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Abstract: Platinum (Pt) is widely used as an activator in direct methanol fuel cells (DMFCs). However,
the development of Pt catalyst is hindered due to its high cost and CO poisoning. A multi-metallic
catalyst is a promising catalyst for fuel cells. We develop a simple and rapid method to synthesize
PtNiCo/rGO nanocomposites (NCs). The PtNiCo/rGO NCs catalyst was obtained by microwave-
assisted synthesis of graphene oxide (GO) with Pt, Ni, and Co precursors in ethylene glycol (EG)
solution after heating for 20 min. The Pt-Ni-Co nanoparticles showed a narrow particle size dis-
tribution and were uniformly dispersed on the reduced graphene oxide without agglomeration.
Compared with PtNiCo catalyst, PtNiCo/rGO NCs have superior electrocatalytic properties, in-
cluding a large electrochemical active surface area (ECSA), the high catalytic activity of methanol,
excellent anti-toxic properties, and high electrochemical stability. The ECSA can be up to 87.41 m2/g
at a scan rate of 50 mV/s. They also have the lowest oxidation potential of CO. These excellent
electrochemical performances are attributed to the uniform dispersion of PtNiCo nanoparticles, good
conductivity, stability, and large specific surface area of the rGO carrier. The synthesized PtNiCo/rGO
nanoparticles have an average size of 17.03 ± 1.93 nm. We also investigated the effect of catalyst
material size on electrocatalytic performance, and the results indicate that PtNiCo/rGO NC catalysts
can replace anode catalyst materials in fuel cell applications in the future.

Keywords: direct methanol fuel cells; PtNiCo/rGO; graphene; microwave-assisted synthesis;
nanocomposites

1. Introduction

Fuel cells have been considered green energy, renewable, and efficient energy devices
in recent years due to environmental and energy challenges [1]. Direct methanol fuel cells
(DMFCs) have attracted significant attention due to their high energy density and the
abundance of liquid methanol [2,3]. The advantages of DMFCs are the simple structure of
the system [4], low pollution [5], low operating temperature [6], and high energy conversion
efficiency. They mainly convert methanol to produce electric energy through the catalyst of
the electrode. Therefore, they can be used in small and portable electronic products such as
laptops and mobile phones [7,8]. However, the electro-oxidation reaction of methanol is
very complicated and slow, which is needed to improve the rate of electro-catalytic reaction.
Moreover, the cost of DMFC systems is still very high, so the large-scale application of
DMFCs is still quite limited [9].

In DMFC, methanol is oxidized to produce H+, e−, and CO2 according to the reaction
formula CH3OH + H2O→ CO2 + 6H+ + 6e−. However, carbon–oxygen bonds in methanol
are not easy to break, so the methanol electro-oxidation reaction (MOR) on the anode is crit-
ical to the overall performance of DMFCs [10,11]. Pt-based alloys are widely used as highly
reactive anode catalysts as an important component of DMFCs [12,13]. However, Pt-based
alloys are easily hindered by the formation of toxic intermediates during electrochemical
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oxidation [12,14]. To avoid catalyst poisoning and oxygen reduction reaction (ORR), PtM
alloys are proposed to have enhanced performance compared to pure platinum [13,15].
The electrocatalytic ability of Pt alloy increases because of the ligand effect and bifunctional
effect [16]. It has been reported that Pt–Ni nanocrystals always have higher electrochemical
activity, and Pt-Co nanocrystals are more stable than other Pt–M alloy materials attributed
to the contribution of fine-tuned electronic structure [17]. Compared with monometallic or
bimetallic catalysts, the ternary metallic catalysts have better electrochemical performance
and significant catalytic activity. Therefore, adding other non-precious transition metals
such as Ni, Co, Ru, etc. to replace the expensive Pt can reduce the consumption of expensive
Pt materials while maintaining excellent performance [18]. Rethinasabapathy et al. [19]
synthesized ternary PtRuFe nanoparticles supported by N-doped graphene as efficient
methanol oxidation exhibiting higher ECSA. MOR activity is two to three times higher
compared to other mono- and bimetallic catalysts. The addition of Fe significantly reduces
the amount of Pt used in fuel cells. Other high-quality ternary PtRhCu nanocrystals with
highly dendritic nanostructures were synthesized. The high specific activity and mass activ-
ity of the catalyst are due to the synergistic effect between Pt, Rh, and Cu elements and their
highly dendritic nanostructure [20]. Sui et al. [21] prepared ternary Au@PdNi core–shell
nanoparticles by a facile method. The results indicated that the electronic effects and the
core–shell nanostructure played an important role in enhancing the catalytic activity and
stability. They also enhanced the toxicity resistance of catalyst intermediates [22], improved
the performance and durability of catalysts, and increased the overall energy conversion
efficiency [23]. Pt1-x-yIrxNiy nanocrystals were synthesized by a one-step process at room
temperature and showed excellent tolerance to poisoning and stability [24]. In addition,
ternary PtIrCu nanocrystals exhibit high durability and toxicity tolerance due to their large
surface area, composition, and strain effects [25]. Lee et al. [26] developed a carbon-loaded
PtRuNi/C ternary electrocatalyst. Compared to Pt/C and PtRu/C catalysts, PtRuNi/C
catalysts exhibit enhanced CO tolerance. PtNiCo ternary alloy nanoframe crystals exhibit
excellent activity and durability as efficient electrocatalysts for hydrogen evolution reaction
(HER) [27]. The stable and highly efficient ordered Pt2CoNi ternary alloy electrocatalyst
has 5–6 times higher electrocatalytic ORR activity than commercial Pt/C catalysts [28].
Therefore, the ternary alloy Pt-Ni-Co nanoparticles have higher catalytic activities, better
stability, and a CO anti-poisoning effect [29].

Several methods to prepare electrocatalysis materials have been developed. Bhu-
nia et al. [30] exhibited a simple one-pot and one-step solvothermal synthesis of PtAuNi
nanoparticles as electrocatalysts with a diameter distribution of 3–7 nm by heating in an
oven at 200 ◦C for 72 h. Sial et al. [31] used a typical hydrothermal method synthesis of
trimetallic PtCoFe alloy nanosheets to obtain fuel cell catalysts with excellent electrocat-
alytic activity and durability. Lee et al. [26] reported that a PtRuNi/C ternary metal-based
electrocatalyst can be possibly used as a CO-tolerant anode catalyst for PEMFC. In their
study, a protective coating was used to prepare a product with a Pt-rich shell to prevent the
Ni dissolution and sintering effect. Nugraha et al. [32] synthesized mesoporous AuCuNi
alloy films by electrodeposition from an electrolyte solution containing three metal pre-
cursors with a micellar sacrificial template at the fixed applied potential. The mesoporous
AuCuNi films were synthesized for nonenzymatic glucose sensing with high sensitivity, se-
lectivity, and low detection limit. Yang et al. [13] fabricated porous Pt–Pd nanoparticles by
a reflux method. Hong et al. [33] developed a galvanic replacement method to obtain Pd–Pt
with Pd nanocrystals with different shapes as sacrificial templates. Wang, H. et al. [34] pre-
pared a Pt nanocomposite by dopamine self-polymerization and a displacement reaction.
Choi et al. [35] showed that extremely dispersed Pt and PtNi nanoparticles can be synthe-
sized on supports by an impregnation process employing thiometallate precursors. Pd−Co
nanowires with a jagged appearance were obtained via the template-confined electrode-
position first and afterward excessive etching in phosphoric acid by Wang, C. et al. [14].
Wang, P. et al. [36] fabricated PtPdCu porous nanodendrites and nanocubes by using a
surfactant assisted coreduction method with a solvent of water. However, the methods



Nanomaterials 2021, 11, 2206 3 of 17

described above have several problems, including a comparatively low price–performance
ratio, more elementary reaction steps, and inefficient synthesis. Therefore, more economical
and novel tactics need to be utilized in the synthesis of electrocatalysts to improve catalytic
properties. In this study, we found a simple, efficient, one-step synthesis, time-saving,
environmentally friendly, non-metallic protective coating, and template-free method for
the preparation of electrocatalysts.

Microwave irradiation indicates ultra-high frequency electromagnetic waves with
a certain wavelength. The range is from 1 m to 1 mm and the frequency range of
300 MHz–300 GHz [37]. The advantages of using microwaves compared to traditional
heating methods are uniform heating, high speed [38], and energy efficiency. On the other
hand, the heating material does not need to be in direct contact with the heat source,
so the thermal resistance effect in the heat transfer process can be reduced. Microwave-
assisted heating is a simple, effective, and energy-efficient heating method that has been
successfully applied in organic synthesis [39], functionalization of carbon nanotubes [40],
and preparation of exfoliated graphite [41]. Pipus et al. [42] found that the esterification
reaction of benzoic acid is a slow process and requires several days to reach equilibrium
at 80 ◦C. However, microwave heating (140 ◦C, 7 atm) was able to increase the rate of the
esterification reaction in a short time. Yangá Lee et al. [43] showed that the nanoparticles
obtained by microwave-assisted heating with the smallest particle size could be uniformly
dispersed on the carbon carrier and had high electrocatalytic activity.

In this study, a ternary metallic nanocatalyst was synthesized by the microwave-
assisted method. In addition, the appropriate carbon support is also essential for the
conduction of electrons and the dispersion of precious metal particles during the catalyst
design process. Graphene is chosen as a carbon carrier due to its unique advantages such
as large specific surface area, flexible two-dimensional structure, high mechanical prop-
erty [44], and good conductivity [17]. The loading of PtNiCo nanoparticles on graphene
improves the utilization of the metal and its uniform dispersion on the graphene. It con-
tributes to the accessibility of surface active sites and electron transfer kinetics [23]. The
PtNiCo/rGO nanocomposite catalysts were prepared by GO with different ratios of Pt,
Ni, Co precursors in an ethylene glycol solution microwave-assisted system at different
temperatures for 20 min. In this process, a reductant is used to obtain better performance
to eliminate oxygen-containing functional groups [17]. The PtNiCo particles were success-
fully loaded on the supports and the structural characteristics of the prepared catalysts
were evaluated by transmission electron microscopy (TEM), energy-dispersive X-ray spec-
troscopy (EDX), X-ray diffraction (XRD), and Raman. The electrochemical measurements
included cyclic voltammetry (CV) scanning, CO stripping, and chronoamperometry (CA).

2. Materials and Methods
2.1. Materials

Graphite powder (99.99%) and potassium hexachloroplatinate (K2PtCl6, 99.99%) were
purchased from Alfa Aesar (Haverhill, MA, USA). Sodium nitrate (NaNO3, 99.5%), potas-
sium permanganate (KMnO4, 99.3%), and nickel chloride hexahydrate (NiCl2·6H2O, 96%)
were purchased from Hayashi Pure Chemical (Osaka, Japan) and cobalt(II) nitrate hex-
ahydrate (Co(NO3)2·6H2O, 99%) was purchased from JT Baker Chemicals (Phillipsburg,
NJ, USA). Hydrogen peroxide (H2O2, 30%) was purchased from Showa Chemical (Tokyo,
Japan). Ethylene glycol (EG, 99.9%) was purchased from TEDIA (Fairfield, OH, USA).
Hydrochloric acid (HCl, >35%) and potassium hydroxide (KOH, 85%) were purchased
from Union Chemical Works (Hsinchu, Taiwan). Liquid Nafion (5 wt%) was purchased
from DuPont (Wilmington, DE, USA). Sulfuric acid (H2SO4, 97%), acetone ((CH3)2CO,
95%), and methanol (CH3OH, 99.5%) were purchased from Nihon Shiyaku Reagent (Kyoto,
Japan). Millipore water (18 MΩ) was used for all electrochemistry measurements. All
chemicals used in this experiment were analysis reagents (A.R.).
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2.2. Fabrication of Graphene Oxide by a Modified Hummers Method

GO was prepared by the modified Hummers method from graphite powder [45].
Seventy milliliters of H2SO4 was added to an ice bath and cooled to 5 ◦C. Graphite powder,
NaNO3, and KMnO4 were added to the flask and stirred well for 2 h. Then, 300 mL of
deionized water was added and the color of the solution changed to yellowish brown,
then 10 mL of 30% hydrogen peroxide was added to stop the reaction. After suction and
filtration, the sample was put into 500 mL of 5% hydrochloric acid to remove the metal
ions, then washed repeatedly with DI water until neutral. The products were then dried
overnight in an oven at 80 ◦C to obtain graphene oxide.

2.3. Preparation of Samples

A 0.02 M K2PtCl6, 0.02 M NiCl2, 0.02 M Co(NO3)2 solution was mixed with 30 mL of
ethylene glycol, 20 mg GO, and stirred for 30 min. The resulting homogeneous dark brown
solution was adjusted to pH 10 with 0.2M KOH solution and transferred to 100 mL Teflon
digestion vessels. The solution was heated at 200 ◦C for 20 min by a microwave system and
then cooled to room temperature naturally. The samples were filtered and dried in an oven
at 70 ◦C. Nanocomposites at different temperatures were prepared using a similar process.
PtNiCo/rGO was synthesized at 160, 180, 200, and 220 ◦C, labeled as PtNiCo/rGO 160,
PtNiCo/rGO 180, PtNiCo/rGO 200, and PtNiCo/rGO 220, respectively. PtNi2Co/rGO,
PtNiCo/rGO, and PtNiCo2/rGO were synthesized in the mole ratios of Pt:Ni:Co 1:2:1,
1:1:1, and 1:1:2, respectively. A graph of the synthesis process is shown in Figure 1.
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Figure 1. Illustration of the formation of the PtNiCo/rGO.

2.4. Preparation of Catalyst Ink

The PtNiCo/rGO ink was prepared by adding 4 mg of sample powder to 0.8 mL of
DI water and 0.2 mL of ethanol solution. The platinum working electrode was polished
and used as a working electrode. It was coated with 15 µL of the above catalyst ink and
15 µL of Nafion ionomer, and dried at room temperature. After the electrodes were dried,
electrochemical measurements could be carried out.

2.5. Structural Catalyst Characterization

PtNiCo/rGO nanocomposite was synthesized by a microwave (Flexiwave T660, Mile-
stone srl, Sorisole, Italy). The crystal structure of the samples was measured by X-ray
diffraction (XRD, D8A25 eco, BRUKER Co. Ltd., Billerica, MA, USA) with CuKα X-ray
radiation (λ = 1.5418 Å) at 40 kV and 25 mA. The morphology of the samples was observed
by transmission electron microscopy (TEM, Hitachi H-7500, Tokyo, Japan) with an acceler-
ating voltage of 80 kV. The elemental composition of the prepared nanocomposites was



Nanomaterials 2021, 11, 2206 5 of 17

analyzed by energy dispersive X-ray analysis (EDS, INCA x-act) equipped with scanning
electron microscopy (SEM, JEOL JSM-6390, Tokyo, Japan). Raman spectra were analyzed
with a nitrogen-cooled CCD detector (Shamrock 750 spectrograph, Andor Technology Ltd.,
Belfast, Northern Ireland, UK). A randomly polarized 533 nm laser with an excitation
power of 0.45 mW was used.

2.6. Electrochemical Characterization

The electrochemical measurements were carried out on a Bio-Logic CLB-500 electro-
chemical Workstation (Knoxville, TN, USA) at room temperature. The electrochemical test
was carried out with a three-electrode apparatus: a platinum working electrode (diameter:
2 mm), a Pt wire, and Ag/AgCl electrodes as the working, counter, and reference elec-
trodes, respectively. The measured potentials are all compared with Ag/AgCl electrodes
for convenience of comparison. Cyclic voltammetry (CV), CO stripping, and chronoam-
perometry (CA) were employed to estimate the electrochemical activity and stability of
catalysts. CV and CA techniques were employed to measure at room temperature and in a
N2 saturated environment, while CO stripping is tested under saturated CO gas. The ECSA
was calculated from the hydrogen desorption peak of the CV method in 0.5 M H2SO4
electrolyte, which was conducted by cycling the potential between −0.25 and 1.0 V, with
a scan rate of 50 mV/s. CO stripping evaluates the ability of the catalyst to metabolize
toxic substances, and its scanning potential is between −0.2 and 1.0 V, carried out in 0.5 M
H2SO4 electrolyte. Electrochemical activity and catalytic ability of the catalysts for MOR
were determined by CV and CA methods in 0.5 M H2SO4 + 1.0 M CH3OH electrolytic
solution.

3. Results and Discussion
3.1. Characterization of PtNiCo/rGO
3.1.1. XRD Analysis

The crystal structure of nanocomposites was analyzed by powder XRD. The diffraction
peaks of these Pt-rich phases are fase center cubic (fcc) structures (Figure 2a) [17]. Note
that the peaks become progressively broader after thermal treatment. The diffraction peaks
are located at the corresponding angles of 39.7◦, 46.2◦, and 67.4◦, and the lattice constants
are (111), (200), and (220) diffraction lattice planes, respectively. The diffraction peaks
of Ni and Co are located at the top of the diffraction peak, corresponding to the angles
of 44.5◦, 51.8◦, 76.4◦ and 43.7◦, 51.0◦, 74.7◦, respectively. Based on the Joint Committee
on Powder Diffraction Standards (JCPDS) card number #04-0802, it is determined that Pt
metal represents Pt (111), Pt (200), Pt (220) crystallographic planes. In the PtNiCo/rGO
160, PtNiCo/rGO 180, PtNiCo/rGO 200, and PtNiCo/rGO 220 samples, we found a much
broader peak at 2θ = 26◦, while the diffraction peak at 2θ = 11.9◦ disappeared significantly.
This indicates that GO has been reduced to rGO (Figure 2b). The diffraction peak at 26◦

can be marked as rGO, with no additional peaks for phase separation structures such as
pure Ni or Co. This indicates an excellent degree of alloying between Pt, Ni, and Co [46].
The XRD results showed that the diffraction peaks of Ni and Co in composites are not
obvious and may be related to the small amount of Ni and Co in composites [47–49].
However, the presence of Ni and Co can also be explained by a slight shift of the Pt
(111) peak to a higher angle in the XRD analysis. The peak position of Pt (111) shifts to
higher 2θ values due to the introduction of smaller Ni and Co atoms, resulting in reduced
lattice distances and a composite with Pt to form the PtNiCo ternary alloy [28,50,51]. The
catalysts exhibited broader shoulder peaks, assigned to the characteristic peak of the
rGO support [52]. Moreover, the higher diffraction shifts of Pt (111) of the synthesized
nanocomposites at 200 ◦C indicate that the synthesis is relatively complete and PtNiCo
ternary alloy is better.
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3.1.2. Morphological Characterization

Figure 3a–c show the synthesized PtNiCo/rGO ternary alloys with different ratios.
The morphology of the ternary alloy/reduced graphene oxide nanocomposite was analyzed
by TEM. Moreover, the dispersion of the catalyst was observed to find the optimum ratio of
the atomic catalyst. In these samples, the TEM diagrams display two-dimensional images of
PtNiCo/rGO 200 and PtNiCo2/rGO 200 with a characteristic size of about 17.03 ± 1.93 nm
and 22.28 ± 3.09 nm (Figure 4a,b). The ternary alloy PtNiCo/rGO 200 has an average
particulate size of less than 20 nanometers.
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Furthermore, PtNiCo/rGO in Figure 3 shows a large number of PtNiCo nanoparticles
surrounded by the rGO nanosheets. The metal precursor solutions were reduced to PtNiCo
ternary alloy nanoparticles with ethylene glycol at different microwave temperatures,
which were dispersed on the surface or embedded in the layered structure of rGO, as
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shown in Figure 3d–f. The 2D sheet-like structure and slight folds can be observed in
TEM images. Figure 4 shows the particle size and distribution of various samples and
various reaction conditions. The particles formed gradually at 160 ◦C and 180 ◦C, but
the reaction showed that the metal ions did not fully composite into the ternary metallic
nanoparticles. The particles have a mean radius of about 21 nm and a wide distribution
width. The particle size decreases as the temperature rises to 200 ◦C. This is due to the
larger number of seeds growing and the particles reacting more thoroughly. The metal
ions can be converted to ternary metallic nanoparticles and exhibit an average radius of
17.03 ± 1.93 nm and a narrower distribution width. Larger particles are formed as the
temperature increases (Figure 4a,b). At this time, the agglomeration mechanism leads to
more clusters agglomerating at higher temperatures and forming nanoparticles [53]. The
results show that the average particle size of the synthesized nanoparticles at 200 ◦C is the
smallest, 17 nm, and has a relatively dispersed structure compared with other synthesis
conditions. The main reason for the small particle size is the short time and fast rate of
nucleation at optimal temperature conditions [54,55]. Under other synthesis conditions, the
average particle size was about 20 nm (Figure 4). The temperature-dependent agglomera-
tion is the dominant mechanism of the particle size difference [56,57]. The results showed
that the dispersed PtNiCo nanoparticles were easily grown on rGO and were active on
electrochemical properties [58].

The composition of the synthesized nanocomposites was obtained by energy dis-
persive X-ray analysis (EDS) equipped with SEM for evaluation. The EDX spectrum of
PtNiCo/rGO 200 in Figure 5 shows that it consists mainly of three metal elements, Pt,
Ni, and Co, in the sample. The peaks of Ni and Co can be clearly detected in the EDX
image, and the atomic percentages of Pt, Ni, and Co are 2.73, 2.67, and 2.69%, respectively.
The atomic composition of the composite is almost identical to that of the metal precur-
sor solution. The EDX image demonstrates the presence of C elements in rGO, while O
elements are mainly derived from residual oxygen-containing functional groups in rGO.
Other elements can also be observed in the figure, mainly added from the material during
the experiments. The appearance of Cu peaks originates from the copper gels used in the
analysis [59]. The EDX images provide evidence for the presence of Pt, Ni, Co, rGO, and
PtNiCo atomic ratios in the electrocatalyst.
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3.1.3. Raman Spectrum

Figure 6a shows the Raman spectra of the samples in the range of 1000–3000 cm−1.
They all display obvious D bands and G bands originating from carbon sp2 domains and
structural defects [60]. The G band is attributed to the E2g mode of C sp2 atoms and the D
band arises due to the A1g symmetry [61]. The structural disorder of a graphitic structure
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could be estimated according to the ID/IG. It can be seen from Figure 6a,b that the D-
band and G-band of GO, rGO, PtNiCo/rGO 160, PtNiCo/rGO 180, PtNiCo/rGO 200, and
PtNiCo/rGO 220 were 1339 cm−1 and 1586 cm−1, 1346 cm−1 and 1594 cm−1, 1356 cm−1

and 1590 cm−1, 1356 cm−1 and 1596 cm−1, 1358 cm−1 and 1594 cm−1, and 1363 cm−1

and 1590 cm−1, respectively. The ID/IG of GO, rGO, PtNiCo/rGO 160, PtNiCo/rGO
180, PtNiCo/rGO 200, and PtNiCo/rGO 220 were 0.81, 1.07, 1.16, 1.15, 1.18, and 1.15,
respectively. Afterwards, GO was reduced to rGO because large numbers of sp3 carbon
were reduced to sp2 carbon, which increases the ID/IG value. In general, the D-band
and G-band intensities were reduced after the PtNiCo nanoparticles were composited
with reduced graphene oxide. This is because the exposred area of the rGO sheet to the
excitation light in PtNiCo/rGO nanocomposite is reduced in Raman measurements. The
broadening of the D-band and G-band of the nanocomposite is caused by the lattice strain
between rGO and PtNiCo [62].
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The ID/IG value of PtNiCo/rGO is higher than that of GO, indicating that the double
bond of GO is broken and composited with metal nanoparticles. The larger the ID/IG value,
the more successfully the sample is composited [19]. In addition, the ID/IG ratio could be
related to the existence of defects in graphene structure as a result of electronic interaction
with PtNiCo metal nanoparticles, affirming the reduction of the functional groups during
microwave-assisted treatment. These defects introduced by GO act as the anchoring sites
for the attachment of PtNiCo metal nanoparticles. According to the description in the
literature, the increase in the intensity is related to the PtNiCo nanoparticles incorporated
into the rGO as both peaks increased similarly in intensity [63]. A higher degree of
graphitization is beneficial to promote the overall conductivity of the final product and
enhance the electrochemical activity. In addition, the crystallinity of the 2D band (about
2700 cm−1) in PtNiCo/rGO 200 is higher, which is predicted to be more corrosion resistant
in DMFC [61]. The wide 2D band shows the multilayer structure of rGO, affirming the
existence of graphene and mainly coming from a double resonance process that links
phonons to the electronic band structure [64]. The 2D and D + G band peaks, near 2700
and 2900 cm−1, correspond to the combination mode induced by the disorder.

3.2. Electrochemical Measurements
3.2.1. CV and Mass Activity Analysis

To obtain the ECSA of the catalysts, they were prepared as a slurry and coated on the Pt
working electrode. In this study, CV was used to measure and analyze the characteristics of
the catalysts. Figure 7 shows the CV curves of the different catalysts recorded in N2-purged
sulfuric acid solution at a scan rate of 50 mV/s in the potential range of −0.2 V to 1.0 V. CV
curves are divided into three parts to show the typical Pt-H under the potential deposition
region, double-layer region, and Pt oxide region. Typical absorption and desorption
of hydrogen occur in the low potential region. There is a significant redox peak from
−0.2~0.1 V, indicating the adsorption/desorption of hydrogen on Pt [65].
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The corresponding ECSA was calculated by integrating the hydrogen desorption
zones and all the CV curves were normalized. According to the following formula [66]:

ECSA
(

cm2g−1
)
=

charge
(
QH , µC cm−2)

210 (µC cm−2) × electrodeloading (g Ptcm−2)
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where QH (µC cm−2) is the hydrogen desorption charge, 210 (µC cm−2) is the charge
required to oxidize the layer of hydrogen on Pt, and the electrode loading (g Pt cm−2) is
the Pt working electrode loading. The individual ECSAs of these catalysts were measured
as 18.19, 61.43, 82.65, 87.41, and 41.41 m2/g for PtNiCo, PtNiCo/rGO 160, PtNiCo/rGO
180, PtNiCo/rGO 200, and PtNiCo/rGO 220. The PtNiCo/rGO 200 ECSA is larger than
the others because of the dispersed and well-anchored Pt nanoparticles on the surface of
rGO nanocomposites. The nanocomposite of 200 ◦C has a good distribution of fine PtNiCo
nanoparticles, which is attributed to the largest ECSA. This result can be seen from the
TEM image, which has the smallest particle size distribution under the 200 ◦C condition.

To investigate the different ratio catalysts in terms of the catalytic activity of methanol
oxidation, CV measurements were performed (Figure 8). In the forward scan, the positive
scan anode peak is about 0.7 V compared to Ag/AgCl, which is caused by the oxidation of
methanol. In the reverse scan, the oxidation peak appears at about 0.5 V, possibly owing to
incompletely oxidized carbonic matters formed in the forward scan. The current density of
CVs at ∼0.7 V on PtNiCo/rGO 200 is 196.82 mA cm−2, which is about 2.5 times larger than
the PtNiCo (80.89 mA cm−2). To clearly illustrate the catalytic capacity, MOR performance
is compared by normalizing peak currents to specific areas and qualities of Pt expressed as
mass activity [67]. The mass activity of all catalysts is shown in Figure 9. It can be observed
that PtNiCo/rGO 200 has the highest mass activity (102.96 mA mg−1) compared with other
catalysts, indicating that the PtNiCo/rGO 200 catalysts had the highest catalytic activity
for MOR.
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The results show that PtNiCo/rGO 200 has the highest catalytic activity and mass
activity in these synthesized catalysts. The high performance of PtNiCo/rGO is attributed
to the electronic state of Pt, which is mainly because the crystal structure and electronic
structure of Pt nanoparticles can be changed by introducing other metals, thus improving
the binding energy between Pt and toxic species [9,68]. In addition, the TEM images of
PtNiCo/rGO 200 can significantly improve the catalytic activity due to the dispersion of
small PtNiCo nanoparticles on rGO [59]. This is attributed to the fact that the presence of
Ni and Co can mitigate Pt poisoning, resulting in the higher electrochemical activity of
PtNiCo/rGO [69,70]. From the Raman spectrum, PtNiCo/rGO 200 has the highest ID/IG
intensity, meaning that a greater degree of composite PtNiCo and rGO, which will also
enhance the electrocatalytic activity [71].
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3.2.2. CO Stripping Measurements

CO stripping experiments were carried out on the oxidative removal of CO. The CO
gas is pumped to make the CO adhere to the catalyst at a lower potential, and then the
CV test is carried out. Figure 10 shows the voltammograms of CO oxidation for various
samples at various peak potentials. In addition, the CO oxidation potentials (vs. Ag/AgCl)
of PtNiCo/rGO 160, PtNiCo/rGO 180, PtNiCo/rGO 200, and PtNiCo/rGO 220 were
0.69 V, 0.64 V, 0.62 V, and 0.65 V vs. Ag/AgCl, respectively. These peaks disappear after
the first scan in the forward direction. The PtNiCo/rGO 200 expresses a more negative
peak potential and onset potential, indicating that the affinity between Pt and CO is
weakened [72]. The results show that the introduction of Ni and Co elements can improve
the oxidation ability of CO [73]. The electronic interaction between Pt, Ni, and Co could
lead to the removal of CO poisoning substances and enhance the stability of the electrodes.
Therefore, there are fewer intermediates adsorbed on the surface of PtNiCo/rGO 200, and
the oxidation efficiency of COads is higher, which is beneficial to increase catalytic active
sites [73].

The synergistic effect of CO electrooxidation can be clearly seen from the oxidation
onset potential to more negative values. Due to the catalytic effect, PtNiCo/rGO 200 could
activate CO at lower potentials than the other catalysts. This result also contributes to
illustrating the higher activity of PtNiCo/rGO for the oxidation of methanol at 200 ◦C [74].

Table 1 shows the comparison of the ECSA, forward peak current density for methanol
oxidation, and CO oxidation potential of PtNiCo/rGO 200 to those of various electrocata-
lysts investigated in previous studies. The ECSA and methanol oxidation current density of
PtNiCo/rGO 200 were higher than those of the other materials previously studied. These
results indicated the enhanced Pt hydrogen absorption/desorption area and methanol
electrocatalytic activity of PtNiCo/rGO 200. In addition, the CO oxidation potential of
PtNiCo/rGO 200 was mostly lower than other materials, showing better CO anti-poisoning
ability.
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Table 1. ECSA and current density of methanol oxidation of various electrocatalysts in previous works.

Electrocatalyst ECSA (m2/g) Current Density (mA cm−2) CO Stripping (V) References

PtNiCo/rGO 200 87.41 196.82 0.62 vs. Ag/AgCl This work
Pt/BG 58.8 ~1.7 ~0.8 vs. RHE [4]

Pt-Ni/CNF 1:2 - ~2 ~0.7 vs. RHE [10]
Pt-Pd (9:1) 31.59 0.67 - [13]

Pt3Pd1-CeO2/C 30.33 ~4 ~1.0 vs. RHE [15]
Hollow Pt-Ni-Co NDs 57.0 3.8 ~0.5 vs. SCE [17]

PtCoFe 62.9 4.75 - [23]
Au41Cu46Ni13 45.8 3.8 - [25]
PtRuFe/rGO 56.4 1.33 - [45]

Pd59Fe27Pt14 NMs - 4.36 - [50]

3.2.3. Chronoamperometric Study

The catalytic stability of the catalyst for MOR in acidic media was further investigated
by CA. Figure 11 shows the CA curve for the variation in current density with time. As
the experiment progresses, the current decay of these catalysts slows down and gradually
achieves quasi-steady state [75]. This is due to the formation of oxidation intermediate
species such as CO, CH3OH, and CHO [76]. This causes the oxidation of methanol to
produce adsorption on the Pt surface to hinder the active site. After testing at t = 600 s,
the current density of PtNiCo/rGO 200 (65.92 mA/cm2) is still higher than that of PtNiCo
(8.28 mA/cm2), PtNiCo/rGO 160 (45.86 mA/cm2), PtNiCo/rGO 180 (29.94 mA/cm2) and
PtNiCo/rGO 220 (10.83 mA/cm2). The results show that PtNiCo/rGO 200 retains the
highest steady current density and the highest initial current density when compared to
the others. The catalysts supported on rGO show better stability than PtNiCo. This is due
to the graphene sheets providing a number of oxygen groups to strengthen the interaction
with Pt nanoparticles. As previously indicated, the existence of residual functional groups
on reduced graphene oxide also contributes to the catalytic activity [77]. These results
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confirm that PtNiCo/rGO 200 shows great stability and higher intermediates of poison
tolerance as a superior catalyst for MOR in DMFCs.
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200, and PtNiCo/rGO 220 in 0.5 M H2SO4 + 1.0 M CH3OH solution at constant potential of 0.70 V.

4. Conclusions

In summary, a ternary alloy structured was prepared with one-step microwave-
assisted reduction for uniformly dispersed Pt-Ni-Co nanoparticles supported on rGO.
The PtNiCo/rGO exhibited the highest electrochemical properties and the smallest average
grain diameter (17 nm) at a microwave reaction temperature of 200 ◦C. The aggregation of
PtNiCo is maximally suppressed by the rGO, attributed to the unique two-dimensional
flexible microstructure of rGO. In addition, PtNiCo/rGO 200 had the highest ID/IG values,
indicating an increase in reduction. The PtNiCo/rGO nanocomposite presents excellent
electrocatalytic ability in terms of high electrocatalytic activity, high poison tolerance, en-
hanced stability toward MOR compared with PtNiCo. Electrochemical measurements
show that PtNiCo/rGO 200 nanoalloy displays functionality enhancement in both mass
and catalytic activities over two times that of the pure PtNiCo catalyst. The unique dis-
persion of rGO and the synergistic effect between Pt, Ni, and Co improve the catalytic
performance of PtNiCo/rGO composites. To satisfy the challenges of rapid fabrication
and low environmental impact, we obtained PtNiCo/rGO using a rapid synthesis method
with a simple process and low-cost precursors. The PtNiCo/rGO electrocatalysts have
the potential to be used as catalysts with high electrocatalytic activity, CO resistance, and
stability in DMFC. It provides a fast and reduced energy consumption fabrication for
designing other high-performance catalysts, which is a great prospect in the application of
fuel cell catalyst materials for the future.
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