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Abstract: The definitive diagnosis and early treatment of many immune-mediated inflammatory
diseases (IMIDs) is hindered by variable and overlapping clinical manifestations. Psoriatic arthritis
(PsA), which develops in ~30% of people with psoriasis, is a key example. This mixed-pattern IMID
is apparent in entheseal and synovial musculoskeletal structures, but a definitive diagnosis often
can only be made by clinical experts or when an extensive progressive disease state is apparent.
As with other IMIDs, the detection of multimodal molecular biomarkers offers some hope for the
early diagnosis of PsA and the initiation of effective management and treatment strategies. However,
specific biomarkers are not yet available for PsA. The assessment of new markers by genomic and
epigenomic profiling, or the analysis of blood and synovial fluid/tissue samples using proteomics,
metabolomics and lipidomics, provides hope that complex molecular biomarker profiles could be
developed to diagnose PsA. Importantly, the integration of these markers with high-throughput
histology, imaging and standardized clinical assessment data provides an important opportunity
to develop molecular profiles that could improve the diagnosis of PsA, predict its occurrence in
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cohorts of individuals with psoriasis, differentiate PsA from other IMIDs, and improve therapeutic
responses. In this review, we consider the technologies that are currently deployed in the EU IMI2
project HIPPOCRATES to define biomarker profiles specific for PsA and discuss the advantages of
combining multi-omics data to improve the outcome of PsA patients.

Keywords: psoriatic diseases; psoriatic arthritis; psoriasis; multi-omics; data integration

1. Introduction
1.1. Psoriasis and Psoriatic Arthritis

Psoriasis is a chronic, immune-mediated inflammatory disease (IMID) of the skin,
which affects 0.91–8.5% of the population, varying by age, region and ethnicity [1]. The
most common manifestation is plaque psoriasis (psoriasis vulgaris), which accounts for
~80% of cases and typically involves the formation of erythematous and scaly plaques on
the head, ears, elbows and knees, as well as gluteal and umbilical areas. These skin changes
are often highly conspicuous, and the resulting stigmatization can lead to psychosocial
issues. There is also a high rate of comorbidities, including cardiovascular disease and
obesity [2]. Approximately 30% of psoriasis patients go on to develop psoriatic arthritis
(PsA) [3], a mixed-pattern IMID characterized by the inflammation of mainly entheseal
and synovial musculoskeletal structures [4]. Predisposition to the development of PsA
has a strong genetic basis [3] and correlates with the severity of psoriatic skin lesions,
including nail involvement (pitting, cracking, separation or nail loss). However, in a minor-
ity of cases, the symptoms of PsA develop alongside psoriasis or even before it. Various
environmental and lifestyle factors also increase the risk of PsA at the population level,
including a high body mass index and smoking [5–7], although paradoxically, smoking is
negatively associated with progression to PsA at the level of individual psoriasis patients [8].
There is also increasing evidence that dietary factors influence the risk of progressing to
PsA [9,10]. PsA can lead to structural damage and loss of function of the joints due to bone
erosion, new bone formation and cartilage loss [11]. It has diverse presentations including
asymmetric oligo-articular forms of arthritis, polyarticular disease, dactylitis and spinal
inflammation [12].

1.2. Current Diagnostic Practices and Disease Management Strategies

A diagnosis of psoriasis is usually based on the appearance of the skin [13]. Blood
tests or other diagnostic procedures are generally unnecessary [14]. If clinical diagnosis is
uncertain, psoriasis can be differentiated from visually similar conditions (such as certain
forms of eczema) by skin biopsy, which will confirm epidermal thickening interdigitating
with the dermis, changes to the stratum granulosum, the presence of nuclei in the superficial
layer, and the presence of infiltrating T cells [15]. In contrast, there is no definitive diagnosis
for PsA because the clinical manifestations overlap with other arthritic diseases, including
rheumatoid arthritis (RA), osteoarthritis and inflammatory bowel disease (IBD)-associated
arthritis. Current diagnostic practice is based on rheumatologic assessment involving
physical examination, medical history, blood tests and imaging. More definitive diagnosis
is generally dependent on the presence of inflammation and musculoskeletal damage,
which makes early intervention much more challenging. The identification of early and
specific biomarkers of PsA would facilitate immediate treatment with the most appropriate
drugs, therefore offering a much better prognosis for PsA patients and even preventing
disease progression in its early stages [16]. In addition to the need for early diagnosis so
that treatment can improve patient outcomes, the management of chronic disease plays
an important role with a focus on individualized and personalized treatment strategies.
Even following the initiation of appropriate immunosuppressive therapy, up to ~40% of
patients may not respond or experience adverse effects [17]. There is an urgent medical
need for biomarkers that facilitate the early differentiation of PsA and allow the prediction
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and monitoring of therapeutic responses during the chronic disease stage, thus helping to
normalize function and improve outcomes and quality of life.

1.3. The Promise of Omics and Multi-Omics Technology

Biomarkers that are distinct for specific groups of patients can be used for the early
diagnosis of diseases because they often correspond to qualitative or even quantitative
indicators of biological and pathological processes [18,19]. The genomics revolution in the
2000s identified a large panel of new genetic markers that are associated with particular
disease phenotypes, but the potential of biomarkers expanded enormously as omics tech-
nology broadened to encompass the global analysis of DNA modifications (epigenomics),
RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics). Further-
more, it is reasonable to differentiate between the analysis of polar metabolites and the
analysis of lipids (lipidomics) because the physicochemical properties of these compounds
are quite distinct and optimized methods for analyzing these groups are necessary. The
advent of proteomics and metabolomics/lipidomics in particular has raised the possibility
of using combinations of markers to differentiate between diseases or disease stages in
a quantitative manner, which is not possible with genetic markers outside the field of
oncology. As the corresponding technologies have become increasingly sophisticated,
sensitive and automated, the cost of analysis has fallen and more ambitious studies are
possible, including the correlation of multiple omics biomarker profiles across large groups
of patients. This requires stringent quality control standards to be applied during sample
collection, storage, preparation and analysis, including due attention to sample sizes and
replicates, as well as appropriate randomization (Figure 1).
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The EU-funded HIPPOCRATES project (https://hippocrates-imi.eu, accessed on
20 September 2022) is an ambitious collaboration that considers the potential of multiple
molecular marker types across the spectrum of omics technology and seeks to combine
them with conventional clinical diagnostic methods (imaging, medical records and physical
examinations) for PsA. The value of omics technologies in the clinical care of PsA patients
has been explored in a recent review article, including transcriptomics (which is not part of
the HIPPOCRATES project) [20]. HIPPOCRATES aims to extend the concept by combining

https://hippocrates-imi.eu


Biomedicines 2022, 10, 2387 4 of 18

marker profiles for the differential diagnosis of psoriasis and PsA, as well as prognosis and
the monitoring of treatment responses. In this review, we focus on the main objectives of
the HIPPOCRATES project by considering the advantages and disadvantages of different
omics technologies for the discovery of biomarkers for psoriasis and PsA, the potential of
multi-omics approaches that combine different technologies to take advantage of synergies
and how the diverse data formats may be combined and interrogated using advanced
data evaluation tools (e.g., tools based on artificial intelligence) to identify patterns with
diagnostic or prognostic value.

2. Genomics
2.1. Brief Overview of Relevant Genomics Technologies

Genomics is the branch of biology that deals with the analysis of genomes. In the con-
text of psoriasis and PsA, genomics can be used to identify and characterize the genes, and
more importantly the gene variants (alleles), that are associated with each disease. Many
of the genes identified as associated with psoriasis have also been found to be associated
with PsA when compared to population controls, highlighting their shared genetic basis.
Susceptibility loci associated with PsA alone have also been identified, including several
HLA-B alleles and IL23R [21,22]. The detection of pathological gene variants can be used to
assist diagnosis and also to predict the age of onset, severity and likely symptoms of the
disease. However, the multiple genes that distinguish between psoriasis and PsA may also
be shared with other arthritic diseases, such as RA or ankylosing spondylitis.

The fundamental technology underlying the field of genomics is the genome-wide
genotyping array, the contents of which are routinely enhanced by imputation, which
provides the structure and sequence of key disease-associated genes and allows causative
allelic variants to be identified. Genome-wide association studies (GWAS) and gene chip
experiments have identified more than 20 additional loci outside the HLA system that
are associated with PsA [23,24], some of which are exclusive (i.e., not also associated with
psoriasis) [25]. The advent of next-generation sequencing platforms that are faster, cheaper
and easier to automate than classic Sanger sequencing will enable researchers to amass a
large body of sequence data from various patient cohorts, and this allows the comparison
of patient groups to identify relevant alleles, in particular for rare variants not captured on
genotyping arrays or by imputation.

2.2. Applications for Early Diagnosis, Prognosis and Treatment Monitoring

PsA is known to have a strong genetic component, which means that certain allelic
variants are likely to be more prevalent among PsA patients than controls (or other disease
cohorts). Because such genetic variation is present from conception, it should be possible
to detect disease-causing alleles before the onset of symptoms and commence treatment
as early as possible. Similarly, it should be possible to detect PsA-associated alleles in
cohorts of psoriasis patients and thus identify those at the greatest risk of progression.
Although many different alleles are associated with psoriasis, PsA or both, GWAS can be
used to screen for large panels of variants in a single test, which is generally based on
array hybridization or multiplex PCR [26,27]. The detection of one or more informative
variants can therefore provide data to indicate causality. Other markers may be useful
for the assessment of therapy, and to determine which subcomponents are heritable, and
therefore more predictable [28]. Accordingly, prospective studies are needed in psoriasis
patients, ideally recruited from primary care before disease-modifying therapy commences,
to assess the ability of genetic variants to predict the onset of PsA.

2.3. Case Studies/Examples in Psoriasis and PsA

The primary genetic factors that distinguish PsA from psoriasis map to the HLA-B
locus [29,30]. The alleles HLA-B*39, HLA-B*07, HLA-B*38 and in particular HLA-B*27 have
been described as specific risk factors for PsA [31]. Although gene mapping is consistent
across different studies, resolution to a precise allelic variant is conflicting when the reported
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index associations point to amino acid positions 45 or 97 (Table 1). Outside the HLA region,
there is convincing evidence for a PsA-specific effect at the IL23R locus independent of the
known psoriasis risk variant [32–34]. Other genes associated with PsA but not psoriasis
include KIR2D [35], IL4 and KIF3A [36], B3GNT2 [37] and PTPN22 [25].

Table 1. Genetic variants with evidence to support their ability to distinguish between PsA and
cutaneous-only psoriasis.

Chromosome Gene or Locus Variant ID Ref.

6 HLA-B Amino acid position 45 [30]
6 HLA-B Amino acid position 97 [29]
1 IL23R rs12044149 [32–34]
5 5q31 (IL4, KIF3A) rs715285 [36]
1 PTPN22 rs2476601 [25]
6 TNFAIP3 rs9321623 [34]

19 KIR2D [35]
2 B3GNT2 [37]

3. Epigenomics
3.1. Brief Overview of Relevant Epigenomics Technologies

Epigenomics is the large-scale analysis of epigenetic phenomena, which include DNA
methylation and histone modification as regulators of the 3D configuration of the genome,
and the expression of small regulatory RNAs. Epigenetic mechanisms play a key role in
the regulation of gene expression, and specific epigenetic markers can be associated with
diseases such as psoriasis and PsA. Various technologies can be used to monitor genome-
wide epigenetic phenomena, including chromatin immunoprecipitation (ChIP) followed by
detection on microarrays (ChIP-chip) [38] or by sequencing (ChIP-Seq) [39], the detection of
methylated DNA using bisulfite sequencing or (directly) by nanopore sequencing or SMRT
sequencing [40], and enzyme-based chromatin accessibility assays [41]. The detection of
chromosome conformation signatures (sequences that are likely to control the 3D structure
of the genome) can also be used to pinpoint abnormal chromosome structures that are
associated with diseases or responses to treatment. For example, the Oxford Biodynamics
EpiSwitch platform is based on the testing of more than 10,000 samples in 30 disease
indications, enabling the screening, evaluation, validation and monitoring of 3D genomic
biomarkers [42].

3.2. Applications for Early Diagnosis, Prognosis and Treatment Monitoring

The EpiSwitch platform facilitates the discovery of stable and heriTable 3D genomic
markers and the development of highly sensitive clinical assays based on non-invasive
blood readouts. In the case of PsA, it can assist with a definitive diagnosis and prognosis
in the context of comorbidities and overlapping symptoms, without resorting to biopsy.
This technique has already delivered biomarkers that predict the response to methotrexate
treatment in RA patients [43], that predict the response to immune checkpoint inhibitors in
cancer [44], and that are prognostic for severe outcomes of COVID-19 based on individual
patient immune health profiling [45]. The markers profiled by EpiSwitch technology are
governed by all forms of genetic and epigenetic variation, and their combined influence
has a major impact on the regulation of gene expression by controlling access to chromatin.
Therefore, such markers are powerful high-level integrators of multi-omic signals [46].
In order to utilize the full potential of EpiSwitch, a representative cohort of whole blood
samples with clinical annotations is required, representing extreme clinical outcomes. That
spectrum will define the quality of the EpiSwitch biomarkers and their correlation with
other modalities.
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3.3. Case Studies/Examples in Psoriasis and PsA

Although chromosome conformation signatures for psoriasis and PsA are not yet avail-
able, the promise of the technique has been demonstrated in early RA patients commenc-
ing methotrexate treatment [43]. Using blood samples from responders, non-responders
and healthy controls, a custom biomarker discovery array was refined to a five-marker
chromosome conformation signature that could discriminate between responders and non-
responders. Markers were validated using a blinded, independent cohort of 19 early RA
patients (9 responders and 10 non-responders) and the corresponding loci were mapped
to a RA-specific expression quantitative trait locus (eQTL). Finally, a five-marker chro-
mosome conformation signature was found that could identify, at baseline, responders
and non-responders to methotrexate. It consisted of binary chromosome conformations
in the genomic regions of IFNAR1, IL-21R, IL-23, CXCL13 and IL-17A. When tested on
a cohort of 59 RA patients the marker provided a negative predictive value of 90% for
methotrexate response. When tested on a blinded independent validation cohort of 19 early
RA patients, the signature demonstrated a true negative response rate of 86%, and 90%
sensitivity for the detection of non-responders. Only conformations in responders mapped
to the RA-specific eQTL.

4. Proteomics
4.1. Brief Overview of Relevant Proteomics Technologies

Proteomics can be defined as the large-scale analysis of proteins. In the context of
PsA, it has been applied mainly to identify biomarkers that can be detected in blood,
synovial fluid or skin samples for the early diagnosis of PsA and its differentiation from
psoriasis [47–49]. The proteome is much more complex and dynamic than the genome
because there are an estimated ~20,000 protein-encoding genes in the human genome [50],
but these give rise to multiple variants by alternative transcription, splicing and processing
of RNA, post-translational modification and protein–protein interactions. About 10% of
the human proteome lacks experimental evidence, and the combined effect of differential
protein abundance, protein modifications, sequence variation and interactions further
complicate the task of measuring all proteins in every sample [50].

The technologies used to interrogate the proteome can be broadly divided into un-
targeted methods that attempt to consider all proteins in a sample, and targeted methods
that focus on specific proteins or classes of proteins. Mass spectrometry (MS) is a key
platform in both approaches because it is a sensitive, high-throughput technology that
is relatively easy to automate. Proteins are digested into peptides using a protease with
known specificity such as trypsin, and the mass of each peptide, and its fragments gener-
ated inside a collision cell, is correlated with values in databases to achieve peptide and
hence protein identification. Untargeted methods are based on the analysis of complex,
uncharacterized peptide mixtures from multiple proteins. These are generally fractionated
by liquid chromatography before injection into the mass spectrometer (LC-MS) and/or by
multiple rounds of MS. In the latter case, data-dependent acquisition (DDA) involves the
selection of specific peptides during the first round of MS for further fragmentation in sub-
sequent rounds, whereas data-independent acquisition (DIA) involves the fragmentation
and further analysis of all peptides from the first round [51]. Targeted methods involve
the selection of one or a relatively small number of proteins from a sample for quantitative
analysis [52]. Targeted analysis can be undertaken using MS-based methods as exemplified
in the Atturos platform or methods that rely on highly specific affinity reagents. In the latter
case, the production of high-quality data requires the use of validated binders (affinity
reagents) that capture target proteins at low abundance [53]. Current affinity proteomics
methods can detect more than 3000 proteins simultaneously by using different selectivity
concepts, as well as the amplification capabilities of DNA-based readout methods. One
relevant example is the Olink platform, a proximity extension assay that involves the
recognition of proteins by antibodies linked to protein-specific DNA barcodes that can
be amplified by qPCR or sequencing [54]. This may have a broader dynamic range and
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greater sensitivity than LC-MS and can simultaneously detect 3000 human proteins in
plasma samples [55]. The use of slow off-rate DNA aptamers, provided by SomaLogic,
has enabled large-scale studies of 10,000 donors targeting 4000 circulating proteins across
human diseases [56].

4.2. Applications for Early Diagnosis, Prognosis and Treatment Monitoring

For the proteomic analysis of body fluids, particularly blood, further challenges arise
due to the broad concentration range of different proteins, dynamic changes induced by
disease processes, and analytical factors that influence protein detection [57]. Collectively,
more than 4500 proteins have been detected in plasma samples by discovery-driven MS [58].
Many abundant plasma constituents are secreted by the liver, whereas other secreted pro-
teins, such as inflammatory cytokines, are often elevated only transiently [59]. Accordingly,
differences have been observed between individuals and between molecular profiles at
longitudinal study time points [60]. When searching for protein biomarkers in healthy
individuals, as well as psoriasis and PsA patients, the heterogeneity of signatures from
circulating proteins should be expected.

Multiple candidate biomarkers of PsA have been reported in serum and plasma, in
addition to a smaller number found in synovial fluid/tissue and skin biopsies [47,48]. Most
of the biomarker candidates are proposed for the detection of PsA [61,62], differentiation
between mild and severe forms [63,64], measuring disease activity [65], or predicting which
psoriasis patients are likely to develop PsA [66]. However, others have been proposed to
distinguish PsA from other arthritic diseases such as RA [49,67] or to monitor responses
to therapy [68–71]. For example, the label-free MS analysis of synovial fluid from PsA
patients revealed 12 candidate PsA markers including the injury marker MMP3, as well
as the inflammatory proteins S100A9 and CRP [62]. A subsequent study using LC-MS
identified periostin, which is related to cell-adhesion proteins, and the angiogenesis marker
PGK1 [72]. More recently, a systematic search of five bibliographic databases for clinical,
laboratory and genetic markers was used to determine the level of evidence for each marker
and its association with concomitant/developing PsA [73]. These have been converted
into proteomic biomarkers in Table 2. For the prediction of PsA in psoriasis patients,
highly characterized cohorts of patients are needed with each disease, minimizing the
proportion of undiagnosed subclinical PsA patients in the psoriasis group. Alternatively,
longitudinal observation and sample collection in the psoriasis group may directly identify
those progressing to PsA, allowing the retrospective analysis of early samples to look for
predictive biomarkers.

4.3. Case Studies/Examples in Psoriasis and PsA

In a recent study, a set of 951 circulating proteins was analyzed in serum samples
to interrogate possible differences between patients with PsA, psoriasis and healthy con-
trols [74]. Sixty-eight differentially expressed proteins were identified when comparing
PsA patients and healthy controls, but no differentially expressed proteins were identified
when comparing PsA and psoriasis patients. This led the authors to propose a “shared
serum proteomic signature” between psoriasis and PsA. However, the cohorts were very
small and subclinical PsA in the psoriasis group could not be excluded. Indeed, no infor-
mation was provided about patient inclusion/exclusion criteria or the criteria used for the
differentiation of PsA from psoriasis, which is necessary in such studies. In conclusion,
the authors recommended that future studies focus on skin and synovial tissue to find
differences between PsA and psoriasis patients.
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Table 2. Proteomic markers with evidence to support their ability to distinguish between PsA and
cutaneous-only psoriasis. A gene-centric table of candidates was created by using the biomarkers
listed by Mulder et al. [73]. The proteins and mRNAs were converted into gene-centric entries using
the Human Protein Atlas portal (www.proteinatlas.org (accessed on 5 July 2022)), and were annotated
for secretion location, tissue expression and biological functional based on the recent clustering of
single-cell expression data [75].

Gene Name Biomarker UniProt ID Category Secretion Tissue Expression Biological Function

ADIPOQ Adiponectin Q15848 Lipid Blood Adipose tissue ECM organization
APOA1 ApoA P02467 Lipid Blood Liver Metabolism
APOB ApoB P04114 Lipid Blood Liver Metabolism
CMC2 C16ORF61 Q9NRP2 Skin N/A Non-specific Mitochondria

COL2A1 C2C P02458 Bone ECM Epididymis Unknown function
CCL1 CCL1 P22362 mRNA Blood T cells Adaptive immune response

CCL20 CCL20 P78556 mRNA Blood Smooth muscle tissue Mixed function
CCL7 CCL7 P80098 mRNA Blood Neutrophils Humoral immune response
CD5L CD5L O43866 Serum Blood Macrophages Immune response
COMP COMP P49747 Bone ECM Skin Epidermis development

C9 Complement C9 P02748 Serum Blood Liver Hemostasis and lipid
COL2A1 CPII P02458 Bone ECM Epididymis Unknown function

CPN2 CPN2 P22792 Skin Blood Liver Hemostasis
CRP CRP P02741 Inflammation Blood Liver Hemostasis

COL1A1 CTX P02452 Bone ECM Fibroblasts ECM organization
CX3CL1 CX3CL1 P78423 mRNA Blood Adipose tissue ECM organization
CXCL10 CXCL10 P02778 Cytokines Blood Immune cells Immune response
CXCL12 CXCL12 P48061 Skin Blood Fibroblasts ECM organization
CXCL2 CXCL2 P19875 mRNA Blood Liver Metabolism
CXCL5 CXCL5 P42830 mRNA Blood Salivary gland Salivary secretion
DKK1 DKK-1 O94907 Bone Other Adipose tissue ECM organization
ESR1 ESR P03372 Inflammation N/A Fibroblasts ECM organization
FHL1 FHL1 Q13642 Skin N/A Striated muscle Muscle contraction
GSN Gelsolin P06396 Serum Blood Fibroblasts ECM organization
GPS1 GPS1 Q13098 Skin N/A Non-specific Mitochondria
HAT1 HAT1 O14929 mRNA N/A Non-specific Ribosome
IFI16 IFI16 Q16666 Serum N/A Immune cells Immune response
IL12A IL-12/23 p40 P29459 Cytokines Blood Brain and skin Unknown function
IL12B IL-12/23 p40 P29460 Cytokines Blood Non-specific Cell cycle regulation

IL9 IL-12/23 p40 P15248 Cytokines Blood N/A N/A
IL17A IL-17 Q16552 Cell culture secretion Blood Immune cells Immune response
IL17C IL-17C Q9P0M4 mRNA Blood Testis DNA repair
IL17F IL-17F Q96PD4 mRNA Blood B cells Humoral immune response

IL2 IL-2 P60568 Cell culture secretion Blood N/A N/A
IL23 IL-23 Q9NPF7 Cytokines Blood B cells Humoral immune response

IL23R IL23R Q5VWK5 Skin N/A Intestine Brush border
IL3 IL-3 P08700 mRNA Blood N/A N/A
IL33 IL-33 O95760 Cytokines Blood Fibroblasts ECM organization
IL34 IL-34 Q6ZMJ4 Cytokines Blood Macrophages Immune response
EBI3 IL-35 Q14213 Cytokines Blood Placenta Pregnancy

IL12A IL-35 P29459 Cytokines Blood Brain and skin Unknown function
IL36A IL-36a Q9UHA7 Cytokines Blood Esophagus Epithelial cell function
IL1F10 IL-38 Q8WWZ1 Cytokines Blood Skin Cornification

IL6 IL-6 P05231 Cytokines, mRNA Blood Adipose tissue ECM organization
CXCL8 IL-8 P10145 mRNA Blood Neutrophils Humoral immune response

INS Insulin P01308 Lipid Blood Pancreas Digestion
ISG20 ISG20 Q96AZ6 mRNA N/A Immune cells Immune response
ITGB5 ITGB5 P18084 Serum N/A Adipose tissue ECM organization
ITGB5 ITGB5 P18084 Skin N/A Adipose tissue ECM organization
KRT17 K17 Q04695 Serum N/A Skin Epidermis development

LEP Leptin P41159 Lipid Blood Adipose tissue ECM organization
LGALS3BP M2BP Q08380 Serum Blood Stomach Digestion

CSF1 M-CSF P09603 Cytokines Blood Non-specific Angiogenesis
MMP3 MMP3 P08254 Bone, mRNA ECM Salivary gland Salivary secretion
MPO MPO P05164 Serum Membrane Neutrophils Humoral immune response

NOTCH2NLA NOTCH2NL Q7Z3S9 mRNA Blood Testis DNA repair
TNFRSF11B OPG O00300 Bone Other Kidney Transmembrane transport

POSTN POSTN Q15063 Skin ECM Skin Epidermis development
PTPA PPP2R4 Q15257 Skin N/A Non-specific Mitochondria
PRL PRL P01236 Serum Blood Pituitary gland Hormone signaling

TNFSF11 RANKL O14788 Bone Blood Immune cells Immune response
SETD2 SETD2 Q9BYW2 mRNA N/A Non-specific Transcription
IL2RA sIL2R P01589 Serum N/A Immune cells Immune response
IL2RB sIL2R P14784 Serum N/A Immune cells Immune response
IL2RG sIL2R P31785 Serum N/A T cells Adaptive immune response
SNCA SNCA P37840 Skin Membrane Brain and bone marrow Chromatin organization
SRP14 SRP14 P37108 Skin N/A Non-specific Mitochondria
SRPX SRPX P78539 Skin Unknown Adipose tissue ECM organization
STAT3 STAT3 P40763 mRNA N/A Non-specific Mitochondria and proteasome
STAT6 STAT6 P42226 mRNA N/A Macrophages Immune response

www.proteinatlas.org
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Table 2. Cont.

Gene Name Biomarker UniProt ID Category Secretion Tissue Expression Biological Function

STIP1 STIP1 P31948 Serum N/A Non-specific Unknown function
SYK SYK P43405 mRNA N/A Non-specific Transcription

TBX21 TBX21 Q9UL17 mRNA N/A Immune cells Immune response
TNF TNF-alpha P01375 Cytokines Blood Neutrophils Inflammatory response
VCP VCP P55072 Serum N/A Non-specific Mitochondria
FLT4 VEGFR-3 P35916 Serum Blood Non-specific Transcription

CHI3L1 YKL-40 P36222 Serum Blood Liver Metabolism

5. Metabolomics
5.1. Brief Overview of Relevant Metabolomics Technologies

Metabolomics can be defined as the investigation of changes in the populations of
endogenous and exogenous low-molecular-weight metabolites (<1500 Da), representing a
shift from single metabolite monitoring to complex profiling and pattern recognition [76].
This is a considerable analytical challenge that involves the identification and quantification
of a broad spectrum of molecules in biological matrices such as human plasma or urine,
which contain hundreds or thousands of metabolites with diverse chemical and physical
properties across a wide dynamic range of concentrations. The most widely used tech-
niques include nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry in
combination with gas chromatography (GC-MS) or liquid chromatography (LC-MS). Ad-
vanced bioinformatics and statistical tools are used to maximize the recovery of information
from the resulting metabolomic datasets.

5.2. Applications for Early Diagnosis, Prognosis and Treatment Monitoring

Low-molecular-weight metabolites are important indicators and even integrators of
phenotypes, reflecting the biochemical activity of cells and tissues. Metabolomics recognizes
that changes in cell function are most evident at the level of small-molecule metabolism
and can provide a coherent view of the response of individuals to a variety of genetic and
environmental influences [77]. The abnormal cellular processes associated with disease
often disrupt the composition of low-molecular-weight metabolites. Perturbations in
metabolite abundance and temporal profiles in readily accessible body fluids may provide
an index of disease severity through the direct measurement of biochemical changes. As
such, metabolomics has the potential to identify biomarkers of PsA that may improve
diagnostic accuracy and predict disease progression as well as defining patient responses
to specific therapeutic interventions. Similarly, metabolomics may offer additional insight
into the metabolic pathways that drive the chronic, immune-mediated processes that are
characteristic of PsA, opening routes to potential new drug targets.

5.3. Case Studies/Examples in Psoriasis and PsA

Researchers are increasingly using metabolomics for the clinical assessment of PsA [78–80].
Several studies have reported alterations in the metabolomes of PsA patients in comparison
to healthy controls or individuals with related inflammatory diseases such as psoriasis or
RA. The serum levels of various amino acids are modified in PsA patients relative to RA
cohorts [81,82]. Changes in the levels of circulating glucuronic acid and α-ketoglutaric acid
were detected among psoriasis patients with or without PsA [83] and a correlation was
made between serum levels of the choline metabolite trimethylamine N-oxide (TMAO) and
inflammation in PsA patients [84]. A more recent study used untargeted metabolomics
to characterize the metabolic changes in the transition from psoriasis to PsA, revealing
differences in the abundance of bile acids (particularly glycoursodeoxycholic acid sulfate)
and butyrate to differentiate between psoriasis patients who did or did not progress to
PsA [85].

Metabolite profiles in other matrices can also provide a window of opportunity to
elucidate the metabolic changes in PsA. It was recently reported that α/β-turmerone,
glycerol 1-hexadecanoate, dihydrosphingosine, pantothenic acid and glutamine may act
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as fecal biomarkers for PsA [86]. In addition, a metabolomic study focusing on urinary
metabolites revealed lower levels of citrate, alanine, methylsuccinate and trigonelline in
PsA patients compared to unaffected individuals [87]. Metabolomic approaches have also
been used to evaluate PsA patient responses to anti-TNF therapy. For example, histamine,
glutamine, phenylacetic acid, xanthine, xanthurenic acid and creatinine levels were elevated
in urine samples from patients who responded to TNF antagonists, whereas ethanolamine,
p-hydroxyphenylpyruvic acid and phosphocreatine levels were depleted [88].

6. Lipidomics
6.1. Brief Overview of Relevant Lipidomics Technologies

Recent technological improvements in LC-MS enable comprehensive lipidomic anal-
ysis in clinical studies, analyzing extensive sample sets for different lipids and lipid me-
diators. Depending on the specific lipids, targeted or untargeted LC-MS may be most
appropriate. The untargeted approach is based on high-resolution mass spectrometry
(HRMS) and can potentially examine the whole lipidome in a single run, but focuses on the
more abundant lipids because the dynamic range is not sufficient to detect scarce molecules
such as lipid mediators alongside abundant lipids such as triglycerides. Scarce lipids are
analyzed using targeted approaches based on tandem mass spectrometry (MS/MS), which
has greater sensitivity and selectivity. However, targeted methods cannot display the
whole lipidome, so an approach combining untargeted and targeted methods is used for
comprehensive lipidomics analysis, searching for lipids and lipid mediators relevant in the
context of psoriatic diseases.

6.2. Applications for Early Diagnosis, Prognosis and Treatment Monitoring

Lipids and lipid mediators play a fundamental role in the immune system and changes
in homeostatic status are closely related to IMIDs [89–93] such as RA [94], IBD [95–99]
and psoriatic diseases [100–103]. Lipids are involved in many different processes and are
also essential building blocks of membranes and key components in energy metabolism.
Lipid mediators such as oxylipins and endocannabinoids, which are present at very low
concentrations, are signaling molecules implicated in diverse physiological and patholog-
ical processes. Therefore, lipid profiles might be used as biomarkers for early diagnosis,
prognosis of disease progression or the development of comorbidities, and to guide the
selection of the most promising therapeutic approach.

Biomarker discovery in the field of lipidomics is challenging due to strict procedural
requirements for sampling, sample preparation and analysis. This is partly due to the
variable concentration of lipids in different biological matrices, the broad spectrum of
isomeric compounds and the special procedures required to ensure lipid stability at all
stages, including pre-analytical sample handling. On the other hand, lipidomics covers a
field of up to several thousand different molecules and one of its key advantages is the close
temporal linkage between these markers and individual clinical phenotypes or disease
states [77,104].

6.3. Case Studies/Examples in Psoriasis and PsA

The close link between lipid profiles and IMIDs was recently demonstrated in PsA pa-
tients, where oxylipins [102,103,105,106], endocannabinoids [103,107], fatty acids [105–107]
and phospholipids [106] were found to be potentially pathophysiologically relevant. A
recent study also found that the level of inflammatory lipid mediators in psoriasis patients
increased following a PsA diagnosis, particularly leukotriene B4 [85]. However, a compre-
hensive study is required to compare the lipid profiles of patients with psoriasis and PsA,
and this will be the first step toward the identification of lipid biomarkers that improve the
diagnosis and treatment of PsA.
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7. Complementary Technologies—Multiple Sequential Immunohistochemistry

Several multiple immunohistochemistry systems have been developed that allow
the staining of tissue sections with a theoretically unlimited number of antibodies. The
technology makes use of directly labeled antibodies carrying a fluorophore or heavy metal
ion. The antibodies are applied to the sample in an automated process, which includes a
short incubation period, washing steps, imaging and signal removal. The latter involves
either bleaching or chemical inactivation, and is followed by the addition of the next anti-
body [108,109]. This process can be repeated as often as necessary, and typically creates
image stacks representing 30–50 antibodies. Recent developments include software that
combines single-cell phenotyping and localized information about neighboring cells, facili-
tating a quantitative “tissue FACS analysis” (FACS = fluorescence-activated cell sorting)
with the description of disease-specific immunological neighborhoods within inflamed
tissues [108].

One of the key benefits of multiple immunohistochemistry systems in the context of
PsA is single-cell phenotyping in different patient groups using 40–50 antibody probes in
automated cycles. By detecting and quantifying a large panel of corresponding markers,
it is possible to identify nearly all immune cells and their subtypes, and to character-
ize their cellular neighborhood to quantify and visualize cellular networks (information
that is lost during FACS analysis). The comparison of samples from psoriasis and PsA
cohorts can therefore identify differences between the patient groups and generate infor-
mation about biomarkers and immune cell networks/interactions that may lead to new
therapeutic options.

8. Data Management/Integration and Artificial Intelligence

To benefit from the wealth of methods used to mine multi-omics data, it is essential
to align the data and verify their quality before integration. Data should be formatted
according to international standards, including standard bioinformatics file formats (such
as FASTA, FASTQ, SAM/BAM, VCF and GFF), and “minimum information” standards
for omics experiments [110], including MIGS/MIMS for genomics [111] and MIAPE for
proteomics [112]. The data must be checked to ensure they include the same annotation
references (e.g., genome version, standard gene and protein names). This is challenging
with lipidomics and metabolomics data where there are currently no widely accepted
standards, although efforts are ongoing to establish equivalent minimum information
standard such as MIAMET [113] as well as standards for lipidomics analysis [114,115].
Following de-identification, clinical data are standardized using the OMOP common data
model (Observational Health Data Sciences and Informatics, OHDSI program, available
at https://ohdsi.org/ (accessed on 20 June 2022) and aligned to standard dictionaries to
ensure interoperability. Once formatted and standardized, data are stored and accessed via
a secure data management infrastructure specifically designed to protect sensitive clinical
and biomedical data [116].

Multiple processing steps should be considered to ensure data integrity, including
missing value imputation, normalization, transformations, aggregation and batch effect
correction [117–119]. Unsupervised multivariate analysis methods such as common di-
mensions [120] can be used to assess overall variability, trends and potential biases across
multiple integrated layers of multi-omics and clinical data before further data exploration by
supervised multivariate analysis methods such as OPLS-DA [121] or artificial intelligence-
based approaches such as machine learning. A wide range of computational methods can
be applied depending on the study design and research aim. In addition to classical statisti-
cal analysis, machine learning can be used to evaluate data in an unsupervised manner for
preliminary exploration and dimensional reduction (e.g., clustering approaches such as
DBSCAN or k-means algorithms, or dimensional reduction such as PCA or TSNE). Batch
effects in dimensional reduction and clustering approaches can reveal outliers [118]. In a
clinical setting, supervised machine learning often tackles classification problems rather
than regression. Due to the high dimensionality of multi-omics data and the so-called

https://ohdsi.org/
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“curse of dimensionality” (low number of subjects and high number of features), feature
selection algorithms such as LASSO or ridge can be applied to enhance the results of su-
pervised learning [118,122]. In addition to feature selection, class imbalances are common
challenges in multi-omics analysis, but can be solved by sampling or cost-sensitive learn-
ing [122]. Commonly used algorithms such as random forests, support vector machines
and the k-nearest neighbor algorithm can provide insight into the underlying structures of
datasets and can be developed into powerful models for the support of clinical decision
making [123–125]. In order to develop further hypotheses and integrate data with the
literature, pathway analysis can embed the data in a broader context [126].

9. The Advantage of Multi-Omics Evaluation

As discussed above, several markers have been identified that commonly occur in PsA
patients, but no single marker stands alone as a specific indicator of the disease. Even the
most reliable markers are also present in other IMIDs, which therefore makes it difficult
if not impossible to achieve a definitive diagnosis. In other fields, the lack of definitive
qualitative markers has been addressed by (a) seeking quantitative markers, whose abun-
dance rather than presence/absence correlates with a disease, and (b) profiles based on
combinations of several markers that are more informative than single molecules, a strategy
first applied to ovarian cancer [127]. Indeed, this approach has also been successful in RA,
where the proteomic analysis of serum and synovial fluid has revealed the elevation of
multiple biomarkers representing processes such as joint inflammation and injury (e.g.,
MMP3, IL-12, IL-15 and IL-18), cartilage integrity and bone or connective tissue degra-
dation (e.g., MMP13 and neoepitopes of collagen) [128]. Considering that such panels
of RA markers have been assembled based solely on proteomics data, it is clear that the
combination of proteomics with orthogonal omics datasets plus more diverse data can
increase the power of this approach exponentially, both for diagnosis/prognosis [129] and
the monitoring of drug responses [130]. In one recent study, metabolomics and lipidomics
analysis revealed that a combination of the bile acid conjugate glycoursodeoxycholic acid
sulfate and lipid mediator leukotriene B4 provided a sensitive and specific predictor of
progression from psoriasis to PsA [85]. However, adding new features will also require the
careful evaluation of added value, both for discovery in basic research and translation to
the clinic. Models that incorporate more markers may be more sensitive and specific, but
the cost of acquiring the data in routine clinical practice may be prohibitive, although this
may not always be the case [131]. A risk remains that expensive and large datasets merely
report already known aspects, such as the effect of the body mass index or inflammation
on disease progression. The field should also strive to identify causal markers rather than
solely correlative observations without a direct biochemical connection to the phenotype.
As the amount and complexity of the data increase, it becomes more difficult for humans to
identify consistent patterns that correlate with certain diseases, but machine learning algo-
rithms either supervised to assign samples to known categories or devising categories de
novo using unsupervised analysis have the power to reveal these hidden patterns and then
to apply the same approach when analyzing data from new patients, greatly improving the
accuracy of the resulting predictions.

10. Conclusions and Outlook

The definitive diagnosis and early treatment of PsA are not yet possible because the
clinical manifestations and associated biomarkers are not, on an individual basis, able to
distinguish PsA from other IMIDs or predict those individuals with psoriasis who will
progress to PsA. However, the combination of biomarker profiles based on data from multi-
omics technologies and classical sources, such as imaging data and clinical evaluations,
could provide the body of information required for early diagnosis and the initiation of ef-
fective treatment before symptoms emerge. Combinations of different types of biomarkers
have proven effective in other fields, particularly oncology, but such biomarker profiles
are often mainly based on a single method. The power of biomarker profiles may increase
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with the number of complementary modalities that can be tested simultaneously. For
PsA, combining information from disease-associated alleles and chromatin structures, the
levels of proteins, lipids and other metabolites, multimodal image analysis, histology and
classical phenotyping will provide an important step forward. Ultimately, the use of mul-
tiple orthogonal technologies that embed machine learning will lead to the generation of
unique molecular and clinical fingerprints that can be used for PsA diagnosis, prognosis
and therapeutic monitoring. However, research on the identification of biomarker pro-
files/fingerprints using different omics technologies is still in the discovery phase with
much work to be conducted to turn the anticipated results of these analyses into assays
which are applicable in routine clinical settings. The HIPPOCRATES project is therefore
strategically important because it combines expertise from all relevant fields with access
to comprehensive cohorts, technologies and translational research experience. This will
ultimately improve the quality of life for those living with PsA or at risk of developing PsA.
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