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Abstract: We study the Hilbert geometry induced by the Siegel disk domain, an open-bounded convex
set of complex square matrices of operator norm strictly less than one. This Hilbert geometry yields a
generalization of the Klein disk model of hyperbolic geometry, henceforth called the Siegel–Klein disk
model to differentiate it from the classical Siegel upper plane and disk domains. In the Siegel–Klein
disk, geodesics are by construction always unique and Euclidean straight, allowing one to design
efficient geometric algorithms and data structures from computational geometry. For example,
we show how to approximate the smallest enclosing ball of a set of complex square matrices in the
Siegel disk domains: We compare two generalizations of the iterative core-set algorithm of Badoiu
and Clarkson (BC) in the Siegel–Poincaré disk and in the Siegel–Klein disk: We demonstrate that
geometric computing in the Siegel–Klein disk allows one (i) to bypass the time-costly recentering
operations to the disk origin required at each iteration of the BC algorithm in the Siegel–Poincaré
disk model, and (ii) to approximate fast and numerically the Siegel–Klein distance with guaranteed
lower and upper bounds derived from nested Hilbert geometries.

Keywords: hyperbolic geometry; symmetric positive-definite matrix manifold; symplectic group;
Siegel upper space domain; Siegel disk domain; Hilbert geometry; Bruhat–Tits space; smallest
enclosing ball

1. Introduction

German mathematician Carl Ludwig Siegel [1] (1896–1981) and Chinese mathematician Loo-Keng
Hua [2] (1910–1985) have introduced independently the symplectic geometry in the 1940s (with a
preliminary work of Siegel [3] released in German in 1939). The adjective symplectic stems from the
Greek, and means “complex”: That is, mathematically the number field C instead of the ordinary
real field R. Symplectic geometry was originally motivated by the study of complex multivariate
functions in the two landmark papers of Siegel [1] and Hua [2]. As we shall see soon, the naming
“symplectic geometry” for the geometry of complex matrices originally stems from the relationships
with the symplectic groups (and their matrix representations). Presently, symplectic geometry is
mainly understood as the study of symplectic manifolds [4] which are even-dimensional differentiable
manifolds equipped with a closed and nondegenerate differential 2-form ω, called the symplectic form,
studied in geometric mechanics.

We refer the reader to the PhD thesis [5,6] for an overview of Siegel bounded domains. More
generally, the Siegel-like bounded domains have been studied and classified into 6 types in the
most general setting of bounded symmetric irreducible homogeneous domains by Elie Cartan [7] in 1935
(see also [8,9]).

The Siegel upper space and the Siegel disk domains provide generalizations of the complex
Poincaré upper plane and the complex Poincaré disk to spaces of symmetric square complex matrices.
In the remainder, we shall term them the Siegel–Poincaré upper plane and the Siegel–Poincaré disk.
The Siegel upper space includes the well-studied cone of real symmetric positive-definite (SPD)
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matrices [10] (SPD manifold). The celebrated affine-invariant SPD Riemannian metric [11] can be
recovered as a special case of the Siegel metric.

Applications of the geometry of Siegel upper/disk domains are found in radar processing [12–15]
especially for dealing with Toepliz matrices [16,17], probability density estimations [18] and probability
metric distances [19–22], information fusion [23], neural networks [24], theoretical physics [25–27],
and image morphology operators [28], just to cite a few.

In this paper, we extend the Klein disk model [29] of the hyperbolic geometry to the Siegel
disk domain by considering the Hilbert geometry [30] induced by the open-bounded convex
Siegel disk [31,32]. We call the Hilbert metric distance of the Siegel disk the Siegel–Klein distance.
We term this model the Klein-Siegel model for short to contrast it with the Poincaré-Siegel upper
plane model and the Poincaré-Siegel disk model. The main advantages of using the Klein-Siegel
disk model instead of the usual Siegel–Poincaré upper plane or the Siegel–Poincaré disk are that the
geodesics are unique and always straight by construction. Thus, this Siegel–Klein disk model is very
well-suited for designing efficient algorithms and data structures by borrowing techniques of Euclidean
computational geometry [33]. Moreover, in the Siegel–Klein disk model, we have an efficient and robust
method to approximate with guarantees the calculation of the Siegel–Klein distance: This is especially
useful when handling high-dimensional square complex matrices. The algorithmic advantage of the
Hilbert geometry was already observed for real hyperbolic geometry (included as a special case of the
Siegel–Klein model): For example, the hyperbolic Voronoi diagrams can be efficiently computed as
an affine power diagram clipped to the boundary circle [34–37]. To demonstrate the advantage of the
Siegel–Klein disk model (Hilbert distance) over the Siegel–Poincaré disk model (Kobayashi distance),
we consider approximating the Smallest Enclosing Ball (SEB) of the a set of square complex matrices
in the Siegel disk domain. This problem finds potential applications in image morphology [28,38] or
anomaly detection of covariance matrices [39,40]. Let us state the problem as follows:

Problem 1 (Smallest Enclosing Ball (SEB)). Given a metric space (X, ρ) and a finite set {p1, . . . , pn}
of n points in X, find the smallest-radius enclosing ball with circumcenter c∗ minimizing the following
objective function:

minc∈Xmaxi∈{1,...,n} ρ(c, pi). (1)

In general, the SEBs may not be unique in a metric space: For example, the SEBs are not unique in
a discrete Hamming metric space [41] making it notably NP-hard to calculate. We note in passing that
the set-complement of a Hamming ball is a Hamming ball in a Hamming metric space. However,
the SEB is proven unique in the Euclidean geometry [42], the hyperbolic geometry [43], the Riemannian
positive-definite matrix manifold [44,45], and more generally in any Cartan-Hadamard manifold [46]
(Riemannian manifold that is complete and simply connected with non-positive sectional curvatures).
The SEB is guaranteed to be unique in any Bruhat–Tits space [44] (i.e., complete metric space with a
semi-parallelogram law) which includes the Riemannian SPD manifold.

A fast (1 + ε)-approximation algorithm which requires
⌈

1
ε2

⌉
iterations was reported in [46,47]

to approximate the SEB in the Euclidean space: That is a covering ball of radius (1 + ε)r∗ where
r∗ = maxi∈{1,...,n} ρ(c∗, pi) for c∗ = arg minc∈Xmaxi∈{1,...,n} ρ(c, pi). Since the approximation factor
does not depend on the dimension, this SEB approximation algorithm found many applications in
machine learning [48] (e.g., in Reproducing Kernel Hilbert Spaces [49], RKHS).

1.1. Paper Outline and Contributions

In Section 2, we concisely recall the usual models of the hyperbolic complex plane: The Poincaré
upper plane model, and the Poincaré disk model, and the Klein disk model. We then briefly review the
geometry of the Siegel upper plane domain in Section 3 and the Siegel disk domain in Section 4.
Section 5 introduces the novel Siegel–Klein model using the Hilbert geometry and its Siegel–Klein
distance. To demonstrate the algorithmic advantage of using the Siegel–Klein disk model over the
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Siegel–Poincaré disk model in practice, we compare in Section 6 the two implementations of the Badoiu
and Clarkson’s SEB approximation algorithm [47] in these models. Finally, we conclude this work in
Section 7. In the Appendix, we first list the notations used in this work, recall the deflation method for
calculating numerically the eigenvalues of a Hermitian matrix (Appendix A), and provide some basic
snippet code for calculating the Siegel distance (Appendix A).

Our main contributions are summarized as follows:

• First, we formulate a generalization of the Klein disk model of hyperbolic geometry to the Siegel
disk domain in Definition 2 using the framework of Hilbert geometry. We report the formula of
the Siegel–Klein distance to the origin in Theorem 1 (and more generally a closed-form expression
for the Siegel–Klein distance between two points whose supporting line passes through the
origin), describe how to convert the Siegel–Poincaré disk to the Siegel–Klein disk and vice versa
in Proposition 2, report an exact algorithm to calculate the Siegel–Klein distance for diagonal
matrices in Theorem 4. In practice, we show how to obtain a fast guaranteed approximation of the
Siegel–Klein distance using geodesic bisection searches with guaranteed lower and upper bounds
(Theorem 5 whose proof is obtained by considering nested Hilbert geometries).

• Second, we report the exact solution to a geodesic cut problem in the Siegel–Poincaré/Siegel–Klein
disks in Proposition 3. This result yields an explicit equation for the geodesic linking the origin of
the Siegel disk domain to any other matrix point of the Siegel disk domain (Propositions 3 and 4).
We then report an implementation of the Badoiu and Clarkson’s iterative algorithm [47] for
approximating the smallest enclosing ball tailored to the Siegel–Poincaré and Siegel–Klein disk
domains. In particular, we show in §6 that the implementation in the Siegel–Klein model yields a
fast algorithm which bypasses the costly operations of recentering to the origin required in the
Siegel–Poincaré disk model.

Let us now introduce a few notations on matrices and their norms.

1.2. Matrix Spaces and Matrix Norms

Let F be a number field considered in the remainder to be either the real number field R or the complex
number field C. For a complex number z = a + ib ∈ C (with imaginary number i2 = −1), we denote
by z = a − ib its complex conjugate, and by |z| =

√
zz =

√
a2 + b2 its modulus. Let Re(z) = a and

Im(z) = b denote the real part and the imaginary part of the complex number z = a + ib, respectively.
Let M(d,F) be the space of d× d square matrices with coefficients in F, and let GL(d,F) denote

its subspace of invertible matrices. Let Sym(d,F) denote the vector space of d× d symmetric matrices
with coefficients in F. The identity matrix is denoted by I (or Id when we want to emphasize its
d × d dimension). The conjugate of a matrix M = [Mi,j]i,j is the matrix of complex conjugates:

M := [Mi,j]i,j. The conjugate transpose of a matrix M is MH = (M̄)> = M>, the adjoint matrix.
Conjugate transposition is also denoted by the star operator (i.e., M∗) or the dagger symbol (i.e., M†)
in the literature. A complex matrix is said Hermitian when MH = M (hence M has real diagonal
elements). For any M ∈ M(d,C), Matrix MMH is Hermitian: (MMH)H = (MH)H(M)H = MMH .

A real matrix M ∈ M(d,R) is said symmetric positive-definite (SPD) if and only if x>Mx > 0 for
all x ∈ Rd with x 6= 0. This positive-definiteness property is written M � 0, where � denotes the
partial Löwner ordering [50]. Let PD(d,R) = {P � 0 : P ∈ Sym(d,R)} be the space of real symmetric
positive-definite matrices [10,44,51,52] of dimension d× d. This space is not a vector space but a cone,
i.e., if P1, P2 ∈ PD(d,R) then P1 + λP2 ∈ PD(d,R) for all λ > 0. The boundary of the cone consists of
rank-deficient symmetric positive semi-definite matrices.

The (complex/real) eigenvalues of a square complex matrix M are ordered such that |λ1(M)| ≥
. . . ≥ |λd(M)|, where | · | denotes the complex modulus. The spectrum λ(M) of a matrix M is its set of
eigenvalues: λ(M) = {λ1(M), . . . , λd(M)}. In general, real matrices may have complex eigenvalues
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but symmetric matrices (including SPD matrices) have always real eigenvalues. The singular values
σi(M) of M are always real:

σi(M) =
√

λi(MM) =
√

λi(MM), (2)

and ordered as follows: σ1(M) ≥ . . . ≥ σd(M) with σmax(M) = σ1(M) and σmin(M) = σd(M).
We have σd−i+1(M−1) = 1

σi(M)
, and in particular σd(M−1) = 1

σ1(M)
.

Any matrix norm ‖ · ‖ (including the operator norm) satisfies:

• ‖M‖ ≥ 0 with equality if and only if M = 0 (where 0 denotes the matrix with all its entries equal
to zero),

• ‖αM‖ = |α|‖M‖,
• ‖M1 + M2‖ ≤ ‖M1‖+ ‖M2‖, and
• ‖M1M2‖ ≤ ‖M1‖ ‖M2‖.

Let us define two usual matrix norms: The Fröbenius norm and the operator norm. The Fröbenius
norm of M is:

‖M‖F :=
√

∑
i,j
|Mi,j|2, (3)

=
√

tr(MMH) =
√

tr(MH M). (4)

The induced Fröbenius distance between two complex matrices C1 and C2 is ρE(C1, C2) = ‖C1 − C2‖F.
The operator norm or spectral norm of a matrix M is:

‖M‖O = maxx 6=0
‖Mx‖2

‖x‖2
, (5)

=
√

λmax(MH M), (6)

= σmax(M). (7)

Notice that MH M is a Hermitian positive semi-definite matrix. The operator norm coincides with the
spectral radius ρ(M) = maxi{|λi(M)|} of the matrix M and is upper bounded by the Fröbenius norm:
‖M‖O ≤ ‖M‖F, and we have ‖M‖O ≥ maxi,j|Mi,j|. When the dimension d = 1, the operator norm of
[M] coincides with the complex modulus: ‖M‖O = |M|.

To calculate the largest singular value σmax, we may use a the (normalized) power method [53,54]
which has quadratic convergence for Hermitian matrices (see Appendix A). We can also use the
more costly Singular Value Decomposition (SVD) of M which requires cubic time: M = UDVH where
D = Diag(σ1, . . . , σd) is the diagonal matrix with coefficients being the singular values of M.

2. Hyperbolic Geometry in the Complex Plane: The Poincaré Upper Plane and Disk Models and
the Klein Disk Model

We concisely review the three usual models of the hyperbolic plane [55,56]: Poincaré upper plane
model in Section 2.1, the Poincaré disk model in Section 2.2, and the Klein disk model in Section 2.2.1.
We then report distance expressions in these models and conversions between these three usual models
in Section 2.3. Finally, in Section 2.4, we recall the important role of hyperbolic geometry in the
Fisher–Rao geometry in information geometry [57,58].

2.1. Poincaré Complex Upper Plane

The Poincaré upper plane domain is defined by

H = {z = a + ib : z ∈ C, b = Im(z) > 0} . (8)
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The Hermitian metric tensor is:
ds2

U =
dzdz

Im(z)2 , (9)

or equivalently the Riemannian line element is:

ds2
U =

dx2 + dy2

y2 , (10)

Geodesics between z1 and z2 are either arcs of semi-circles whose centers are located on the real
axis and orthogonal to the real axis, or vertical line segments when Re(z1) = Re(z2).

The geodesic length distance is

ρU(z1, z2) := log
(
|z1 − z2|+ |z1 − z2|
|z1 − z2| − |z1 − z2|

)
, (11)

or equivalently

ρU(z1, z2) = arccosh

(√
|z1 − z2|2

Im(z1)Im(z2)

)
, (12)

where
arccosh(x) = log

(
x +

√
x2 − 1

)
, x ≥ 1. (13)

Equivalent formula can be obtained by using the following identity:

log(x) = arcosh
(

x2 + 1
2x

)
= artanh

(
x2 − 1
x2 + 1

)
, (14)

where

artanh(x) =
1
2

log
(

1 + x
1− x

)
, x < 1. (15)

By interpreting a complex number z = x + iy as a 2D point with Cartesian coordinates (x, y),
the metric can be rewritten as

ds2
U =

dx2 + dy2

y2 =
1
y2 ds2

E, (16)

where ds2
E = dx2 + dy2 is the Euclidean (flat) metric. That is, the Poincaré upper plane metric dsU can

be rewritten as a conformal factor 1
y times the Euclidean metric dsE. Thus, the metric of Equation (16)

shows that the Poincaré upper plane model is a conformal model of hyperbolic geometry: That is,
the Euclidean angle measurements in the (x, y) chart coincide with the underlying hyperbolic angles.

The group of orientation-preserving isometries (i.e., without reflections) is the real projective special
group PSL(2,R) = SL(2,R)/{±I} (quotient group), where SL(2,R) denotes the special linear group of
matrices with unit determinant:

Isom+(H) ∼= PSL(2,R). (17)

The left group action is a fractional linear transformation (also called a Möbius transformation):

g.z =
az + b
cz + d

, g =

[
a b
c d

]
, ad− bc 6= 0. (18)
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The condition ab− cd 6= 0 is to ensure that the Möbius transformation is not constant. The set of Möbius
transformations form a group Moeb(R, 2). The elements of the Möbius group can be represented by
corresponding 2× 2 matrices of PSL(2,R):{[

a b
c d

]
, ad− bc 6= 0

}
. (19)

The neutral element e is encoded by the identity matrix I.
The fractional linear transformations

w(z) =
az + b
cz + d

, a, b, c, d ∈ R, ad− bc 6= 0 (20)

are the analytic mappings C∪ {∞} → C∪ {∞} of the Poincaré upper plane onto itself.
The group action is transitive (i.e., ∀z1, z2 ∈ H, ∃g such that g.z1 = z2) and faithful (i.e., if g.z = z∀z

then g = e). The stabilizer of i is the rotation group:

SO(2) =

{[
cos θ sin θ

− sin θ cos θ

]
: θ ∈ R

}
. (21)

The unit speed geodesic anchored at i and going upward (i.e., geodesic with initial condition) is:

γ(t) =

[
et/2 0

0 e−t/2

]
× i = iet. (22)

Since the other geodesics can be obtained by the action of PSL(2,R), it follows that the geodesics
in H are parameterized by:

γ(t) =
aiet + b
ciet + d

. (23)

2.2. Poincaré Disk

The Poincaré unit disk is
D = {ww < 1 : w ∈ C} . (24)

The Riemannian Poincaré line element (also called Poincaré-Bergman line element) is

ds2
D =

4dwdw
(1− |w|2)2 . (25)

Since ds2
D =

(
2

1−‖x‖2

)2
ds2

E, we deduce that the metric is conformal: The Poincaré disk is a
conformal model of hyperbolic geometry. The geodesic between points w1 and w2 are either arcs of
circles intersecting orthogonally the disk boundary ∂D, or straight lines passing through the origin 0 of
the disk and clipped to the disk domain.

The geodesic distance in the Poincaré disk is

ρD(w1, w2) = arccosh

(√
|w1w2 − 1|2

(1− |w1|2)(1− |w2|2)

)
, (26)

= 2 arctanh
∣∣∣∣ w2 − w1

1− w1w2

∣∣∣∣ . (27)

The group of orientation-preserving isometry is the complex projective special group PSL(2,C) =
SL(2,C)/{±I} where SL(2,C) denotes the special group of 2 × 2 complex matrices with
unit determinant.
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In the Poincaré disk model, the transformation

Tz0,θ(z) = eiθ z− z0

1− z0z
(28)

corresponds to a hyperbolic motion (a Möbius transformation [59]) which moves point z0 to the origin 0,
and then makes a rotation of angle θ. The group of such transformations is the automorphism group of the
disk, Aut(D), and the transformation Tz0,θ is called a biholomorphic automorphism (i.e., a one-to-one
conformal mapping of the disk onto itself).

The Poincaré distance is invariant under automorphisms of the disk, and more generally
the Poincaré distance decreases under holomorphic mappings (Schwarz–Pick theorem): That is,
the Poincaré distance is contractible under holomorphic mappings f : ρD( f (w1), f (w2)) ≤ ρD(w1, w2).

2.2.1. Klein Disk

The Klein disk model [29,55] (also called the Klein-Beltrami model) is defined on the unit disk
domain as the Poincaré disk model. The Klein metric is

ds2
K =

(
ds2

E
1− ‖x‖2

E
+
〈x, dx〉E(

1− ‖x‖2
E
)2

)
. (29)

It is not a conformal metric (except at the disk origin), and therefore the Euclidean angles in the (x, y)
chart do not correspond to the underlying hyperbolic angles.

The Klein distance between two points k1 = (x1, y1) and k2 = (x2, y2) is

ρK(k1, k2) = arccosh

(
1− (x1x2 + y1y2)√

(1− ‖k1‖2)(1− ‖k2‖2)

)
. (30)

An equivalent formula shall be reported later in page 24 in a more setting of Theorem 4.
The advantage of the Klein disk over the Poincaré disk is that geodesics are straight Euclidean

lines clipped to the unit disk domain. Therefore, this model is well-suited to implement computational
geometric algorithms and data structures, see for example [34,60]. The group of isometries in the Klein
model are projective maps RP2 preserving the disk. We shall see that the Klein disk model corresponds
to the Hilbert geometry of the unit disk.

2.3. Poincaré and Klein Distances to the Disk Origin and Conversions

In the Poincaré disk, the distance of a point w to the origin 0 is

ρD(0, w) = log
(

1 + |w|
1− |w|

)
. (31)

Since the Poincaré disk model is conformal (and Möbius transformations are conformal maps),
Equation (31) shows that Poincaré disks have Euclidean disk shapes (however with displaced centers).

In the Klein disk, the distance of a point k to the origin is

ρK(0, k) =
1
2

log
(

1 + |k|
1− |k|

)
=

1
2

ρD(0, k). (32)

Observe the multiplicative factor of 1
2 in Equation (32).
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Thus, we can easily convert a point w ∈ C in the Poincaré disk to a point k ∈ C in the Klein disk,
and vice versa as follows:

w =
1

1 +
√

1− |k|2
k, (33)

k =
2

1 + |w|2 w. (34)

Let CK→D(k) and CD→K(w) denote these conversion functions with

CK→D(k) =
1

1 +
√

1− |k|2
k, (35)

CD→K(w) =
2

1 + |w|2 w. (36)

We can write CK→D(k) = α(k)k and CD→K(w) = β(w)w, so that α(k) > 1 is an expansion factor,
and β(w) < 1 is a contraction factor.

The conversion functions are Möbius transformations represented by the following matrices:

MK→D(k) =

[
α(k) 0

0 1

]
, (37)

MD→K(w) =

[
β(w) 0

0 1

]
. (38)

For sanity check, let w = r + 0i be a point in the Poincaré disk with equivalent point k = 2
1+r2 r + 0i

in the Klein disk. Then we have:

ρK(0, k) =
1
2

log
(

1 + |k|
1− |k|

)
, (39)

=
1
2

log

(
1 + 2

1+r2 r

1− 2
1+r2 r

)
, (40)

=
1
2

log
(

1 + r2 + 2r
1 + r2 − 2r

)
, (41)

=
1
2

log
(
(1 + r)2

(1− r)2

)
, (42)

= log
(

1 + r
1− r

)
= ρD(0, w). (43)

We can convert a point z in the Poincaré upper plane to a corresponding point w in the Poincaré
disk, or vice versa, using the following Möbius transformations:

w =
z− i
z + i

, (44)

z = i
1 + w
1− w

. (45)

Notice that we compose Möbius transformations by multiplying their matrix representations.

2.4. Hyperbolic Fisher–Rao Geometry of Location-Scale Families

Consider a parametric family P = {pθ(x)}θ∈Θ of probability densities dominated by a positive
measure µ (usually, the Lebesgue measure or the counting measure) defined on a measurable space
(X , Σ), where X denotes the support of the densities and Σ is a finite σ-algebra [57]. Hotelling [61] and
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Rao [62] independently considered the Riemannian geometry of P by using the Fisher Information
Matrix (FIM) to define the Riemannian metric tensor [63] expressed in the (local) coordinates θ ∈ Θ,
where Θ denotes the parameter space. The FIM is defined by the following symmetric positive
semi-definite matrix [57,64]:

I(θ) = Epθ

[
∇θ log pθ(x) (∇θ log pθ(x))>

]
. (46)

When P is regular [57], the FIM is guaranteed to be positive-definite, and can thus play the role of a
metric tensor field: The so-called Fisher metric.

Consider the location-scale family induced by a density f (x) symmetric with respect to 0 such
that

∫
X f (x)dµ(x) = 1,

∫
X x f (x)dµ(x) = 0 and

∫
X x2 f (x)dµ(x) = 1 (with X = R):

P =

{
pθ(x) =

1
θ2

f
(

x− θ1

θ2

)
, θ = (θ1, θ2) ∈ R×R++

}
. (47)

The density f (x) is called the standard density, and corresponds to the parameter (0, 1): p(0,1)(x) =
f (x). The parameter space Θ = R × R++ is the upper plane, and the FIM can be structurally
calculated [65] as the following diagonal matrix:

I(θ) =

[
a2 0
0 b2

]
(48)

with

a2 :=
∫ ( f ′(x)

f (x)

)2

f (x)dµ(x), (49)

b2 :=
∫ (

x
f ′(x)
f (x)

+ 1
)2

f (x)dµ(x). (50)

By rescaling θ = (θ1, θ2) as θ′ = (θ′1, θ′2) with θ′1 = a
b
√

2
θ1 and θ′2 = θ2, we get the FIM with respect

to θ′ expressed as:

I(θ) =
b2

θ2
2

[
1 0
0 1

]
, (51)

a constant time the Poincaré metric in the upper plane. Thus, the Fisher–Rao manifold of a
location-scale family (with symmetric standard density f ) is isometric to the planar hyperbolic space
of negative curvature κ = − 1

b2 .

3. The Siegel Upper Space and the Siegel Distance

The Siegel upper space [1,3,5,66] SH(d) is defined as the space of symmetric complex square
matrices of size d× d which have positive-definite imaginary part:

SH(d) := {Z = X + iY : X ∈ Sym(d,R), Y ∈ PD(d,R)} . (52)

The space SH(d) is a tube domain of dimension d(d + 1) since

dim(SH(d)) = dim(Sym(d,R)) + dim(PD(d,R)), (53)

with dim(Sym(d,R)) = d(d+1)
2 and dim(PD(d,R)) = d(d+1)

2 . We can extract the components X and
Y from Z as X = 1

2 (Z + Z̄) and Y = 1
2i (Z− Z̄) = − i

2 (Z− Z̄). The matrix pair (X, Y) belongs to the
Cartesian product of a matrix-vector space with the symmetric positive-definite (SPD) matrix cone:
(X, Y) ∈ Sym(d,R) × PD(d,R). When d = 1, the Siegel upper space coincides with the Poincaré
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upper plane: SH(1) = H. The geometry of the Siegel upper space was studied independently by
Siegel [1] and Hua [2] from different viewpoints in the late 1930s–1940s. Historically, these classes
of complex matrices Z ∈ SH(d) were first studied by Riemann [67], and later eponymously called
Riemann matrices. Riemann matrices are used to define Riemann theta functions [68–71].

The Siegel distance in the upper plane is induced by the following line element:

ds2
U(Z) = 2tr

(
Y−1dZ Y−1dZ̄

)
. (54)

The formula for the Siegel upper distance between Z1 and Z2 ∈ SH(d) was calculated in Siegel’s
masterpiece paper [1] as follows:

ρU(Z1, Z2) =

√√√√ d

∑
i=1

log2
(

1 +
√

ri

1−√ri

)
, (55)

where
ri = λi (R(Z1, Z2)) , (56)

with R(Z1, Z2) denoting the matrix generalization [72] of the cross-ratio:

R(Z1, Z2) := (Z1 − Z2)(Z1 − Z2)
−1(Z1 − Z2)(Z1 − Z2)

−1, (57)

and λi(M) denotes the i-th largest (real) eigenvalue of (complex) matrix M. The letter notation ‘R’ in
R(Z1, Z2) is a mnemonic which stands for ‘r’atio.

The Siegel distance can also be expressed without explicitly using the eigenvalues as:

ρU(Z1, Z2) = 2

√√√√√tr

R12

(
∞

∑
i=0

Ri
12

2i + 1

)2
, (58)

where R12 = R(Z1, Z2). In particular, we can truncate the matrix power series of Equation (58) to get
an approximation of the Siegel distance:

ρ̃U,l(Z1, Z2) = 2

√√√√√tr

R12

(
l

∑
i=0

Ri
12

2i + 1

)2
. (59)

It costs O(Spectrum(d)) = O(d3) to calculate the Siegel distance using Equation (55) and
O(lMult(d)) = O(ld2.3737) to approximate it using the truncated series formula of Equation (59), where
Spectrum(d) denotes the cost of performing the spectral decomposition of a d× d complex matrix,
and Mult(d) denotes the cost of multiplying two d× d square complex matrices. For example, choosing
the Coppersmith-Winograd algorithm for d× d matrix multiplications, we have Mult(d) = O(d2.3737).
Although Siegel distance formula of Equation (59) is attractive, the number of iterations l to get an
ε-approximation of the Siegel distance depends on the dimension d. In practice, we can define a

threshold δ > 0, and as a rule of thumb iterate on the truncated sum until
∣∣∣∣tr( Ri

12
2i+1

)∣∣∣∣ < δ.

A spectral function [52] of a matrix M is a function F which is the composition of a symmetric
function f with the eigenvalue map Λ: F(M) := ( f ◦ Λ)(M) = f (Λ(M)). For example,
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the Kullback–Leibler divergence between two zero-centered Gaussian distributions is a spectral
function distance since we have:

DKL(pΣ1 , pΣ2) =
∫

pΣ1(x) log
pΣ1(x)
pΣ2(x)

dx, (60)

=
1
2

(
log
|Σ2|
|Σ1|

+ tr(Σ−1
2 Σ1)− d

)
, (61)

=
1
2

(
d

∑
i=1

(
log

λi(Σ2)

λi(Σ1)
+ λi(Σ−1

2 Σ1)

)
− d

)
, (62)

=
1
2

d

∑
i=1

(
λi(Σ−1

2 Σ1)− log λi(Σ−1
2 Σ1)− 1

)
, (63)

= ( fKL ◦Λ)(Σ−1
2 Σ1), (64)

where |Σ| and λi(Σ) denotes respectively the determinant of a positive-definite matrix Σ � 0, and the
i-the real largest eigenvalue of Σ, and

pΣ(x) =
1√

(2π)d|Σ|
exp

(
−1

2
x>Σ−1x

)
(65)

is the density of the multivariate zero-centered Gaussian of covariance matrix Σ,

fKL(u1, . . . , ud) =
1
2

(
d

∑
i=1

(ui − 1− log ui)

)
, (66)

is a symmetric function invariant under parameter permutations, and Λ(·) denotes the eigenvalue map.
This Siegel distance in the upper plane is also a smooth spectral distance function since we have

ρU(Z1, Z2) = f ◦Λ(R(Z1, Z2)), (67)

where f is the following symmetric function:

f (x1, . . . , xd) =

√√√√ d

∑
i=1

log2
(

1 +
√

xi

1−√xi

)
. (68)

A remarkable property is that all eigenvalues of R(Z1, Z2) are positive (see [1]) although R may
not necessarily be a Hermitian matrix. In practice, when calculating numerically the eigenvalues of
the complex matrix R(Z1, Z2), we obtain very small imaginary parts which shall be rounded to zero.
Thus, calculating the Siegel distance on the upper plane requires cubic time, i.e., the cost of computing
the eigenvalue decomposition.

This Siegel distance in the upper plane SH(d) generalizes several well-known distances:

• When Z1 = iY1 and Z2 = iY2, we have

ρU(Z1, Z2) = ρPD(Y1, Y2), (69)

the Riemannian distance between Y1 and Y2 on the symmetric positive-definite manifold [10,51]:

ρPD(Y1, Y2) = ‖Log(Y1Y−1
2 )‖F (70)

=

√√√√ d

∑
i=1

log2
(

λi(Y1Y−1
2 )

)
. (71)
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In that case, the Siegel upper metric for Z = iY becomes the affine-invariant metric:

ds2
U(Z) = tr

(
(Y−1dY)2

)
= dsPD(Y). (72)

Indeed, we have ρPD(C>Y1C, C>Y2C) = ρPD(Y1, Y2) for any C ∈ GL(d,R) and

ρPD(Y−1
1 , Y−1

2 ) = ρPD(Y1, Y2). (73)

• In 1D, the Siegel upper distance ρU(Z1, Z2) between Z1 = [z1] and Z2 = [z2] (with z1 and z2 in C)
amounts to the hyperbolic distance on the Poincaré upper plane H:

ρU(Z1, Z2) = ρU(z1, z2), (74)

where

ρU(z1, z2) := log
|z1 − z2|+ |z1 − z2|
|z1 − z2| − |z1 − z2|

. (75)

• The Siegel distance between two diagonal matrices Z = diag(z1, . . . , zd) and Z′ = diag(z′1, . . . , z′d) is

ρU(Z, Z′) =

√√√√ d

∑
i=1

ρ2
U(zi, z′i). (76)

Observe that the Siegel distance is a non-separable metric distance, but its squared distance is
separable when the matrices are diagonal:

ρ2
U(Z, Z′) =

d

∑
i=1

ρ2
U(zi, z′i). (77)

The Siegel metric in the upper plane is invariant by generalized matrix Möbius transformations
(linear fractional transformations or rational transformations):

φS(Z) := (AZ + B)(CZ + D)−1, (78)

where S ∈ M(2d,R) is the following 2d× 2d block matrix:

S =

[
A B
C D

]
. (79)

which satisfies
AB> = BA>, CD> = DC>, AD> − BC> = I. (80)

The map φS(·) = φ(S, ·) is called a symplectic map.
The set of matrices S encoding the symplectic maps forms a group called the real symplectic group

Sp(d,R) [5] (informally, the group of Siegel motions):

Sp(d,R) =
{[

A B
C D

]
, A, B, C, D ∈ M(d,R) : AB> = BA>, CD> = DC>, AD> − BC> = I

}
. (81)

It can be shown that symplectic matrices have unit determinant [73,74], and therefore Sp(d,R) is a
subgroup of SL(2d,R), the special group of real invertible matrices with unit determinant. We also
check that if M ∈ Sp(d,R) then M> ∈ Sp(d,R).
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Matrix S denotes the representation of the group element gS. The symplectic group operation
corresponds to matrix multiplications of their representations, the neutral element is encoded by

E =

[
I 0
0 I

]
, and the group inverse of gS with S =

[
A B
C D

]
is encoded by the matrix:

S(−1) =:

[
D> −B>

−C> A>

]
. (82)

Here, we use the parenthesis notation S(−1) to indicate that it is the group inverse and not the usual
matrix inverse S−1. The symplectic group is a Lie group of dimension d(2d + 1). Indeed, a symplectic
matrix of Sp(d,R) has 2d× 2d = 4d2 elements which are constrained from the block matrices as follows:

AB> = BA>, (83)

CD> = DC>, (84)

AD> − BC> = I. (85)

The first two constraints are independent and of the form M = M> which yields each d2−d
2 elementary

constraints. The third constraint is of the form M1 −M2 = I, and independent of the other constraints,
yielding d2 elementary constraints. Thus, the dimension of the symplectic group is

dim(Sp(d,R)) = 4d2 − (d2 − d)− d2 = 2d2 + d = d(2d + 1). (86)

The action of the group is transitive: That is, for any Z = A + iB and S(Z) =

[
B−

1
2 0

AB−
1
2 B

1
2

]
,

we have φS(Z)(iI) = Z. Therefore, by taking the group inverse

S(−1) =

[
(B

1
2 )> 0

−(AB−
1
2 )> (B−

1
2 )>

]
, (87)

we get
φS(−1)(Z) = iI. (88)

The action φS(Z) can be interpreted as a “Siegel translation” moving matrix iI to matrix Z,
and conversely the action φS(−1)(Z) as moving matrix Z to matrix iI.

The stabilizer group of Z = iI (also called isotropy group, the set of group elements S ∈ Sp(d,R)
whose action fixes Z) is the subgroup of symplectic orthogonal matrices SpO(2d,R):

SpO(2d,R) =
{[

A B
−B A

]
: A>A + B>B = I, A>B ∈ Sym(d,R)

}
. (89)

We have SpO(2d,R) = Sp(2d,R) ∩O(2d), where O(2d) is the group of orthogonal matrices of dimension
2d× 2d:

O(2d) :=
{

R ∈ M(2d,R) : RR> = R>R = I
}

. (90)

Informally speaking, the elements of SpO(2d,R) represent the “Siegel rotations” in the upper plane.
The Siegel upper plane is isomorphic to Sp(2d,R)/Od(R).

A pair of matrices (Z1, Z2) can be transformed into another pair of matrices (Z′1, Z′2) of SH(d) if
and only if λ(R(Z1, Z2)) = λ(R(Z′1, Z′2)), where λ(M) := {λ1(M), . . . , λd(M)} denotes the spectrum
of matrix M.

By noticing that the symplectic group elements M and −M yield the same symplectic map,
we define the orientation-preserving isometry group of the Siegel upper plane as the real projective
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symplectic group PSp(d,R) = Sp(d,R)/{±I2d} (generalizing the group PSL(2,R) obtained when
d = 1).

The geodesics in the Siegel upper space can be obtained by applying symplectic transformations
to the geodesics of the positive-definite manifold (geodesics on the SPD manifold) which is a totally
geodesic submanifold of SU(d). Let Z1 = iP1 and Z2 = iP2. Then the geodesic Z12(t) with Z12(0) = Z1

and Z12(1) = Z2 is expressed as:

Z12(t) = iP
1
2

1 Exp(t Log(P−
1
2

1 P2P−
1
2

1 ))P
1
2

1 , (91)

where Exp(M) denotes the matrix exponential:

Exp(M) =
∞

∑
i=0

1
i!

Mi, (92)

and Log(M) is the principal matrix logarithm, unique when matrix M has all positive eigenvalues.
The equation of the geodesic emanating from P with tangent vector S ∈ Tp (symmetric matrix) on

the SPD manifold is:
γP, S(t) = P

1
2 Exp(tP−

1
2 SP−

1
2 )P

1
2 . (93)

Both the exponential and the principal logarithm of a matrix M can be calculated in cubic time
when the matrices are diagonalizable: Let V denote the matrix of eigenvectors so that we have the
following decomposition:

M = V diag(λ1, . . . , λd) V−1, (94)

where λ1, . . . , λd are the corresponding eigenvalues of eigenvectors. Then for a scalar function f
(e.g., f (u) = exp(u) or f (u) = log u), we define the corresponding matrix function f (M) as

f (M) := V diag( f (λ1), . . . , f (λd)) V−1. (95)

The volume element of the Siegel upper plane is 2
d(d−1)

2 dv where dv is the volume element of the
d(d + 1)-dimensional Euclidean space expressed in the Cartesian coordinate system.

4. The Siegel Disk Domain and the Kobayashi Distance

The Siegel disk [1] is an open convex complex matrix domain defined by

SD(d) :=
{

W ∈ Sym(d,C) : I −WW � 0
}

. (96)

The Siegel disk can be written equivalently as SD(d) :=
{

W ∈ Sym(d,C) : I −WW � 0
}

or SD(d) :=
{W ∈ Sym(d,C) : ‖W‖O < 1}. In the Cartan classification [7], the Siegel disk is a Siegel domain of
type III.

When d = 1, the Siegel disk SD(1) coincides with the Poincaré disk: SD(1) = D. The Siegel disk
was described by Siegel [1] (page 2, called domain E to contrast with domain H of the upper space)
and Hua in his 1948’s paper [75] (page 205) on the geometries of matrices [76]. Siegel’s paper [1]
in 1943 only considered the Siegel upper plane. Here, the Siegel (complex matrix) disk is not to be
confused with the other notion of Siegel disk in complex dynamics which is a connected component in
the Fatou set.

The boundary ∂SD(d) of the Siegel disk is called the Shilov boundary [5,77,78]): ∂SD(d) :=
{W ∈ Sym(d,C) : ‖W‖O = 1}. We have ∂SD(d) = Sym(d,C) ∩U(d,C), where

U(d,C) = {UU∗ = U∗U = I : U ∈ M(d,C)} (97)
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is the group of d× d unitary matrices. Thus, ∂SD(d) is the set of symmetric d× d unitary matrices with
determinant of unit module. The Shilov boundary is a stratified manifold where each stratum is defined
as a space of constant rank-deficient matrices [79].

The metric in the Siegel disk is:

ds2
D = tr

(
(I −WW)−1dW(I −WW)−1dW̄

)
. (98)

When d = 1, we recover ds2
D = 1

(1−|w|2)2 dwdw̄ which is the usual metric in the Poincaré disk (up to a
missing factor of 4, see Equation (25).

This Siegel metric induces a Kähler geometry [13] with the following Kähler potential:

K(W) = −tr
(

Log
(

I −WHW
))

. (99)

The Kobayashi distance [80] between W1 and W2 in SD(d) is calculated [79] as follows:

ρD(W1, W2) = log
(

1 + ‖ΦW1(W2)‖O

1− ‖ΦW1(W2)‖O

)
, (100)

where
ΦW1(W2) = (I −W1W1)

− 1
2 (W2 −W1)(I −W1W2)

−1(I −W1W1)
1
2 , (101)

is a Siegel translation which moves W1 to the origin O (matrix with all entries set to 0) of the disk:
We have ΦW(W) = 0. In the Siegel disk domain, the Kobayashi distance [80] coincides with the
Carathéodory distance [81] and yields a metric distance. Notice that the Siegel disk distance, although a
spectral distance function via the operator norm, is not smooth because of it uses the maximum singular
value. Recall that the Siegel upper plane distance uses all eigenvalues of a matrix cross-ratio R.

It follows that the cost of calculating a Kobayashi distance in the Siegel disk is cubic: We require
the computation of a symmetric matrix square root [82] in Equation (101), and then compute the largest
singular value for the operator norm in Equation (100).

Notice that when d = 1, the “1d” scalar matrices commute, and we have:

Φw1(w2) = (1− w1w1)
− 1

2 (w2 − w1)(1− w1w2)
−1(1− w1w1)

1
2 , (102)

=
w2 − w1

1− w1w2
. (103)

This corresponds to a hyperbolic translation of w1 to 0 (see Equation (28)). Let us call the geometry of
the Siegel disk the Siegel–Poincaré geometry.

We observe the following special cases of the Siegel–Poincaré distance:

• Distance to the origin: When W1 = 0 and W2 = W, we have Φ0(W) = W, and therefore the
distance in the disk between a matrix W and the origin 0 is:

ρD(0, W) = log
(

1 + ‖W‖O
1− ‖W‖O

)
. (104)

In particular, when d = 1, we recover the formula of Equation (31): ρD(0, w) = log
(

1+|w|
1−|w|

)
.

• When d = 1, we have W1 = [w1] and W2 = [w2], and

ρD(W1, W2) = ρD(w1, w2). (105)
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• Consider diagonal matrices W = diag(w1, . . . , wd) ∈ SD(d) and W ′ = diag(w′1, . . . , w′d) ∈ SD(d).
We have |wi| ≤ 1 for i ∈ {1, . . . , d}. Thus, the diagonal matrices belong to the polydisk domain.
Then we have

ρD(W1, W2) =

√√√√ d

∑
i=1

ρ2
D(wi, w′i). (106)

Notice that the polydisk domain is a Cartesian product of 1D complex disk domains, but it is not
the unit d-dimensional complex ball {z ∈ Cd : ∑i=1d zi z̄i = 1}.

We can convert a matrix Z in the Siegel upper space to an equivalent matrix W in the Siegel disk
by using the following matrix Cayley transformation for Z ∈ SHd:

WU→D(Z) := (Z− iI)(Z + iI)−1 ∈ SD(d). (107)

Notice that the imaginary positive-definite matrices iP of the upper plane (vertical axis) are
mapped to

WU→D(iP) := (P− I)(P + I)−1 ∈ SD(d), (108)

i.e., the real symmetric matrices belonging to the horizontal-axis of the disk.
The inverse transformation for a matrix W in the Siegel disk is

ZD→U(W) = i (I + W) (I −W)−1 ∈ SH(d), (109)

a matrix in the Siegel upper space. With those mappings, the origin of the disk 0 ∈ SD(d) coincides
with matrix iI ∈ SH(d) in the upper space.

A key property is that the geodesics passing through the matrix origin 0 are expressed by straight
line segments in the Siegel disk. We can check that

ρD(0, W) = ρD(0, αW) + ρD(αW, W), (110)

for any α ∈ [0, 1].
To describe the geodesics between W1 and W2, we first move W1 to 0 and W2 to ΦW1(W2).

Then the geodesic between 0 and ΦW1(W2) is a straight line segment, and we map back this geodesic
via Φ−1W1(·). The inverse of a symplectic map is a symplectic map which corresponds to the action of
an element of the complex symplectic group.

The complex symplectic group is

Sp(d,C) =
{

M> JM = J, M =

[
A B
C D

]
∈ M(2d,C)

}
, (111)

with

J =

[
0 I
−I 0

]
, (112)

for the d× d identity matrix I. Notice that the condition M> JM = J amounts to check that

AB> = BA>, CD> = DC>, AD> − BC> = I. (113)
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The conversions between the Siegel upper plan to the Siegel disk (and vice versa) can be expressed
using complex symplectic transformations associated with the matrices:

W(Z) =

[
I −iI
I iI

]
.Z = (Z− iI)(Z + iI))−1, (114)

Z(W) =

[
iI iI
−I I

]
.W = i (I + W) (I −W)−1 . (115)

Figure 1 depicts the conversion of the upper plane to the disk, and vice versa.

iI

Sym(d,R)

P++(d,R)

ds2
U (Z) = 2tr

(
Y −1dZ Y −1dZ̄

) ds2
D = tr

(
(I −WW̄ )−1dW (I −WW̄ )−1dW̄

)
ρD(W1,W2) = log

(
1+‖ΦW1

(W2)‖O
1−‖ΦW1

(W2)‖O

)
ΦW1

(W2) = (I −W1W̄1)−
1
2 (W2 −W1)(I − W̄1W2)−1(I − W̄1W1)

1
2

ρU (Z1, Z2) =

√∑d
i=1 log2

(
1+
√
ri

1−√ri

)
ri = λi (R(Z1, Z2))

R(Z1, Z2) := (Z1 − Z2)(Z1 − Z̄2)−1(Z̄1 − Z̄2)(Z̄1 − Z2)−1

ds2
D

ds2
U

0

Z1 Z2

W1

W2

(Z − iI)(Z + iI)−1

i (I +W ) (I −W )
−1

SD(d) :=
{
W ∈ Sym(d,C) : I − W̄W � 0

}

Figure 1. Illustrating the properties and conversion between the Siegel upper plane and the Siegel disk.

The orientation-preserving isometries in the Siegel disk is the projective complex symplectic group
PSp(d,C) = Sp(d,C)/{±I2d}.

It can be shown that

Sp(d,C) =
{

M =

[
A B
B̄ Ā

]
∈ M(2d,C)

}
, (116)

with

A>B̄− BH A = 0, (117)

A> Ā− BH B = I. (118)

and the left action of g ∈ Sp(d,C) is

g.W = (AW + B)(ĀW + B̄)−1. (119)

The isotropy group at the origin 0 is{[
A 0
0 Ā

]
: A ∈ U(d)

}
, (120)

where U(d) is the unitary group: U(d) = {U ∈ GL(d,C) : UHU = UUH = I}.
Thus, we can “rotate” a matrix W with respect to the origin so that its imaginary part becomes 0:

There exists A such that Re(AWW−1 Ā−1) = 0.
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More generally, we can define a Siegel rotation [83] in the disk with respect to a center W0 ∈ SD(d)
as follows:

RW0(W) = (AW − AW0)(B− BW0W)−1, (121)

where

ĀA = (I −W0W0)
−1, (122)

B̄B = (I −W0W0)
−1, (123)

ĀAW0 = W0B̄B. (124)

Interestingly, the Poincaré disk can be embedded non-diagonally onto the Siegel upper plane [84].
In complex dimension d = 1, the Kobayashi distance ρW coincides with the Siegel distance ρU .

Otherwise, we calculate the Siegel distance in the Siegel disk as

ρU(W1, W2) := ρU (ZD→U(W1), ZD→U(W2)) . (125)

5. The Siegel–Klein Geometry: Distance and Geodesics

We define the Siegel–Klein geometry as the Hilbert geometry for the Siegel disk model. Section 5.1
concisely explains the Hilbert geometry induced by an open-bounded convex domain. In Section 5.2,
we study the Hilbert geometry of the Siegel disk domain. Then we report the Siegel–Klein distance
in Section 5.3 and study some of its particular cases. Section 5.5 presents the conversion procedures
between the Siegel–Poincaré disk and the Siegel–Klein disk. In Section 5.7, we design a fast guaranteed
method to approximate the Siegel–Klein distance. Finally, we introduce the Hilbert-Fröbenius distances
to get simple bounds on the Siegel–Klein distance in Section 5.8.

5.1. Background on Hilbert Geometry

Consider a normed vector space (V, ‖ · ‖), and define the Hilbert distance [30,85] for an
open-bounded convex domain Ω as follows:

Definition 1 (Hilbert distance). The Hilbert distance is defined for any open-bounded convex domain Ω and
a prescribed positive factor κ > 0 by

HΩ,κ(p, q) :=

{
κ log |CR( p̄, p; q, q̄)| , p 6= q,
0 p = q.

(126)

where p̄ and q̄ are the unique two intersection points of the line (pq) with the boundary ∂Ω of the domain Ω as
depicted in Figure 2, and CR denotes the cross-ratio of four points (a projective invariant):

CR(a, b; c, d) =
‖a− c‖‖b− d‖
‖a− d‖‖b− c‖ . (127)

When p 6= q, we have:

HΩ,κ(p, q) := κ log
(
‖q̄− p‖‖ p̄− q‖
‖q̄− q‖‖ p̄− p‖

)
. (128)



Entropy 2020, 22, 1019 19 of 41

∂Ω

p
q

q̄Ω

p̄

Figure 2. Hilbert distance induced by a bounded open convex domain Ω.

The Hilbert distance is a metric distance which does not depend on the underlying norm of the
vector space:

Proposition 1 (Formula of Hilbert distance). The Hilbert distance between two points p and q of an
open-bounded convex domain Ω is

HΩ,κ(p, q) =

{
κ log

∣∣∣ α+(1−α−)
α−(α+−1)

∣∣∣ , p 6= q,

0 p = q.
, (129)

where p̄ = p + α−(q− p) and q̄ = p + α+(q− p) are the two intersection points of the line (pq) with the
boundary ∂Ω of the domain Ω.

Proof. For distinct points p and q of Ω, let α+ > 1 be such that q̄ = p + α+(q− p), and α− < 0 such
that p̄ = p + α−(q − p). Then we have ‖q̄ − p‖ = α+‖q − p‖, ‖ p̄ − p‖ = |α−|‖q − p‖, ‖q − q̄‖ =

(α+ − 1)‖p− q‖ and ‖ p̄− q‖ = (1− α)‖p− q‖. Thus, we get

HΩ,κ(p, q) = κ log
‖q̄− p‖‖ p̄− q‖
‖q̄− q‖‖ p̄− p‖ , (130)

= κ log
(

α+(1− α−)

|α−|(α+ − 1)

)
, (131)

and HΩ(p, q) = 0 if and only if p = q.

We may also write the source points p and q as linear interpolations of the extremal points p̄ and
q̄ on the boundary: p = (1− βp) p̄ + βp q̄ and q = (1− βq) p̄ + βq q̄ with 0 < βp < βq < 1 for distinct
points p and q. In that case, the Hilbert distance can be written as

HΩ,κ(p, q) =

{
κ log

(
1−βp

βp

βq
1−βq

)
βp 6= βq,

0 βp = βq.
(132)

The projective Hilbert space (Ω, HΩ) is a metric space. Notice that the above formula has
demonstrated that

HΩ,κ(p, q) = HΩ∩(pq),κ(p, q). (133)

That is, the Hilbert distance between two points of a d-dimensional domain Ω is equivalent to the
Hilbert distance between the two points on the 1D domain Ω ∩ (pq) defined by Ω restricted to the line
(pq) passing through the points p and q.

Notice that the boundary ∂Ω of the domain may not be smooth (e.g., Ω may be a simplex [86] or
a polytope [87]). The Hilbert geometry for the unit disk centered at the origin with κ = 1

2 yields the
Klein model [88] (or Klein-Beltrami model [89]) of hyperbolic geometry. The Hilbert geometry for an
ellipsoid yields the Cayley-Klein hyperbolic model [29,35,90] generalizing the Klein model. The Hilbert
geometry for a simplicial polytope is isometric to a normed vector space [86,91]. We refer to the
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handbook [31] for a survey of recent results on Hilbert geometry. The Hilbert geometry of the elliptope
(i.e., space of correlation matrices) was studied in [86]. Hilbert geometry may be studied from the
viewpoint of Finslerian geometry which is Riemannian if and only if the domain Ω is an ellipsoid (i.e.,
Klein or Cayley-Klein hyperbolic geometries). Finally, it is interesting to observe the similarity of the
Hilbert distance which relies on a geometric cross-ratio with the Siegel distance (Equation (55)) in the
upper space which relies on a matrix generalization of the cross-ratio (Equation (57)).

5.2. Hilbert Geometry of the Siegel Disk Domain

Let us consider the Siegel–Klein disk model which is defined as the Hilbert geometry for the
Siegel disk domain Ω = SD(d) as depicted in Figure 3 with κ = 1

2 .

0

K1

K2K̄1

K̄2

Ω = {‖W‖O < 1}

∂Ω = {‖W‖O = 1}

Figure 3. Hilbert geometry for the Siegel disk: The Siegel–Klein disk model.

Definition 2 (Siegel–Klein geometry). The Siegel–Klein disk model is the Hilbert geometry for the
open-bounded convex domain Ω = SD(d) with prescribed constant κ = 1

2 . The Siegel–Klein distance is

ρK(K1, K2) := HSD(d), 1
2
(K1, K2). (134)

When d = 1, the Siegel–Klein disk is the Klein disk model of hyperbolic geometry, and the Klein
distance [34] between two any points k1 ∈ C and k2 ∈ C restricted to the unit disk is

ρK(k1, k2) = arccosh

(
1− (Re(k1)Re(k2) + Im(k1)Im(k2))√

(1− |k1|)(1− |k2|)

)
, (135)

where
arccosh(x) = log

(
x +

√
x2 − 1

)
, x ≥ 1. (136)

This formula can be retrieved from the Hilbert distance induced by the Klein unit disk [29].

5.3. Calculating and Approximating the Siegel–Klein Distance

The Siegel disk domain SD(d) =
{

W ∈ Sym(d,C) : I −WW � 0
}

can be rewritten using the
operator norm as

SD(d) = {W ∈ Sym(d,C) : ‖W‖O < 1} . (137)

Let {K1 + α(K2−K1), α ∈ R} denote the line passing through (matrix) points K1 and K2. That line
intersects the Shilov boundary when

‖K1 + α(K2 − K1)‖O = 1. (138)



Entropy 2020, 22, 1019 21 of 41

when K1 6= K2, there are two unique solutions since a line intersects the boundary of a bounded open
convex domain in at most two points: Let one solution be α+ with α+ > 1, and the other solution be
α− with α− < 0. The Siegel–Klein distance is then defined as

ρK(K1, K2) =
1
2

log
(

α+(1− α−)

|α−|(α+ − 1)

)
, (139)

where K̄1 = K1 + α−(K2 − K1) and K̄2 = K1 + α+(K2 − K1) are the extremal matrices belonging to the
Shilov boundary ∂SD(d).

Notice that matrices K1 and/or K2 may be rank-deficient. We have rank(K1 + λ(K2 − K1)) ≤
min(d, rank(K1) + rank(K2)), see [92].

In practice, we may perform a bisection search on the matrix line (K1K2) to approximate these
two extremal points K̄1 and K̄2 (such that these matrices are ordered along the line as follows: K̄1, K1,
K2, K̄2). We may find a lower bound for α− and a upper bound for α+ as follows: We seek α on the line
(K1K2) such that K1 + α(K2 − K1) falls outside the Siegel disk domain:

1 < ‖K1 + α(K2 − K1)‖O. (140)

Since ‖ · ‖O is a matrix norm, we have

1 < ‖K1 + α(K2 − K1)‖O ≤ ‖K1‖O + |α| ‖(K2 − K1)‖O. (141)

Thus, we deduce that

|α| > 1− ‖K1‖O
‖(K2 − K1)‖O

. (142)

5.4. Siegel–Klein Distance to the Origin

When K1 = 0 (the 0 matrix denoting the origin of the Siegel disk), and K2 = K ∈ SD(d), it is easy
to solve the equation:

‖αK‖O = 1. (143)

We have |α| = 1
‖K‖O

, i.e.,

α+ =
1
‖K‖O

> 1, (144)

α− = − 1
‖K‖O

< 0. (145)

In that case, the Siegel–Klein distance of Equation (139) is expressed as:

ρK(0, K) = log

(
1 + 1

‖K‖O
1
‖K‖O

− 1

)
, (146)

=
1
2

log
(

1 + ‖K‖O
1− ‖K‖O

)
, (147)

= 2 ρD(0, K), (148)

where ρD(0, W) is defined in Equation (104).

Theorem 1 (Siegel–Klein distance to the origin). The Siegel–Klein distance of matrix K ∈ SD(d) to the
origin O is

ρK(0, K) =
1
2

log
(

1 + ‖K‖O
1− ‖K‖O

)
. (149)
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The constant κ = 1
2 is chosen in order to ensure that when d = 1 the corresponding Klein disk

has negative unit curvature. The result can be easily extended to the case of the Siegel–Klein distance
between K1 and K2 where the origin O belongs to the line (K1K2). In that case, K2 = λK1 for some
λ ∈ R (e.g., λ = tr(K2)

tr(K1)
where tr denotes the matrix trace operator). It follows that

‖K1 + α(K2 − K1)‖O = 1, (150)

|1 + α(λ− 1)| =
1

‖K1‖O
. (151)

Thus, we get the two values defining the intersection of (K1K2) with the Shilov boundary:

α′ =
1

λ− 1

(
1

‖K1‖O
− 1
)

, (152)

α′′ =
1

1− λ

(
1 +

1
‖K1‖O

)
. (153)

We then apply formula Equation (139):

ρK(K1, K2) =
1
2

∣∣∣∣log
(

α′(1− α′′)

α′′(α′ − 1)

)∣∣∣∣ , (154)

=
1
2

∣∣∣∣log
(

1− ‖K1‖O
1 + ‖K1‖O

‖K1‖O(1− λ)− (1 + ‖K1‖O)

‖K1‖O(λ− 1)− (1− ‖K1‖O)

)∣∣∣∣ . (155)

Theorem 2. The Siegel–Klein distance between two points K1 6= 0 and K2 on a line (K1K2) passing through
the origin is

ρK(K1, K2) =
1
2

∣∣∣∣log
(

1− ‖K1‖O
1 + ‖K1‖O

‖K1‖O(1− λ)− (1 + ‖K1‖O)

‖K1‖O(λ− 1)− (1− ‖K1‖O)

)∣∣∣∣ ,

where λ = tr(K2)
tr(K1)

.

5.5. Converting Siegel–Poincaré Matrices from/to Siegel–Klein Matrices

From Equation (149), we deduce that we can convert a matrix K in the Siegel–Klein disk to a
corresponding matrix W in the Siegel–Poincaré disk, and vice versa, as follows:

• Converting K to W: We convert a matrix K in the Siegel–Klein model to an equivalent matrix W
in the Siegel–Poincaré model as follows:

CK→D(K) =
1

1 +
√

1− ‖K‖2
O

K. (156)

This conversion corresponds to a radial contraction with respect to the origin 0 since 1
1+
√

1−‖K‖2
O
≤ 1

(with equality for matrices belonging to the Shilov boundary).
• Converting W to K: We convert a matrix W in the Siegel–Poincaré model to an equivalent matrix

K in the Siegel–Klein model as follows:

CD→K(W) =
2

1 + ‖W‖2
O

W. (157)

This conversion corresponds to a radial expansion with respect to the origin 0 since 2
1+‖W‖2

O
≥ 1

(with equality for matrices on the Shilov boundary).
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Proposition 2 (Conversions Siegel–Poincaré⇔Siegel–Klein disk). The conversion of a matrix K of the
Siegel–Klein model to its equivalent matrix W in the Siegel–Poincaré model, and vice versa, is done by
the following radial contraction and expansion functions: CK→D(K) = 1

1+
√

1−‖K‖2
O

K and CD→K(W) =

2
1+|W|2O

W.

Figure 4 illustrates the radial expansion/contraction conversions between the Siegel–Poincaré
and Siegel–Klein matrices.

CK→D(K) = 1

1+
√

1−‖K‖2O
K CD→K(W ) = 2

1+‖W‖2O
W

K1

K2

W2

W1

0

Radial expansionRadial contraction

∂SD

I−I

−iI

iI

Figure 4. Conversions in the Siegel disk domain: Poincaré to/from Klein matrices.

The cross-ratio (p, q; P, Q) = ‖p−P‖‖q−Q‖
‖p−Q‖‖q−P‖ of four collinear points on a line is such that

(p, q; P, Q) = (p, r; P, Q)× (r, q; P, Q) whenever r belongs to that line. By virtue of this cross-ratio
property, the (pre)geodesics in the Hilbert–Klein disk are Euclidean straight. Thus, we can write the
pregeodesics as:

γK1,K2(α) = (1− α)K1 + αK2 = K1 + α(K2 − K1). (158)

Riemannian geodesics are paths which minimize locally the distance and are parameterized
proportionally to the arc-length. A pregeodesic is a path which minimizes locally the distance but is not
necessarily parameterized proportionally to the arc-length. For implementing geometric intersection
algorithms (e.g., a geodesic with a ball), it is enough to consider pregeodesics.

Another way to get a generic closed-form formula for the Siegel–Klein distance is by using the
formula for the Siegel–Poincaré disk after converting the matrices to their equivalent matrices in the
Siegel–Poincaré disk. We get the following expression:

ρK(K1, K2) = ρD(CK→D(K1), CK→D(K2)), (159)

=
1
2

log

(
1 + ‖ΦCK→D(K1)

(CK→D(K2))‖O

1− ‖ΦCK→D(K1)
(CK→D(K2))‖O

)
. (160)

Theorem 3 (Formula for the Siegel–Klein distance). The Siegel–Klein distance between K1 and K2 in the

Siegel disk is ρK(K1, K2) =
1
2 log

(
1+‖ΦCK→D(K1)

(CK→D(K2))‖O

1−‖ΦCK→D(K1)
(CK→D(K2))‖O

)
.



Entropy 2020, 22, 1019 24 of 41

The isometries in Hilbert geometry have been studied in [93].
We now turn our attention to a special case where we can report an efficient and exact linear-time

algorithm for calculating the Siegel–Klein distance.

5.6. Siegel–Klein Distance between Diagonal Matrices

Let Kα = K1 + αK21 with K21 = K2 − K1. When solving for the general case, we seek for the
extremal values of α such that:

I − KαKα � 0, (161)

I − (K̄1 + αK̄21)(K1 + αK21) � 0, (162)

I − (K̄1K1 + α(K̄1K21 + K̄21K1) + α2K̄21K21) � 0, (163)

K̄1K1 + α(K̄1K21 + K̄21K1) + α2K̄21K21 ≺ I. (164)

This last equation is reminiscent to a Linear Matrix Inequality [94] (LMI, i.e., ∑i yiSi � 0 with yi ∈ R
and Si ∈ Sym(d,R) where the coefficients yi are however linked between them).

Let us consider the special case of diagonal matrices corresponding to the polydisk domain:
K = diag(k1, . . . , kd) and K′ = diag(k′1, . . . , k′d) of the Siegel disk domain.

First, let us start with the simple case d = 1, i.e., the Siegel disk SD(1) which is the complex
open unit disk {k ∈ C : k̄k < 1}. Let kα = (1− α)k1 + αk2 = k1 + αk21 with k21 = k2 − k1. We have
k̄αkα = aα2 + bα + c with a = k̄21k21, b = k̄1k21 + k̄21k1 and c = k̄1k1. To find the two intersection
points of line (k1k2) with the boundary of SD(1), we need to solve k̄αkα = 1. This amounts to solve
an ordinary quadratic equation since all coefficients a, b, and c are provably reals. Let ∆ = b2 − 4ac be
the discriminant (∆ > 0 when k1 6= k2). We get the two solutions αm = −b−

√
∆

2a and αM = −b+
√

∆
2a ,

and apply the 1D formula for the Hilbert distance:

ρK(k1, k2) =
1
2

log
(

αM(1− αm)

|αm|(αM − 1)

)
. (165)

Doing so, we obtain a formula equivalent to Equation (30).
For diagonal matrices with d > 1, we get the following system of d inequalities:

α2
i
(
k̄′i − k̄i

) (
k′i − ki

)
+ αi

(
k̄i(k′i − ki) + ki(k̄′i − k̄i)

)
+ k̄iki − 1 ≤ 0, ∀i ∈ {1, . . . , d}. (166)

For each inequality, we solve the quadratic equation as in the 1d case above, yielding two solutions
α−i and α+i . Then we satisfy all those constraints by setting

α− = maxi∈{1,...,d}α
−
i , (167)

α+ = mini∈{1,...,d}α
+
i , (168)

and we compute the Hilbert distance:

ρK(K1, K2) =
1
2

log
(

α+(1− α−)

|α−|(α+ − 1)

)
. (169)

Theorem 4 (Siegel–Klein distance for diagonal matrices). The Siegel–Klein distance between two diagonal
matrices in the Siegel–Klein disk can be calculated exactly in linear time.

Notice that the proof extends to triangular matrices as well.
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When the matrices are non-diagonal, we must solve analytically the equation:

max |α|, (170)

such that α2S2 + αS1 + S0 ≺ 0, (171)

with the following Hermitian matrices (with all real eigenvalues):

S2 = K̄21K21 = SH
2 , (172)

S1 = K̄1K21 + K̄21K1 = SH
1 , (173)

S0 = K̄1K1 − I = SH
0 . (174)

Although S0 and S2 commute, it is not necessarily the case for S0 and S1, or S1 and S2.
When S0, S1 and S2 are simultaneously diagonalizable via congruence [95], the optimization

problem becomes:

max |α|, (175)

such that α2D2 + αD1 ≺ −D0, (176)

where Di = P>SiP for some P ∈ GL(d,C), and we apply Theorem 4. The same result applies for
simultaneously diagonalizable matrices S0, S1 and S2 via similarity: Di = P−1SiP with P ∈ GL(d,C).

Notice that the Hilbert distance (or its squared distance) is not a separable distance, even in the
case of diagonal matrices. (However, recall that the squared Siegel–Poincaré distance in the upper plane
is separable for diagonal matrices.)

When d = 1, we have
ρU(z1, z2) = ρD(w1, w2) = ρK(k1, k2). (177)

We now investigate a guaranteed fast scheme for approximating the Siegel–Klein distance in the
general case.

5.7. A Fast Guaranteed Approximation of the Siegel–Klein Distance

In the general case, we use the bisection approximation algorithm which is a geometric
approximation technique that only requires the calculation of operator norms (and not the square
root matrices required in the functions Φ·(·) for calculating the Siegel distance in the disk domain).

We have the following key property of the Hilbert distance:

Property 1 (Bounding Hilbert distance). Let Ω+ ⊂ Ω ⊂ Ω− be strictly nested open convex bounded
domains. Then we have the following inequality for the corresponding Hilbert distances:

HΩ+ ,κ(p, q) ≥ HΩ,κ(p, q) ≥ HΩ− ,κ(p, q). (178)

Figure 5 illustrates the Property 1 of Hilbert distances corresponding to nested domains. Notice
that when Ω− is a large enclosing ball of Ω with radius increasing to infinity, we have α− ' α+,
and therefore the Hilbert distance tends to zero.
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∂Ω
∂Ω−

∂Ω+

p q

p̄+
p̄−

q̄−
q̄+

q̄
p̄

HΩ+,κ(p, q) ≥ HΩ,κ(p, q) ≥ HΩ−,κ(p, q)

Figure 5. Inequalities of the Hilbert distances induced by nested bounded open convex domains.

Proof. Recall that HΩ,κ(p, q) = HΩ∩(pq),κ(p, q), i.e., the Hilbert distance with respect to domain Ω can
be calculated as an equivalent 1-dimensional Hilbert distance by considering the open-bounded
(convex) interval Ω ∩ (pq) = [ p̄q̄]. Furthermore, we have [ p̄q̄] ⊂ [ p̄′ q̄′] = Ω′ ∩ (pq) (with set
containment Ω ⊂ Ω′). Therefore let us consider the 1D case as depicted in Figure 6. Let us choose
p < q so that we have p̄′ ≤ p̄ < p < q < q̄ ≤ q̄′. In 1D, the Hilbert distance is expressed as

HΩ,κ(p, q) := κ log
(
|q̄− p| | p̄− q|
|q̄− q| | p̄− p|

)
, (179)

for a prescribed constant κ > 0. Therefore it follows that

HΩ,κ(p, q)− HΩ′ ,κ(p, q) := κ log
(
|q̄− p| | p̄− q|
|q̄− q| | p̄− p| ×

|q̄′ − q| | p̄′ − p|
|q̄′ − p| | p̄′ − q|

)
. (180)

We can rewrite the argument of the logarithm as follows:

|q̄− p| | p̄− q|
|q̄− q| | p̄− p| ×

|q̄′ − q| | p̄′ − p|
|q̄′ − p| | p̄′ − q| =

(q̄− p)(q̄′ − q)
(q̄− q)(q̄′ − p)

× (p− p̄′)(q− p̄)
(p− p̄)(q− p̄′)

, (181)

= CR(q̄, q̄′; p, q)×CR(p, q; p̄′, p̄), (182)

with

CR(a, b; c, d) =
|a− c| |b− d|
|a− d| |b− c| =

|a−c|
|b−c|
|a−d|
|b−d|

. (183)

Since p̄′ ≤ p̄ < p < q < q̄ ≤ q̄′, we have CR(q̄, q̄′; p, q) ≥ 1 and CR(p, q; p̄′, p̄) ≥ 1, see [29]. Therefore
we deduce that HΩ,κ(p, q) ≥ HΩ′ ,κ(p, q) when Ω ⊂ Ω′.

p q
p̄ q̄ Ω ⊂ Ω′

Ω′
p̄′ q̄′α′+ > α+ > 1α′− < α− < 0

Figure 6. Comparison of the Hilbert distances HΩ,κ(p, q) and HΩ′ ,κ(p, q) induced by nested open
interval domains Ω ⊂ Ω′: HΩ,κ(p, q) ≥ HΩ′ ,κ(p, q).

Therefore the bisection search for finding the values of α− and α+ yields both lower and upper
bounds on the exact Siegel–Klein distance as follows: Let α− ∈ (l−, u−) and α+ ∈ (l+, u+) where
l−, u−, l+ , u+ are real values defining the extremities of the intervals. Using Property 1, we get the
following theorem:
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Theorem 5 (Lower and upper bounds on the Siegel–Klein distance). The Siegel–Klein distance between
two matrices K1 and K2 of the Siegel disk is bounded as follows:

ρK(l−, u+) ≤ ρK(K1, K2) ≤ ρK(u−, l+), (184)

where

ρK(αm, αM) :=
1
2

log
(

αM(1− αm)

|αm|(αM − 1)

)
. (185)

Figure 7 depicts the guaranteed lower and upper bounds obtained by performing the bisection
search for approximating the point K̄1 ∈ (K̄′′1 , K̄′1) and the points K̄2 ∈ (K̄′2, K̄′′2 ).

We have:
CR(K̄′1, K1; K2, K̄′2) ≥ CR(K̄1, K1; K2, K̄2) ≥ CR(K̄′′1 , K1; K2, K̄′′2 ), (186)

where CR(a, b; c, d) = ‖a−c‖‖b−d‖
‖a−d‖‖b−c‖ denotes the cross-ratio. Hence we have

HΩ′ , 1
2
(K1, K2) ≥ ρK(K1, K2) ≥ HΩ′′ , 1

2
(K1, K2). (187)

Notice that the approximation of the Siegel–Klein distance by line bisection requires only to
calculate an operator norm ‖M‖O at each step: This involves calculating the smallest and largest
eigenvalues of M, or the largest eigenvalue of MM̄. To get a (1 + ε)-approximation, we need to
perform O(log 1

ε ) dichotomic steps. This yields a fast method to approximate the Siegel–Klein distance
compared with the costly exact calculation of the Siegel–Klein distance of Equation (159) which requires
calculation of the Φ·(·) functions: This involves the calculation of a square root of a complex matrix.
Furthermore, notice that the operator norm can be numerically approximated using a Lanczos’s power
iteration scheme [96,97] (see also [98]).

0

Ω = {‖W‖O < 1}
∂Ω′′

∂Ω′

K̄ ′1 = K1 + u−(K2 −K1)
K̄ ′′1 = K1 + l−(K2 −K1)
K̄ ′2 = K1 + l+(K2 −K1)
K̄ ′′2 = K1 + u+(K2 −K1)

K1

K2

K̄1

K̄2
K̄ ′′2

K̄ ′′1
K̄ ′1

K̄ ′2

l− u− l+ u+

K1 K2K̄1 K̄2 K̄ ′′2K̄ ′′1 K̄ ′1 K̄ ′2

α− α+

Hilbert 1D line geometry

Figure 7. Guaranteed lower and upper bounds for the Siegel–Klein distance by considering nested
open matrix balls.

5.8. Hilbert-Fröbenius Distances and Fast Simple Bounds on the Siegel–Klein Distance

Let us notice that although the Hilbert distance does not depend on the chosen norm in the vector
space, the Siegel complex ball SD(d) is defined according to the operator norm. In a finite-dimensional
vector space, all norms are said “equivalent”: That is, given two norms ‖ · ‖a and ‖ · ‖b of vector space
X, there exists positive constants c1 and c2 such that

c1‖x‖a ≤ ‖x‖a ≤ c2‖x‖b, ∀x ∈ X. (188)
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In particular, this property holds for the operator norm and Fröbenius norm of finite-dimensional
complex matrices with positive constants cd, Cd, c′d and C′d depending on the dimension d of the
square matrices:

cd‖M‖O ≤ ‖M‖F ≤ Cd‖M‖O, ∀M ∈ M(d,C), (189)

c′d‖M‖F ≤ ‖M‖O ≤ C′d‖M‖F, ∀M ∈ M(d,C). (190)

As mentioned in the introduction, we have ‖M‖O ≤ ‖M‖F.
Thus, the Siegel ball domain SD(d) may be enclosed by an open Fröbenius ball FD

(
d, 1

(1+ε)cd

)
(for any ε > 0) with

FD(d, r) =: {M ∈ M(d,C) : ‖M‖F < r} . (191)

Therefore we have
HFD

(
d, 1

cd

)
, 1

2
(K1, K2) ≤ ρK(K1, K2), (192)

where HFD(d,r), 1
2

denotes the Fröbenius-Klein distance, i.e., the Hilbert distance induced by the Fröbenius

balls FD(d, r) with constant κ = 1
2 .

Now, we can calculate in closed-form the Fröbenius-Klein distance by computing the two
intersection points of the line (K1K2) with the Fröbenius ball FD(d, r). This amounts to solve an
ordinary quadratic equation ‖K1 + α(K2 − K1)‖2

F = r for parameter α:

‖K21‖2
Fα2 +

(
∑
i,j

Ki,j
21K̄i,j

1 + Ki,j
1 K̄i,j

21

)
α + (‖K1‖2

F − r) = 0, (193)

where Ki,j denotes the coefficient of matrix K at row i and column j. Notice that(
∑i,j K21i,jK̄i,j

1 + Ki,j
1 K̄i,j

21

)
is a real. Once α− and α+ are found, we apply the 1D formula of the Hilbert

distance of Equation (132).
We summarize the result as follows:

Theorem 6 (Lower bound on Siegel–Klein distance). The Siegel–Klein distance is lower bounded by the
Fröbenius-Klein distance for the unit complex Fröbenius ball, and it can be calculated in O(d2) time.

6. The Smallest Enclosing Ball in the SPD Manifold and in the Siegel Spaces

The goal of this section is to compare two implementations of a generalization of the Badoiu
and Clarkson’s algorithm [47] to approximate the Smallest Enclosing Ball (SEB) of a set of complex
matrices: The implementation using the Siegel–Poincaré disk (with respect to the Kobayashi distance
ρD), and the implementation using the Siegel–Klein disk (with respect to the Siegel–Klein distance ρK).

In general, we may encode a pair of features (S, P) ∈ Sym(d,R)× P++(d,R) in applications as a
Riemann matrix Z(S, P) := S + iP, and consider the underlying geometry of the Siegel upper space.
For example, anomaly detection of time-series maybe considered by considering (Σ̇(t), Σ(t)) where
Σ(t) is the covariance matrix at time t and Σ̇(t) ' 1

dt (Σ(t + dt)− Σ(t)) is the approximation of the
derivative of the covariance matrix (a symmetric matrix) for a small prescribed value of dt.

The generic Badoiu and Clarkson’s algorithm [47] (BC algorithm) for a set {p1, . . . , pn} of n points
in a metric space (X, ρ) is described as follows:

• Initialization: Let c1 = p1 and l = 1
• Repeat L times:

– Calculate the farthest point: fl = arg mini∈[d] ρ(cl , pi).
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– Geodesic cut: Let cl+1 = cl#tl fl , where p#tl q is the point which satisfies

ρ(p, p#X
tl

q) = tlρ(p, q). (194)

– l ← l + 1.

This elementary SEB approximation algorithm has been instantiated to various metric spaces with
proofs of convergence according to the sequence {tl}l : see [43] for the case of hyperbolic geometry,
ref. [46] for Riemannian geometry with bounded sectional curvatures, ref. [99,100] for dually flat
spaces (a non-metric space equipped with a Bregman divergences [101,102]), etc. In Cartan-Hadamard
manifolds [46], we require the series ∑i ti to diverge while the series ∑i t2

i to converge. The number
of iterations L to get a (1 + ε)-approximation of the SEB depends on the underlying geometry and
the sequence {tl}l . For example, in Euclidean geometry, setting tl =

1
l+1 with L = 1

ε2 steps yield a
(1 + ε)-approximation of the SEB [47].

We start by recalling the Riemannian generalization of the BC algorithm, and then consider the
Siegel spaces.

6.1. Approximating the Smallest Enclosing Ball in Riemannian Spaces

We first instantiate a particular example of Riemannian space, the space of Symmetric
Positive-Definite matrix manifold (PD or SPD manifold for short), and then consider the general
case on a Riemannian manifold (M, g).

Approximating the SEB on the SPD Manifold

Given n positive-definite matrices [103,104] P1, . . . , Pn of size d× d, we ask to calculate the SEB
with circumcenter P∗ minimizing the following objective function:

minP∈PD(d)maxi∈{1,...,n} ρPD(P, Pi). (195)

This is a minimax optimization problem. The SPD cone is not a complete metric space with respect to
the Fröbenius distance, but is a complete metric space with respect to the natural Riemannian distance.

When the minimization is performed with respect to the Fröbenius distance, we can solve this
problem using techniques of Euclidean computational geometry [33,47] by vectorizing the PSD matrices
Pi into corresponding vectors vi = vec(Pi) of Rd×d such that ‖P− P′‖F = ‖vec(P)− vec(P′)‖2, where
vec(·) : Sym(d,R) → Rd×d vectorizes a matrix by stacking its column vectors. In fact, since the
matrices are symmetric, it is enough to half-vectorize the matrices: ‖P− P′‖F = ‖vec+(P)− vec+(P′)‖2,

where vec+(·) : Sym++(d,R)→ R
d(d+1)

2 , see [50].

Property 2. The smallest enclosing ball of a finite set of positive-definite matrices is unique.

Let us mention the two following proofs:

• The SEB is well-defined and unique since the SPD manifold is a Bruhat–Tits space: That is,
a complete metric space enjoying a semi-parallelogram law: For any P1, P2 ∈ PD(d) and geodesic
midpoint P12 = P1(P−1

1 P2)
1
2 (see below), we have:

ρ2
PD(P1, P2) + 4ρ2

PD(P, P12) ≤ 2ρ2
PD(P, P1) + 2d2

PD(P, P2), ∀P ∈ PD(d). (196)

See [44] page 83 or [105] Chapter 6). In a Bruhat–Tits space, the SEB is guaranteed to be
unique [44,106].

• Another proof of the uniqueness of the SEB on a SPD manifold consists of noticing that the SPD
manifold is a Cartan-Hadamard manifold [46], and the SEB on Cartan-Hadamard manifolds are
guaranteed to be unique.
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We shall use the invariance property of the Riemannian distance by congruence:

ρPD

(
C>P1C, C>P2C

)
= ρPD(P1, P2), ∀C ∈ GL(d,R). (197)

In particular, choosing C = P−
1
2

1 , we get

ρPD(P1, P2) = ρ

(
I, P−

1
2

1 P2P−
1
2

1

)
. (198)

The geodesic from I to P is γI,P(α) = Exp(αLogP) = Pα. The set {λi(Pα)} of the d eigenvalues of Pα

coincide with the set {λi(P)α} of eigenvalues of P raised to the power α (up to a permutation).
Thus, to cut the geodesic I#PD

t P, we must solve the following problem:

ρPD(I, Pα) = t× ρPD(I, P). (199)

That is √
∑

i
log2 λi(P)α = t×

√
∑

i
log2 λi(P), (200)

α×
√

∑
i

log2 λi(P) = t×
√

∑
i

log2 λi(P). (201)

The solution is α = t. Thus, I#PD
t P = Pt. For arbitrary P1 and P2, we first apply the congruence

transformation with C = P−
1
2

1 , use the solution I#PD
t CPC> = (CPC>)t, and apply the inverse

congruence transformation with C−1 = P
1
2

1 . It follows the theorem:

Theorem 7 (Geodesic cut on the SPD manifold). For any t ∈ (0, 1), we have the closed-form expression of
the geodesic cut on the manifold of positive-definite matrices:

P1#PD
t P2 = P

1
2

1 Exp
(

t Log
(

P−
1
2

1 P2P−
1
2

1

))
P

1
2

1 , (202)

= P
1
2

1

(
P−

1
2

1 P2P−
1
2

1

)t
P

1
2

1 , (203)

= P1(P−1
1 P2)

t, (204)

= P2(P−1
2 P1)

1−t. (205)

The matrix P−
1
2

1 P2P−
1
2

1 can be rewritten using the orthogonal eigendecomposition as UDU>,
where D is the diagonal matrix of generalized eigenvalues. Thus, the PD geodesic can be rewritten as

P1#PD
t P2 = P

1
2

1 UDtU>P
1
2

1 . (206)

We instantiate the algorithm of Badoiu and Clarkson [47] to a finite set P = {P1, . . . , Pn} of n
positive-definite matrices in Algorithm 1.
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Algorithm 1: Algorithm to approximate the circumcenter of a set of positive-definite matrices.

Data: P = {P1, . . . , Pn}: set of positive-definite matrices, L: number of iterations
Result: Approximate the circumcenter of a set P of positive-definite matrices with CL
Initialization: Let C1 ← P1;
for l ←1 to L do

Calculate the index of the farthest matrix:

fl ← arg mini∈{1,...,d} ρPD(Cl , Pi)

Geodesic walk: tl ← 1
l+1 and Cl+1 ← C

1
2
l

(
C−

1
2

l Pfl
C−

1
2

l

)tl

C
1
2
l

end

The complexity of the algorithm is in O(d3nT) where T is the number of iterations, d the row
dimension of the square matrices Pi and n the number of matrices.

Observe that the solution corresponds to the arc-length parameterization of the geodesic with
boundary values on the SPD manifold:

γP1,P2(t) = P
1
2

1 exp(tLog(P−
1
2

1 P2P−
1
2

1 ))P
1
2

1 . (207)

The curve γP1,P2(t) is a geodesic for any affine-invariant metric distance ρψ(P1, P2) =

‖LogP−
1
2

1 P2P−
1
2

1 ‖ψ where ‖M‖ψ = ψ(λ1(M), . . . , λd(M)) is a symmetric gauge norm [107].
In fact, we have shown the following property:

Property 3 (Riemannian geodesic cut). Let γp,q(t) denote the Riemannian geodesic linking p and q on
a Riemannian manifold (M, g) (i.e., parameterized proportionally to the arc-length and with respect to the
Levi–Civita connection induced by the metric tensor g). Then we have

p1#g
t p2 = γp1,p2(t) = γp2,p1(1− t). (208)

We report the generic Riemannian approximation algorithm in Algorithm 2.

Algorithm 2: Algorithm to approximate the Riemannian circumcenter of a set of points.

Data: P = {p1, . . . , pn}: set of points on a Riemannian manifold (M, g), L: number of
iterations, a sequence tl ∈ (0, 1) for l ∈ {1, . . . , L}

Result: Approximate the Riemannian circumcenter of P with cL
Initialization: Let c1 ← p1;
for l ←1 to L do

Calculate the index of the farthest point with respect to Riemannian distance ρg:

fl ← arg mini∈{1,...,d} ρg(cl , pi).

Geodesic walk on the Riemannian manifold:

cl+1 ← γcl ,p fl
(tl) .

end

Theorem 1 of [46] guarantees the convergence of the Algorithm 2 algorithm provided that
we have a lower bound and an upper bound on the sectional curvatures of the manifold (M, g).
The sectional curvatures of the PD manifold have been proven to be negative [108]. The SPD manifold is
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a Cartan-Hadamard manifold with scalar curvature 1
8 d(d+ 1)(d+ 2) [109] depending on the dimension

d of the matrices. Notice that we can identify P ∈ PD(d) with an element of the quotient space
GL(d,R)/O(d) since O(d) is the isotropy subgroup of the GL(d,R) for the action P 7→ C>PC (i.e., I 7→
C> IC = I when C ∈ O(d)). Thus, we have PD(d) ∼= GL(d,R)/O(d). The SEB with respect to the
Thompson metric

ρT(P1, P2) := max
{

log λmax(P2P−1
1 ), log λmax(P1P−1

2 )
}

(209)

has been studied in [107].

6.2. Implementation in the Siegel–Poincaré Disk

Given n d× d complex matrices W1, . . . , Wn ∈ SD(d), we ask to find the smallest-radius enclosing
ball with center W∗minimizing the following objective function:

minW∈SD(d)maxi∈{1,...,n} ρD(W, Wi). (210)

This problem may have potential applications in image morphology [110] or anomaly detection
of covariance matrices [39]. We may model the dynamics of a covariance matrix time-series Σ(t) by
the representation (Σ(t), Σ̇(t)) where Σ̇(t) = d

dt Σ(t) ∈ Sym(d,R) and use the Siegel SEB to detect
anomalies, see [40] for detection anomaly based on Bregman SEBs.

The Siegel–Poincaré upper plane and disk are not Bruhat–Tits space, but spaces of non-positive
curvatures [111]. Indeed, when d = 1, the Poincaré disk is not a Bruhat space.

Notice that when d = 1, the hyperbolic ball in the Poincaré disk have Euclidean shape. This is not
true anymore when d > 1: Indeed, the equation of the ball centered at the origin 0:

Ball(0, r) =
{

W ∈ SD(d) : log
(

1 + ‖W‖O
1− ‖W‖O

)
≤ r
}

, (211)

amounts to

Ball(0, r) =
{

W ∈ SD(d) : ‖W‖O ≤
er − 1
er + 1

}
. (212)

when d = 1, ‖W‖O = |w| = ‖(Re(w), Im(w))‖2, and Poincaré balls have Euclidean shapes. Otherwise,
when d > 1, ‖W‖O = σmax(W) and σmax(W) ≤ er−1

er+1 is not a complex Fröbenius ball.
To apply the generic algorithm, we need to implement the geodesic cut operation W1#tW2.

We consider the complex symplectic map ΦW1(W) in the Siegel disk that maps W1 to 0 and W2 to
W ′2 = ΦW1(W2). Then the geodesic between 0 and W ′2 is a straight line.

We need to find α(t)W = 0#SDt W (with α(t) > 0) such that ρD(0, α(t)W) = tρD(0, W). That is,
we shall solve the following equation:

log
(

1 + α(t)‖W‖O
1− α(t)‖W‖O

)
= t× log

(
1 + ‖W‖O
1− ‖W‖O

)
. (213)

We find the exact solution as

α(t) =
1

‖W‖O

(1 + ‖W‖O)
t − (1− ‖W‖O)

t

(1 + ‖W‖O)t + (1− ‖W‖O)t . (214)

Proposition 3 (Siegel–Poincaré geodesics from the origin). The geodesic in the Siegel disk is

γSD
0,W(t) = α(t)W (215)

with

α(t) =
1

‖W‖O

(1 + ‖W‖O)
t − (1− ‖W‖O)

t

(1 + ‖W‖O)t + (1− ‖W‖O)t .
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Thus, the midpoint W1#SDW2 := W1#SD1
2

W2 of W1 and W2 can be found as follows:

W1#SDW2 = Φ−1
W1

(
0#SDΦW1(W2)

)
, (216)

where

0#SDW = α

(
1
2

)
W, (217)

=
1

‖W‖O

√
1 + ‖W‖O −

√
1− ‖W‖O√

1 + ‖W‖O +
√

1− ‖W‖O
W. (218)

To summarize, Algorithm 3 recenters at every step the current center Ct to the Siegel disk origin 0.

Algorithm 3: Algorithm to approximate the circumcenter of a set of matrices in the Siegel disk.

Data: {W1, . . . , Wn}: set of matrices in the Siegel disk, L: number of iterations, a sequence
tl ∈ (0, 1) for l ∈ {1, . . . , L}

Result: Approximate the circumcenter with C̃
Initialization: Let C1 ←W1;
for i←1 to n do

W ′i ← ΦC1(Wi);
end
/* We now have C1 ← 0;

*/
for l ←1 to L do

Calculate the index of the farthest point from the origin of the Siegel disk:

Fl ← arg mini∈[d] ρD(0, W ′i )

Geodesic walk to the farthest matrix:

Cl+1 ← 0#SDtl
WFl

/* Recenter Cl+1 to the disk origin for the next iteration */
for i←1 to n do

W ′i ← ΦCl+1(Wi)

end
/* We now have Cl+1 ← 0;

*/
end
Let the approximate circumcenter be mapped back to be consistent with the input:

C̃ ← Φ−1
C1

(Φ−1
C2

(. . . Φ−1
CL

(0)) . . .).

/* This operation amounts to calculate the symplectic map associated with

the matrix S = C(−1)
1 × . . .× C(−1)

L . Overall it costs L matrix multiplications
plus the cost of evaluation of the symplectic map defined by S. */

The farthest point to the current approximation of the circumcenter can be calculated using the
data-structure of the Vantage Point Tree (VPT), see [112].

The Riemannian curvature tensor of the Siegel space is non-positive [1,113] and the sectional
curvatures are non-positive [111] and bounded above by a negative constant. In our implementation,
we chose the step sizes tl =

1
l+1 . Barbaresco [14] also adopted this iterative recentering operation for
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calculating the median in the Siegel disk. However at the end of his algorithm, he does not map back
the median among the source matrix set. Recentering is costly because we need to calculate a square
root matrix to calculate ΦC(W). A great advantage of Siegel–Klein space is that we have straight
geodesics anywhere in the disk so we do not need to perform recentering.

6.3. Fast Implementation in the Siegel–Klein Disk

The main advantage of implementing the Badoiu and Clarkson’s algorithm [47] in the Siegel–Klein
disk is to avoid to perform the costly recentering operations (which require calculation of square
root matrices). Moreover, we do not have to roll back our approximate circumcenter at the end of
the algorithm.

First, we state the following expression of the geodesics in the Siegel disk:

Proposition 4 (Siegel–Klein geodesics from the origin). The geodesic from the origin in the Siegel–Klein
disk is expressed

γSK
0,K(t) = α(t)K (219)

with

α(t) =
1
‖K‖O

(1 + ‖K‖O)
t − (1− ‖K‖O)

t

(1 + ‖K‖O)t + (1− ‖K‖O)t . (220)

The proof follows straightforwardly from Proposition 3 because we have ρK(0, K) = 1
2 ρD(0, K).

7. Conclusions and Perspectives

In this work, we have generalized the Klein model of hyperbolic geometry to the Siegel disk
domain of complex matrices by considering the Hilbert geometry induced by the Siegel disk,
an open-bounded convex complex matrix domain. We compared this Siegel–Klein disk model with its
Hilbert distance called the Siegel–Klein distance ρK to both the Siegel–Poincaré disk model (Kobayashi
distance ρW) and the Siegel–Poincaré upper plane (Siegel distance ρU). We show how to convert
matrices W of the Siegel–Poincaré disk model into equivalent matrices K of Siegel–Klein disk model
and matrices Z in the Siegel–Poincaré upper plane via symplectic maps. When the dimension d = 1,
we have the following equivalent hyperbolic distances:

ρD(w1, w2) = ρK(k1, k2) = ρU(z1, z2). (221)

Since the geodesics in the Siegel–Klein disk are by construction straight, this model is well-suited
to implement techniques of computational geometry [33]. Furthermore, the calculation of the
Siegel–Klein disk does not require the recentering of one of its arguments to the disk origin,
a computationally costly Siegel translation operation. We reported a linear-time algorithm for
computing the exact Siegel–Klein distance ρK between diagonal matrices of the disk (Theorem 4),
and a fast way to numerically approximate the Siegel distance by bisection searches with guaranteed
lower and upper bounds (Theorem 5). Finally, we demonstrated the algorithmic advantage of
using the Siegel–Klein disk model instead of the Siegel–Poincaré disk model for approximating
the smallest-radius enclosing ball of a finite set of complex matrices in the Siegel disk. In future
work, we shall consider more generally the Hilbert geometry of homogeneous complex domains and
investigate quantitatively the Siegel–Klein geometry in applications ranging from radar processing [14],
image morphology [28], computer vision, to machine learning [24]. For example, the fast and robust
guaranteed approximation of the Siegel–Klein distance may prove useful for performing clustering
analysis in image morphology [28,38,110].

Supplementary Materials: The following are available online at https://franknielsen.github.io/SiegelKlein/.

Funding: This research received no external funding.

https://franknielsen.github.io/SiegelKlein/


Entropy 2020, 22, 1019 35 of 41

Acknowledgments: The author would like to thank Marc Arnaudon, Frédéric Barbaresco, Yann Cabanes,
and Gaëtan Hadjeres for fruitful discussions, pointing out several relevant references, and feedback related
to the Siegel domains.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following notations and main formulas are used in this manuscript:

Complex matrices:
Number field F Real R or complex C
M(d,F) Space of square d× d matrices in F
Sym(d,R) Space of real symmetric matrices
0 matrix with all coefficients equal to zero (disk origin)

Fröbenius norm ‖M‖F =
√

∑i,j |Mi,j|2

Operator norm ‖M‖O = σmax(M) = maxi{|λi(M)|}
Domains:
Cone of SPD matrices PD(d,R) = {P � 0 : P ∈ Sym(d,R)}
Siegel–Poincaré upper plane SH(d) = {Z = X + iY : X ∈ Sym(d,R), Y ∈ PD(d,R)}
Siegel–Poincaré disk SD(d) =

{
W ∈ Sym(d,C) : I −WW � 0

}
Distances:

Siegel distance ρU(Z1, Z2) =

√
∑d

i=1 log2
(

1+
√

ri
1−√ri

)
ri = λi (R(Z1, Z2))

R(Z1, Z2) := (Z1 − Z2)(Z1 − Z2)
−1(Z1 − Z2)(Z1 − Z2)

−1

Upper plane metric dsU(Z) = 2tr
(
Y−1dZ Y−1dZ̄

)
PD distance ρPD(P1, P2) = ‖Log(P−1

1 P2)‖F =

√
∑d

i=1 log2
(

λi(P−1
1 P2)

)
PD metric dsPD(P) = tr

(
(P−1dP)2)

Kobayashi distance ρD(W1, W2) = log
(

1+‖ΦW1 (W2)‖O

1−‖ΦW1 (W2)‖O

)
Translation in the disk ΦW1 (W2) = (I −W1W1)

− 1
2 (W2 −W1)(I −W1W2)

−1(I −W1W1)
1
2

Disk distance to origin ρD(0, W) = log
(

1+‖W‖O
1−‖W‖O

)
Siegel–Klein distance ρK(K1, K2) =

{
1
2 log

∣∣∣ α+(1−α−)
α−(α+−1)

∣∣∣ , K1 6= K2,

0 K1 = K2

‖(1− α−)K1 + α−K2‖O = 1 (α− < 0), ‖(1− α+)K1 + α+K2‖O = 1 (α+ > 1)

Seigel-Klein distance to 0 ρK(0, K) = 1
2 log

(
1+‖K‖O
1−‖K‖O

)
Symplectic maps and groups:
Symplectic map φS(Z) = (AZ + B)(CZ + D)−1 with S ∈ Sp(d,R) (upper plane)

φS(W) with S ∈ Sp(d,C) (disk)

Symplectic group Sp(d,F) =
{[

A B
C D

]
, AB> = BA>, CD> = DC>, AD> − BC> = I

}
A, B, C, D ∈ M(d,F)

group composition law matrix multiplication

group inverse law S(−1) =:

[
D> −B>

−C> A>

]

Translation in H(d) of Z = A + iB to iI TU(Z) =

[
(B

1
2 )> 0

−(AB−
1
2 )> (B−

1
2 )>

]

symplectic orthogonal matrices SpO(2d,R) =
{[

A B
−B A

]
: A>A + B>B = I, A>B ∈ Sym(d,R)

}
(rotations in SH(d))
Translation to 0 in SD(d) ΦW1 (W2) = (I −W1W1)

− 1
2 (W2 −W1)(I −W1W2)

−1(I −W1W1)
1
2

Isom+(S) Isometric orientation-preserving group of generic space S
Moeb(d) group of Möbius transformations
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Appendix A. The Deflation Method: Approximating the Eigenvalues

A matrix M ∈ M(d,C) is diagonalizable if there exists a non-singular matrix P and a diagonal
matrix Λ = diag(λ1, . . . , λd) such that M = PΛP−1. A Hermitian matrix (i.e., M = M∗ := M̄>) is
a diagonalizable self-adjoint matrix which has all real eigenvalues and admits a basis of orthogonal
eigenvectors. We can compute all eigenvalues of a Hermitian matrix M by repeatedly applying the
(normalized) power method using the so-called deflation method (see [114], Chapter 10, and [115],
Chapter 7). The deflation method proceeds iteratively to calculate numerically the (normalized)
eigenvalues λi’s and eigenvectors vi’s as follows:

1. Let l = 1 and M1 = M.
2. Initialize at random a normalized vector x0 ∈ Cd (i.e., x0 on the unit sphere with x∗0 x0 = 1)
3. For j in (0, . . . , Ll − 1):

xj+1 ← Ml xj

xj+1 ←
xj+1

x∗j+1xj+1

4. Let vl = xLl and λl = x∗Ll
Ml xLl

5. Let l ← l + 1. If l ≤ d then let Ml = Ml−1 − λl−1vl−1v∗l−1 and goto 2.

The deflation method reports the eigenvalues λi’s such that

|λ1| > |λ2| ≥ . . . ≥ |λd|,

where λ1 is the dominant eigenvalue.
The overall number of normalized power iterations is L = ∑d

i=1 Li (matrix-vector multiplication),
where the number of iterations of the normalized power method at stage l can be defined such that
we have |xLl − xLl−1| ≤ ε, for a prescribed value of ε > 0. Notice that the numerical errors of the
eigenpairs (λi, vi)’s propagate and accumulate at each stage. That is, at stage l, the deflation method
calculates the dominant eigenvector on a residual perturbated matrix Ml . The overall approximation
of the eigendecomposition can be appreciated by calculating the last residual matrix:∥∥∥∥∥M−

d

∑
i=1

λiviv∗i

∥∥∥∥∥
F

. (A1)

The normalized power method exhibits linear convergence for diagonalizable matrices and
quadratic convergence for Hermitian matrices. Other numerical methods for numerically calculating the
eigenvalues include the Krylov subspace techniques [114–116].

Snippet Code

We implemented our software library and smallest enclosing ball algorithms in JavaTM.
The code below is a snippet written in MAXIMA (available in the supplementary material):

A computer algebra system, freely downloadable at http://maxima.sourceforge.net/

/* Code in Maxima */
/* Calculate the Siegel metric distance in the Siegel upper space */

load(eigen);

/* symmetric */
S1: matrix( [0.265, 0.5],

[0.5 , -0.085]);

http://maxima.sourceforge.net/


Entropy 2020, 22, 1019 37 of 41

/* positive-definite */
P1: matrix( [0.235, 0.048],

[0.048 , 0.792]);

/* Matrix in the Siegel upper space */
Z1: S1+%i*P1;

S2: matrix( [-0.329, -0.2],
[-0.2 , -0.382]);

P2: matrix([0.464, 0.289],
[0.289 , 0.431]);

Z2: S2+%i*P2;

/* Generalized Moebius transformation */
R(Z1,Z2) :=
((Z1-Z2).invert(Z1-conjugate(Z2))).((conjugate(Z1)-conjugate(Z2)).invert(conjugate(Z1)-Z2));

R12: ratsimp(R(Z1,Z2));
ratsimp(R12[2][1]-conjugate(R12[1][2]));

/* Retrieve the eigenvalues: They are all reals */
r: float(eivals(R12))[1];

/* Calculate the Siegel distance */
distSiegel: sum(log( (1+sqrt(r[i]))/(1-sqrt(r[i])) )**2, i, 1, 2);
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