2, B6 and B12.

†
p<0.0001 vs. preterm cases with reduced fetal growth;

‡
p<0.0001 vs. preterm cases and AGA;

§
p<0.05 vs. preterm cases with reduced fetal growth (ranges of p was 0.02 to 0.04).

¶
p<0.01 vs. term controls and AGA (p =0.002).
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Table 2

Comparison of DNA methylation (%) between spontaneous preterm cases and term controls at entry to care*.

Gene symbol Cases (n=23) Controls (n=19) p-value

ABCB1 16.98 ± 6.14 16.25 ± 6.96 0.938

APC 5.56 ± 4.67 11.47 ± 5.15 0.407

ATM 12.49 ± 5.64 13.30 ± 6.40 0.926

BMP6 9.58 ± 5.58 19.12 ± 6.15 0.264

CAV1 3.28 ± 4.31 11.07 ± 4.89 0.246

CADM1 18.30 ± 7.02 26.15 ± 7.96 0.470

CDKN1B 6.09 ± 4.72 12.84 ± 5.35 0.356

CDKN2B 6.59 ± 6.20 20.69 ± 6.84 0.140

CHFR 5.19 ± 5.48 20.24 ± 6.04 0.077

CST6 77.00 ± 3.58 83.47 ± 3.94 0.238

DAB2IP 5.01 ± 4.95 20.51 ± 5.46 0.045

DAPK1 13.39 ± 5.84 19.35 ± 6.44 0.502

DSC3 8.01 ± 6.83 12.53 ± 7.51 0.670

EPB41L3 16.10 ± 6.42 20.43 ± 7.12 0.658

FHIT 11.91 ± 6.57 19.60 ± 7.09 0.438

GADD45A 8.03 ± 5.58 18.46 ± 6.15 0.222

GPC3 45.96 ± 4.77 49.35 ± 5.26 0.640

HOXA5 7.77 ± 5.61 20.67 ± 6.19 0.136

HOXD11 39.30 ± 8.04 30.62 ± 8.66 0.472

BRCA2 30.21 ± 8.09 43.66 ± 8.77 0.277

CALCA 30.06 ± 4.81 26.42 ± 5.32 0.618

CDX2 13.88 ± 5.37 17.53 ± 6.09 0.660

CXCL12 8.56 ± 5.44 21.53 ± 5.97 0.122

CYP1B1 61.33 ± 6.82 59.53 ± 6.82 0.858

*
Data are means ± SE.

Models were adjusted for age, BMI, parity, ethnicity and cigarette smoking.
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Table 3

Comparison of DNA methylation (%) between spontaneous preterm delivery cases and controls during the 3rd 

trimester*.

Gene symbol Cases (n=23) Controls (n=19) p-value

ABCB1 6.31 ± 7.84 33.85 ± 8.27 0.024

APC 0.63 ± 6.41 30.27 ± 7.11 0.005

ATM 6.85 ± 6.92 28.70 ± 7.67 0.045

BMP6 4.95 ± 5.87 33.45 ± 6.47 0.003

CAV1 4.78 ± 6.35 27.68 ± 7.00 0.022

CADM1 5.63 ± 6.10 25.60 ± 6.61 0.064

CDKN1B 5.98 ± 6.96 36.65 ± 8.26 0.009

CDKN2B 9.08 ± 7.20 27.28 ± 7.94 0.103

CHFR 5.56 ± 6.93 34.52 ± 7.65 0.009

CST6 77.36 ± 4.11 84.63 ± 4.66 0.253

DAB2IP 8.44 ± 6.75 23.12 ± 7.27 0.154

DAPK1 13.12 ± 8.02 46.57 ± 8.02 0.007

DSC3 12.35 ± 8.67 25.86 ± 9.76 0.327

EPB41L3 2.61 ± 5.66 23.03 ± 6.41 0.024

FHIT 7.39 ± 7.42 31.28 ± 8.00 0.037

GADD45A 10.13 ± 7.35 34.00 ± 7.93 0.036

GPC3 47.62 ± 5.35 61.83 ± 5.77 0.084

HOXA5 2.32 ± 5.90 25.31 ± 6.36 0.013

HOXD11 19.17 ± 7.65 33.54 ± 8.96 0.243

BRCA2 32.96 ± 8.40 31.99 ± 9.45 0.941

CALCA 20.00 ± 5.56 39.76 ± 6.17 0.025

CDX2 14.28 ± 7.41 29.28 ± 8.20 0.187

CXCL12 11.53 ± 7.52 40.15 ± 8.11 0.016

CYP1B1 45.53 ± 9.67 76.05 ± 10.09 0.036

*
Data are means ± SE.

Models were adjusted for age, BMI, parity, ethnicity and cigarette smoking.
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Table 4

Infant birth weight and size: reduced fetal growth and spontaneous preterm delivery*.

Group 1 (Preterm 
cases and reduced 

fetal growth)

Group 2 (Preterm 
cases and AGA) Group 3 (Term controls and AGA) P for trend

n 7 16 18

Birth length (cm) 44.32 ± 1.41 47.53 ± 0.98† 51.78 ± 0.90** † 0.0001

Head circumference (cm) 28.83 ± 1.66 31.49 ± 1.15 33.56 ± 1.05‡ § 0.049

Chest circumference (cm) 28.62 ± 1.17 30.84 ± 0.84 33.07 ± 0.75† 0.005

Birth weight (g) 2168 ± 248 2840 ± 171§ 3614 ± 157** ¶ <0.0001

Gestational age at delivery 
(week)

34.30 ± 0.72 34.54 ± 0.50 39.28 ± 0.46** ¶ <0.0001

*
Data are mean ± SE. Reduced fetal growth for gestation was defined as infant birth weight <25th percentile for gestational age using a standard 

which adjusts for parity, infant gender and ethnicity.

AGA, infant birth weight was appropriate for gestational age. One term control with reduced fetal growth was excluded from the analysis.

Models were also adjusted for age, BMI and smoking

**
p≤0.0001 vs. group 1

†
p<0.01 vs. group 2 (ranges of p was 0.002 to 0.006)

‡
p=0.04 vs. group 2

§
p<0.05 vs. group 1 (ranges of p was 0.032 to 0.046).

¶
p<0.0001 vs. group 2
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Table 5

Comparison of 3rd trimester DNA methylation (%) among cases of spontaneous preterm delivery (with and 

without reduced fetal growth) and term controls*.

Gene symbol Group 1 (Preterm cases and 
reduced fetal growth)

Group 2 (Preterm cases and 
AGA) Group 3 (Term controls and AGA) P for trend

n 7 16 18

ABCB1 6.11 ± 13.92 5.66 ± 9.11 36.38 ± 8.12** 0.021

APC 0.38 ± 11.13 0.92 ± 7.60 31.90 ± 7.13†‡ 0.005

ATM 1.05 ± 12.42 11.23 ± 8.49 28.88 ± 7.97† 0.023

BMP6 0.32 ± 11.58 6.54 ± 7.66 35.67 ± 7.22** † 0.003

CAV1 0.40 ± 12.06 5.61 ± 7.94 30.13 ± 7.31** † 0.015

CADM1 6.79 ± 11.50 6.71 ± 7.83 25.32 ± 7.20 0.096

CDKN1B 5.68 ±12.53 5.81 ± 8.67 39.52 ± 8.44†‡ 0.012

CDKN2B 0.04 ± 12.68 11.79 ± 8.38 29.90 ± 7.90† 0.028

CHFR 0.01 ± 12.58 7.37 ± 8.32 36.99 ± 7.85** § 0.004

CST6 71.16 ± 7.74 79.94 ± 5.07 84.63 ± 4.81 0.147

DAB2IP 5.75 ± 13.39 8.28 ± 8.18 25.44 ± 7.57 0.110

DAPK1 12.23 ± 13.99 13.53 ± 10.50 49.23 ± 8.52‡† 0.011

DSC3 22.37 ± 15.65 7.78 ± 10.72 27.72 ± 10.01 0.521

EPB41L3 1.38 ± 10.69 4.01 ± 7.06 23.53 ± 6.86** † 0.024

FHIT 0.06 ± 12.76 10.42 ± 8.72 33.32 ± 7.95† 0.018

GADD45A 5.30 ± 14.39 11.36 ± 8.79 36.39 ± 8.14** 0.025

GPC3 45.13 ± 9.78 47.94 ± 6.67 63.06 ± 5.95 0.067

HOXA5 4.26 ± 11.04 1.25 ± 7.53 26.80 ± 6.72‡ 0.029

HOXD11 24.02 ± 14.31 15.78 ± 9.51 36.89 ± 9.36 0.287

BRCA2 24.20 ± 15.49 35.98 ± 10.09 31.17 ± 9.50 0.837

CALCA 17.42 ± 10.28 21.35 ± 6.99 41.20 ± 6.43** 0.026

CDX2 11.91 ± 13.60 14.39 ± 9.26 31.85 ± 8.42 0.135

CXCL12 15.88 ± 13.67 7.88 ± 9.33 43.72 ± 8.33‡ 0.025

CYP1B1 38.58 ± 14.73 53.16 ± 13.38 75.07 ± 10.29† 0.048

*
Data are means ± SE. Reduced fetal growth for gestation was defined as infant birth weight <25th percentile for gestational age using a standard 

which adjusts for parity, infant gender and ethnicity. AGA, infant birth weight was appropriate for gestational age. One term control with reduced 
fetal growth was excluded from the analysis.

Models were also adjusted for age, BMI and cigarette smoking.

**
p<0.05 vs. group 2 (ranges of p was 0.028 to 0.045)

†
p<0.05 vs. group 1 (ranges of p was 0.018 to 0.043)

‡
p<0.01 vs. group 2 (ranges of p was 0.01 to 0.007)
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§
p<0.01 vs. group 1 (ranges of p was 0.01 to 0.008)
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