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Abstract: In the big data era, artificial intelligence techniques have been applied to tackle traditional
issues in the study of neurodegenerative diseases. Despite the progress made in understanding
the complex (epi)genetics signatures underlying neurodegenerative disorders, performing early
diagnosis and developing drug repurposing strategies remain serious challenges for such conditions.
In this context, the integration of multi-omics, neuroimaging, and electronic health records data can
be exploited using deep learning methods to provide the most accurate representation of patients
possible. Deep learning allows researchers to find multi-modal biomarkers to develop more effective
and personalized treatments, early diagnosis tools, as well as useful information for drug discovering
and repurposing in neurodegenerative pathologies. In this review, we will describe how relevant
studies have been able to demonstrate the potential of deep learning to enhance the knowledge of
neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases through the integration
of all sources of biomedical data.

Keywords: artificial intelligence; big data; deep learning; neurodegenerative diseases; precision
medicine

1. Introduction

Neuronal degeneration is a common cause of morbidity and cognitive impairment
in the elderly [1]. Neurodegenerative Diseases (ND) are a large group of neurological
disorders with heterogeneous clinical and pathological expressions, affecting specific sub-
sets of neurons in specific functional anatomic systems, placing a considerable burden
on an increasingly aging society [2]. ND are broadly identified as proteinopathies due to
conformational changes affecting protein functionality, thereby causing toxicity or losing
their physiological function: misfolded proteins start to aggregate resulting in neurotoxic-
ity [1,3]. ND are characterized by a high level of heterogeneity and complexity in terms
of clinical presentation and etiology because of the interaction of genetic, lifestyle, and
environmental factors [3–6]. Notably, the heterogeneity of ND is a key confounding fac-
tor that complicates the understanding of disease mechanisms and the identification of
treatments. Case-control cohorts often include multiple phenotypes on distinct disease
trajectories or rely on models that only account for a few features of the central nervous
system at a time, which has been reductive for complex diseases [7–9]. Alzheimer’s (AD)
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and Parkinson’s (PD) diseases are two of the most frequent and heterogeneous pathologies
among all the complex neurodegenerative proteinopathies, affecting 24 and 6.1 million
people worldwide, respectively [3,7,10]. Both disorders include hereditary Mendelian
forms, caused by mutations in single genes and complex sporadic forms characterized
by polymorphisms in multiple genes that interact with environmental, epigenetic, and
transcriptomic signatures in determining the heterogeneity and the differential suscep-
tibility to disease [4,11]. To date, the identification of AD and PD therapeutic targets
and in vivo biomarkers for early diagnosis is still challenging, because of the existence
of different disease subtypes (phenotypic heterogeneity) and stages of disease (temporal
heterogeneity) [8]. Driven first by genomic studies and more recently by transcriptomic
and epigenomic studies, a large volume of data has been rapidly produced to tackle this
heterogeneity. In the perspective of ND as a big data issue, such diverse observations
could be pulled together to provide a personalized, multi-layer representation of patients,
which considers the complex heterogeneity of the disease and the availability of effective
diagnostic criteria and drug development deliverables. In this context, computational
modeling and simulation represented key components of the scientific method in which
both reductionist and holistic approaches are not treated as separate fields but as con-
vergent and cross-supportive paths [7–9,12]. Therefore, this review aims to analyze the
rapidly evolving techniques for data integration of multi-omics, clinical, and neuroimaging
data discussing their role in a precision medicine framework [4,13,14]. Deep Learning
(DL) techniques will be discussed with relevant examples concerning the identification
of biomarkers for prognosis, early diagnosis, and assessment of symptoms, considering
observations on handwritings, speeches, and movement dynamics. A specific focus will be
given to articles building and analyzing a multi-layer representation of subjects, showing
off the advantages offered by big data integration. Finally, publicly available databases
collecting multiple sources of biomedical information for ND will be reviewed.

Literature Research

Relevant applications of Artificial Intelligence (AI) techniques to ND have been se-
lected from specific research queries on bibliographic search engines such as PubMed,
Google Scholar, and Dimensions.ai. “Artificial Intelligence”, “Deep Learning”, “Machine
Learning” were used as keywords to identify AI-related articles, in combination with “neu-
rodegenerative”, “Alzheimer” or “Parkinson” to address the pathology. Ultimately, these
were combined with “speech”, “segmentation”, “handwriting”, “voice”, “movement”,
“multi-omics”, “EHR” or “data integration” to retrieve literature publications exploiting the
related data types. Titles and abstracts were checked to identify relevant articles that were
finally included in this review. Notably, we decided to include experiments with reported
accuracy below the 95% threshold, which is the cut-off meet minimum Medical Diagnosis
Treatment (MDT) standards and pass a ‘medical Turing Test’ [15], because we wanted to
represent the state of the art of DL and ML applications in the field of neurodegenerative
diseases data integration.

2. Basics of Machine Learning and Deep Learning

Machine Learning (ML) encompasses a collection of data analysis techniques aiming to
generate predictive models from multi-dimensional datasets [16,17]. The advantages of ML
come from its ability to learn from previous data to make accurate predictions on new data
in both supervised and unsupervised contexts, with reduced or absent assumptions [17].
The focus of unsupervised methods is to learn patterns in the features of unlabeled data,
while supervised methods aim to discover the relationship between input features and a
target attribute, e.g., an MRI brain scan from a patient labeled as Alzheimer’s [16].

DL differs from the traditional ML algorithms applied in biomedical classification
tasks, such as linear or logistic regression, Support Vector Machine (SVM), and naive Bayes
classifier due to its ability to cope with the complexity and volume of multi-layer data
(Figure 1) [16,18]. DL models are based on Artificial Neural Networks (ANN) that are
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loosely inspired by human brain networks and a typical DL architecture is organized in lay-
ers of computational units known as “neurons” [16]. Traditional ML algorithms and basic
ANN are considered shallow learners, learning from data described by pre-defined features
or by expert-based descriptors. These shallow learners produced significant progress both
in medicine and multi-omics fields and led to the identification of multigene signatures
potentially involved in disease onset and progression in ND [18]. However, the advent of
Deep Neural Networks (DNNs) outperformed shallow learners, as DNNs can combine
multiple hidden layers to provide a deeper and more comprehensive representation of data
and allow the exploration of complex interrelationships between genetics, biochemistry,
histology, and disease status. Notably, these DL methods can extract features automatically
from raw data with little or no preprocessing, overcoming manual features engineering
(Table 1) [16,18].

Figure 1. Common algorithm types for ML and DL employed in ND biomedical research.

Table 1. Summary of influential DL architectures and approaches for multi-layer big data analysis.

Architecture Description Graph

Deep Neural Network (DNN)

The basic network is made of multiple
hidden layers. It is capable of modeling

complex non-linear relationships by
learning input data representation to be

matched with a specific output [19].

Autoencoder (AE)

It allows detecting patterns in the data in
an unsupervised fashion. The model is

made of an encoder and a decoder,
transforming input data to generate its

own representation, aiming to minimize
the difference between the input and its

output representation [20].
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Table 1. Cont.

Architecture Description Graph

Restricted Boltzmann Machine (RBM)

This model is made of two layers, where
nodes are bidirectionally connected but

there are no connections within one layer.
It is trained to learn a probability

distribution for the input data and can be
used as a building block for deep

probabilistic models, where multiple
RBMs can be stacked to build a deeper

network [21].

Convolutional Neural Network (CNN)

Most used for image processing in
computer vision applications. The

network uses convolution and pooling
operations to extract relevant features

from data, useful for image classification.
This architecture is inspired by the

organization of the visual cortex [22].

Recurrent Neural Network (RNN)

Best suited to process sequential data and
used to predict the future from the past.

The network can give an output for every
timestep and takes the previous inputs
into account to determine the output.

Long-Short Term Memory (LSTM) and
Gated Recurrent Units (GRUs) are RNN

architectures [19].

3. Artificial Intelligence in Neurology

AI allows for automated data interpretation and decision-making. The peculiarity of
AI is to be able to learn from data to acquire knowledge, represent and process information
related to the task it has to perform, thereby overcoming the difficulty to assimilate and
extract valuable information from large datasets. Thus, AI can be used as a powerful tool
in the elaboration of biomedical data for the development of predictive models. One of
the most relevant data sources for AI comes from the biomedical field, and the ability of
DL—one of AI’s most important branches, alongside ML—to automatically learn complex
representations from data is showing to be particularly promising to help ND research and
clinical management [18,23]. Nowadays, the number of publications in the ND research
area employing DL techniques (Table 1) and other ML algorithms is constantly increasing
(Figure 2). Classification and segmentation of neuroimaging data is a traditional subdomain
of DL methods application, stating the high-dimensional nature of neuroimaging data that
is highly suitable for AI intervention, and relevant application examples are presented
below. Afterward, it will be shown how observations on handwritings, speeches, and
movement dynamics can be used to support symptoms and diagnostic assessment. In the
subsequent section, we discuss the usefulness of merging multiple data types, including
multi-omics, clinical, and neuroimaging data to obtain a holistic representation of subjects.
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Figure 2. Number of publications in ML or DL fields by year and ND. Data were retrieved on dimensions.ai using
Alzheimer’s or Parkinson’s diseases and deep learning or machine learning as keywords to search in title and abstract.
Results were limited to “article” as Publication Type.

3.1. Neuroimaging Classification and Segmentation

Biomedical imaging is a traditional field of application for DL architectures. To date,
classification and segmentation tasks on neuroimaging data have been greatly improved
by employing AI techniques [18,23]. DL models can be applied to classify ND stages or
sub phenotypes. As a representative application in AD, a CNN-based approach has been
implemented by Ramzan and colleagues on resting-state fMRI of 138 AD subjects from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The final model achieved
an average accuracy of 97.92% on the test set, classifying subjects among six different stages
of AD including Cognitively Normal (CN), Significant Memory Concern (SMC), Early Mild
Cognitive Impairment (EMCI), Mild Cognitive Impairment (MCI), Late Mild Cognitive
Impairment (LMCI), and AD [24]. A noteworthy study focused on the detection of PD from
volumetric T1-weighted MRI scans used a 3D CNN to classify patients over control subjects
(CS). They used data from the PPMI database [25] (described in Section 5.) and obtained
an average recall, precision, and F1-score of 0.94, 0.93, and 0.94, respectively. Their model
demonstrated to be good enough to not misclassify any PD subject [26]. CNNs can also be
applied in the segmentation task to quantify structural changes in brain shape, volume,
and thickness that may be related to neurodegeneration [18,27]. As the assessments of the
brainstem and hippocampal volumes are known to be crucial tasks in the study of ND, a 2D
CNN was recently used to predict the number of voxels attributed to the hippocampus [28].
Meanwhile, an automated sub-cortical brain structure segmentation approach based on
a CNN architecture outperformed state-of-the-art techniques such as Free Surfer on the
Internet Brain Segmentation Repository (IBSR 18) dataset [29]. A DL-based hippocampus
segmentation framework embedding statistical shape of the hippocampus as “context in-
formation” into DNN was proposed and tested on image data of AD, MCI, and CN subjects
from two cohorts from ADNI and AddNeuroMed, leading to improved segmentation accu-
racy in cross-cohort validation [30]. Notably, DL can be used as a feature extractor before
classification tasks reducing the need for rigid segmentation in preprocessing: a multiple
dense CNN was used on an ADNI dataset, including 199 AD patients, 403 MCI, and 229
CN. Experimental results showed that the proposed method achieves an accuracy of 89.5%
for AD vs. CN classification, and an accuracy of 73.8% for MCI vs. CN classification [31].
Moreover, another CNN model based on transfer learning was used as a feature extractor
in a multi-class discrimination task on the ADNI database, achieving an overall accuracy of
95.73% on the validation set [32]. Transfer learning is defined as the ability of a system to
recognize and employ the knowledge learned in a previous source domain to a novel task
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and it can be implemented in segmentation to reduce the need for many annotated samples
to perform the training task [27]. Transfer learning is characterized by some limitations
because objects in biomedical images may have very different appearances and sizes so
transfer learning from the models with huge variations in organ appearance may not
reduce the segmentation result [27]. Overall, AI flexibility in learning complex and abstract
representations of neuroanatomical data through nonlinear transformations is particularly
promising since it can greatly improve the knowledge of the aging brain and its response
to several concurrent pathological processes.

3.2. Clinical Records Investigation

In addition to widespread research on DL applications for image classification and
segmentation, researchers have applied AI to several neurological and general medical
data. ML and DL techniques have been exploited to support clinical expertise analyzing
handwritings, voice recordings, and movement registrations. Handwriting deterioration
is one of the most typical clinical hallmarks of PD and the identification of distinctive
handwriting features can help to build a predictive model for PD classification [33]. Drotár
and colleagues [34] collected handwriting samples from a sample of 37 PD Czech patients
on medication and 38 matched controls. They extracted relevant features from data using
statistical methods and fed them to an SVM with a Radial Basis Function kernel, achieving
88.1% as the highest accuracy in classifying PD patients [34]. Another interesting usage
of patients’ handwriting is shown in a recent study by Pereira and colleagues [33]. Using
an electronic pen to map handwriting dynamics by PD patients into computer images,
researchers collected data to be analyzed by a CNN. The authors obtained a final accuracy
of about 95% in classifying PD patients and healthy controls, supporting the employment
of a DL-based approach to aid PD diagnosis. Interestingly, they showed the goodness of
the model in distinguishing healthy controls from patients with early-stage PD. Their CNN
has been challenged in classifying data from eight manually-selected patients with very
similar traces to healthy individuals. The accuracy rate above 94% proved it to be robust
enough to detect almost imperceptible changes between the two groups’ handwritings
(Figure 3) [33].

Figure 3. Deep Learning handwritings classification. CN and PD handwritings are hard to distinguish if not trained to. A
CNN can be made capable of classifying patients and controls upon almost imperceptible changes in subjects’ drawings.
Convolution and pooling operations process input data to extract relevant features from the images, allowing detection of
group differences. Spirals images were taken from the NewHandPD dataset [35], available at http://wwwp.fc.unesp.br/
~papa/pub/datasets/Handpd/, accessed on 5 January 2021.

http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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These approaches can be considered as alternative or complementary to others, such
as speech or movement-based discriminant analyses. Various methods have been pre-
sented for analyzing patients’ speech and movement recordings. As an example, Berus and
colleagues exploited speech recordings data from 20 PD and 20 CS [36]. Recordings were
taken during a medical examination while subjects were reading or saying certain numbers
or words, for a total of 26 recordings per subject. A fine-tuned ANNs ensemble algorithm
was trained to classify each voice sample for each subject. A class was finally attributed by
the majority voting of each ANN constituting the ensemble. Their algorithm achieved a
test accuracy, sensitivity, and specificity of 86.47%, 88.91%, and 84.02%, respectively [36].
Another possible use of voice recordings is presented in a very recent paper by Al-Hameed
and colleagues [37], where the authors showed how it is possible to discriminate between
patients reporting cognitive concerns attributable to ND or Functional Memory Disorder
(FMD, i.e., subjective memory concerns unassociated with objective cognitive deficits
or risk of progression) by analyzing acoustic features extracted from speech recordings.
Recordings data from subjects’ clinical conversations with the neurologist during the di-
agnosis assessment were processed for feature extraction and selection and then used to
train five different ML classifiers to differentiate between the two classes. This method
achieved an average accuracy of 96.2%, proving that the discriminative power of purely
acoustic approaches could be integrated into diagnostic workflows for patients with mem-
ory concerns. Interestingly, this method does not require automatic speech recognition
and understanding because it relies only on acoustic features obtainable from recordings
processing [37].

PD patients manifest motor symptoms such as bradykinesia, tremor, and posture al-
teration, and clinical observations can be taken from their characteristic gait. Gait disorders
in PD are characterized by spatial and temporal dysfunctions and Freezing Of Gait (FOG)
is one of the most debilitating motor symptoms in PD. DL algorithms can be implemented
in automatic systems of FOG detection, as recently demonstrated [38]. In this paper, the
researchers analyzed wearable sensor data with a CNN to automatically detect when a FOG
episode would occur, achieving 89% accuracy. This study presents the first method of FOG
detection on home environments based on DL techniques, showing outperforming results
over other previous automatic methods and possibly improving the medical monitoring
of FOG’s evolution in PD patients. Finally, this tool can also be beneficial to evaluate the
effects of drugs during clinical trials [38].

4. Big Data Integration

As 21st-century biomedicine goes through the big data era, the production of a wide
variety of biomedical data gets simpler and faster [7,23]. To face the data volume and
heterogeneity increase, data sharing initiatives were encouraged by funding agencies and
scientific journals, and publicly available repositories and databases were established [9,39].
However, standardized protocols for cross-platform interoperability, data management
strategies, and common workflows for data sharing and analysis lagged an increasingly
faster data production, hurting model deployment and insights generation [7]. Multi-omics
and EHRs data isolation still pose considerable challenges for researchers’ abilities to
access, integrate, and model often noisy, complex, and high-dimensional data [7,8,17,23,39].
In the next section, data accession and integration strategies both for data management
and analytics will be discussed, introducing multi-omics and EHRs data. Finally, a list of
curated databases for ND will be presented and local or international consortia initiatives
aiming to maximize both sample collection and data generation will be reviewed.
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4.1. Multi-Omics

Biological systems consist of several molecular features such as genes, proteins, as
well as interactions between those components. Omics refers to the comprehensive charac-
terization and quantification of these molecules, grouped according to their structural or
functional similarities [17,40]. Multi-omics data integration combines information from
different layers of omics data to understand how different biological systems interact at a
molecular level [17,23]. This is relevant in ND such as AD and PD, where a multifactorial
etiology is usually combined with heterogeneous clinical pictures and mixed patholo-
gies [12]. Multi-omics data can be classified as (1) multi-feature data when the same set
of samples presents several distinct feature sets, or (2) multi-relational data with different
features and different sample sets in the same phenomenon or system. However, some
variation in data architecture is possible, such as (3) multi-class data with different groups
of samples measured by the same feature set and (4) tensor data measuring the same set
of objects by the same set of features in different conditions [41]. Data-driven analysis of
multi-omics data in ND can be performed to screen for potential biomarkers and druggable
targets or to identify sub phenotypes through clusterization methods. Furthermore, the
interactions among different sets of features could be crucial to understand the pathogenic
pathways underlying different disease phenotypes, each one defined by its biomarkers
as a phenotypic subtype with its own suitable personalized treatment [42]. Nevertheless,
data integration of multi-omics data is still a major challenge in precision medicine, since
omics analyses are impeded by high analytical variance and limitations in experimental
design, resulting in a low signal-to-noise ratio [23]. Moreover, ND complex presentation
is also subjected to temporal heterogeneity and individual variance in terms of biological
measures and technical error [7,8,12,23]. To this purpose, different strategies have been
proposed to produce trustworthy results and insights and to manage single and multi-
omics experimental design and analysis issues. Integration algorithms can be organized in
workflows both for integrated or orthogonal omics datasets [7]. Dimensionality reduction
methods are a set of ML multivariate techniques for feature extraction based on matrix fac-
torization and while it is often challenging to combine features of multiple omics data, new
features generated by these methods can easily be combined for every class of multi-omics
data (Figure 4) [23,41].
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Figure 4. A DL workflow implementing dimensionality reduction strategies to integrate large and heterogeneous datasets.
Dimensionality reduction algorithms can be applied to standard multi-omics data, integrating different features from the
same set of observations or obtaining one outcome variable from different layers of biological systems.
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4.2. Electronic Health Records (EHRs)

Data isolation represents one of the major issues in big data analytics and for healthcare
entities trying to construct EHRs protocols and databases. Healthcare data are typically
dispersed across various medical systems located at multiple sites and many of these
systems are not interconnected, constraining the data into isolated silos and contributing
to the increase in the expenses of institutions [43]. EHRs contain patients’ demographics
along with clinical measurements, interventions, clinical laboratory tests, and medical
data, thereby constituting one of the pillars of big data in the biomedical field [44]. EHRs
data are both structured and unstructured, the former being represented by diagnostic
codes and laboratory test outputs, the latter being represented by physician annotations
about patients’ status. Analysis of this kind of data is not feasible using classical statistical
methods and more sophisticated techniques (such as DL) are required. To fully exploit
the big data potential, all data sources must be considered to avoid discarding data due to
their being unstructured. Free-text clinical notes in the EHRs, which can only be analyzed
with a DL approach, can give useful information about the patients and can improve the
accuracy of analytical results [23,45]. Data isolation prevents healthcare organizations from
leveraging the latest Information Technologies (IT) innovations (such as data processing
and cloud computing), which can help to improve care and significantly reduce costs [43].
Similar to what happened in multi-omics data management, data standards have been
developed to overcome healthcare information sharing and interoperability issues across
different healthcare systems [39,43]. Fast Health Interoperability Resources (FHIR) is a
modern healthcare data format and exchange standards widely used to encode EHRs
data [46]. FHIR implements an application programming interface with HTTP-based
RESTful protocols and enables interoperable communication and information sharing
between various healthcare systems, enabling their integration with mobile devices and
cloud platforms. FHIR data have a well-defined structure, covering a variety of healthcare
aspects including clinical, administration, financial, reporting studies. These data are called
“resources” and they are easily extensible to cover non-standard use-cases. FHIR features
and flexibility is ideal to effectively generate EHR datasets to be integrated with other
omics data [23,43]. FHIR coded data, images, and other features processed with different
standards can be integrated with cloud platforms, such as Google Health API or Amazon
Comprehend Medical. Successful and standardized integration of big data in the healthcare
system can be applied to real-time healthcare analytics to improve care service quality
and costs [47,48]. Such approaches of continuously using newly generated data in ML
applications would be interesting even in other contexts, such as in pandemic situations.

4.3. Artificial Intelligence Applications on ND Multi-Omics and Clinical Data Integration

Researchers exploiting biomedical big data for ND aim to empower clinical efficiency
by combining various sources of information such as multi-omics, EHRs, and medical
imaging (e.g., MRI) data, building a holistic representation of patients. DL models can
be used as a cutting-edge data analysis technique to find patterns in a patient’s broad-
scope view. This kind of approach can be hypothesis-free, exploring data in search of
explanations for differences between groups instead of being hypothesis-driven as classical
experiments [49,50]. By building the most accurate representation of patients possible
through the integration of all sources of biomedical data, DL allows researchers to find
multi-modal biomarkers to develop more effective and personalized treatments, early
diagnosis tools, as well as useful information for drug discovering and repurposing [51].
Along with neuroimaging data, EHRs can provide useful information when AI takes the
field. De-identified data from the PPMI database was used for the identification of PD
subtypes [52]. The authors used a Long-Short Term Memory (LSTM) network to analyze
patient data referred to six years of measurements on potential PD progression markers,
including clinical features, imaging, bio-specimen measures, and demographics. LSTM can
analyze time series data, allowing the authors to represent patients by considering value
progression for the available features. The analysis brought to identify three PD subtypes
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with distinct patterns of progression, demonstrating heterogeneous characteristics within
PD patients’ features. The integration of biomarkers and clinical data for DL application
showed that the disease progression rates, and the baseline severities are not necessarily
associated and that motor and non-motor symptoms are not necessarily correlated [52]. This
experiment is a good example of how DL techniques enable the management of integrated
multi-domain data. Another application of a multi-modal DL approach was used to
predict MCI to AD progression [53]. ADNI longitudinal data from cerebrospinal fluid
biomarkers, neuroimaging, cognitive performance, and demographics were integrated and
analyzed through a multimodal Recurrent Neural Network (RNN). This method allows
integrating multiple domain data for multiple time points. Their results show that DL
models perform better on integrated data than on separated single modality data, achieving
a higher prediction accuracy. This approach could potentially identify people who might
benefit the most from a clinical trial and assess risk stratification within clinical trials [53].
Integration of multi-omics heterogeneous data was used to predict AD diagnosis [54].
The authors implemented a DNN to predict AD using large-scale gene expression and
DNA methylation data from prefrontal region tissue of different individuals diagnosed
with late-onset AD. Results showed higher accuracy in predicting AD with multi-omics
integrated data rather than with single-omics data. The authors also compare accuracy
results from conventional ML methods with their proposed DL method, observing an
improved predictive performance [54]. Currently, the use of DL methods on multi-omics
integrated data is far more common in cancer research than in ND research, as fewer
studies report the use of these methods in this area [55]. Overall, data integration yields
better classification and prediction results in almost every field where it is applied and is
standing as the next level in biomedical research [23,41,56].

5. Databases

The adoption of academic and industry-wide data standards is a key element to
enable large-scale experimental data integration opportunities [23]. Public availability of
datasets is growing in all disciplines and the Findable, Accessible, Interoperable, Reusable
(FAIR) principles have been proposed to promote good scientific practices for data sharing
initiatives, while databases aggregators such as OmicsDI started to monitor repositories to
facilitate discovering and linking of public omics datasets [39,57]. To have a comprehen-
sive overview of complex ND and trace their underlying pathogenesis mechanisms and
progression, different biomedical data needs to be integrated for modeling and pattern
recognition. A list of major available databases where researchers can retrieve data to test
their hypotheses and generate novel insights is reported in Table 2. The Parkinson Progres-
sion Marker Initiative (PPMI) is an international and multi-center study that collects data
from PD patients for future biomarker discovery and personalized PD therapy. Interested
researchers can download de-identified clinical, biomarker, and imaging data, including
raw and processed MRI and SPECT images [25]. AD and related pathologies data can
be found in the NIA Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS). It
is funded by the National Institute on Aging and provides access to multi-omics data
from AD genetics projects [58]. One of the most interesting initiatives for ND data sharing
is the Global Alzheimer’s Association Interactive Network (GAAIN), which federates
more than 50 data partners and gathers data from more than 450,000 subjects, to improve
the understanding, treatment, and preventative measures for AD [59]. Other databases
such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) have made AD data
publicly available upon standardization of data acquisition protocols for researchers to
retrieve clinical, imaging, and omics data [60]. This initiative was putting aside the need for
years-long data collection, facilitating and speeding up hypotheses testing. Nevertheless,
data access is restricted by data use agreements requiring ADNI to be cited in manuscripts
and prohibiting data redistribution [61]. GAAIN is instead a virtual community for sharing
AD data, which is stored in independently operated repositories around the world, aiming
to offer a data homogenization service to the scientific community [59]. GAAIN offers the
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possibility to download data mapped to its data-sharing schema, allowing time-saving in
interpreting different terminologies and nomenclatures used by each data repository [61].
Another interesting data source is the Swedish study Bio FINDER, which aims to discover
the key pathological mechanisms in ND by analyzing various sources of data such as
neuroimaging, biospecimen, and clinical examinations. Data is not publicly available but
can be requested for download. Moreover, as non-specific databases, including ND data,
there are Gene Expression Omnibus (GEO) and UK Biobank, containing clinical and omics
data for a wide range of health-related outcomes [62,63]. Another novel initiative with the
main goal of providing a multi-layer picture of ND patients is the Italian IRCCS Network
of Neuroscience and Neurorehabilitation, which encourages scientific research and transla-
tional technologies for improving diagnosis, treatment, rehabilitation, and prevention of
neurodegenerative disorders [4,64]. In addition, the network is also working on providing
remote motor and cognitive neuro-telerehabilitation treatments finalized to facilitate the
access of patients to personalized healthcare approaches, provide a continuity of care, and
adequate monitoring strategies [64]. Interested researchers can query the websites to find
datasets fulfilling their needs. With many available databases providing digital data from
ND patients, it is possible to collect big biomedical datasets. Studies integrating data from
various sources aim to obtain a holistic description of ND patients’ characteristics and
analyzing it using the best-suited techniques may lead to novel patterns identification in
disease mechanisms.

Table 2. Most representative databases, including data for ND research.

Database Name ND URL Data Type Description

PDGene PD

http://www.
pdgene.org,

accessed on 19
February 2021

Omics
PDGene is a database

providing results for potential
risk loci in PD [61].

PPMI PD

https://www.
ppmi-info.org,
accessed on 19
February 2021

Mixed

The Parkinson’s Progression
Markers Initiative holds a

comprehensive set of clinical,
imaging, and biosample data
to define biomarkers of PD

progression [25].

NIAGADS AD

https://www.
niagads.org,

accessed on 19
February 2021

Omics

The National Institute on
Aging Genetics of

Alzheimer’s Disease Data
Storage Site is a repository

that collects and shares
genotypic data for the study

of AD and related
dementias [58].

ADNI AD

http://adni.loni.
usc.edu,

accessed on 19
February 2021

Mixed

The Alzheimer’s Disease
Neuroimaging Initiative is a

multisite study for the
prevention and treatment of

AD. Its database stores a
collection of validated study

data to define the progression
of AD, including mild

cognitive impairment subjects
and elderly controls [60].

http://www.pdgene.org
http://www.pdgene.org
https://www.ppmi-info.org
https://www.ppmi-info.org
https://www.niagads.org
https://www.niagads.org
http://adni.loni.usc.edu
http://adni.loni.usc.edu
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Table 2. Cont.

Database Name ND URL Data Type Description

NACC AD

https:
//www.alz.

washington.edu,
accessed on 19
February 2021

Clinical

The National Alzheimer’s
Coordinating Center holds a
large relational database of
standardized clinical and

neuropathological research
data for both exploratory and
explanatory AD research [65].

LAADC AD

https://www.
ohsu.edu/brain-

institute/
clinical-data-

resources,
accessed on 19
February 2021

Clinical

Longitudinal relational
database from the Layton
Aging and Alzheimer’s
Disease Center holding

clinical data for over 4000
research subjects.

GEO Mixed

http://www.
ncbi.nlm.nih.

gov/geo,
accessed on 19
February 2021

Omics

Gene Expression Omnibus is
a public functional genomics
data repository of array-and

sequence-based data [62].

UK Biobank Mixed

https://www.
ukbiobank.ac.

uk, accessed on
19 February 2021

Omics

UK Biobank contains data
from a large prospective
study with over 500,000

participants and it aims to
improve the prevention,

diagnosis, and treatment of
various illnesses, including

dementia [63].

OmicsDI Mixed

https://www.
omicsdi.org/,
accessed on 19
February 2021

Omics

Omics Discovery Index
facilitates access to omics

datasets from multiple
studies through an integrated

and open-source
platform [57].

JPND Mixed

https://www.
neurodegenerationresearch.
eu, accessed on

19 February 2021

Mixed

The Joint Programme
Neurodegenerative Disease
Research Database contains
data from research related to
neurodegenerative diseases
from 27 member countries.

GAAIN Mixed

http://www.
gaaindata.org,
accessed on 19
February 2021

Mixed

The Global Alzheimer’s
Association Interactive
Network is an online

integrated research platform
affiliated with partners all
over the world, providing

resources and data enabling
comparative data analysis
and cohort discovery [59].

https://www.alz.washington.edu
https://www.alz.washington.edu
https://www.alz.washington.edu
https://www.ohsu.edu/brain-institute/clinical-data-resources
https://www.ohsu.edu/brain-institute/clinical-data-resources
https://www.ohsu.edu/brain-institute/clinical-data-resources
https://www.ohsu.edu/brain-institute/clinical-data-resources
https://www.ohsu.edu/brain-institute/clinical-data-resources
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.ukbiobank.ac.uk
https://www.ukbiobank.ac.uk
https://www.ukbiobank.ac.uk
https://www.omicsdi.org/
https://www.omicsdi.org/
https://www.neurodegenerationresearch.eu
https://www.neurodegenerationresearch.eu
https://www.neurodegenerationresearch.eu
http://www.gaaindata.org
http://www.gaaindata.org
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Table 2. Cont.

Database Name ND URL Data Type Description

Bio FINDER Mixed

https:
//biofinder.se/,
accessed on 19
February 2021

Mixed

The Swedish Biomarkers for
Identifying

Neurodegenerative Disorders
Early and Reliably study aims

to develop early diagnostic
tests to identify novel
treatment targets and

understand the links between
different ND and clinical

symptoms.

6. Challenges and Limitations for AI Techniques in ND Research

In the era of big data, the availability of biomedical information has exponentially
increased, leading to technical and theoretical advances in data management, standard-
ization, and analysis [66–68]. High-throughput technologies for genomic, transcriptomic,
proteomic, and metabolomic analyses were accommodated in a network medicine frame-
work focused on molecular and genetic interactions, biomarkers of disease, and therapeutic
target discovery [40,69]. However, developing a comprehensive, holistic representation
of patients with ND may require omics data to be merged with many other sources of
information, such as EHRs, medical imaging, and wearable sensors data [23,50]. There-
fore, multi-layer data integration is necessary to achieve a precision medicine approach,
which is a unique opportunity to greatly improve healthcare quality and research out-
comes in neurodegenerative pathologies for the identification of personalized treatments
(Figure 5) [41,56,70]. As previously discussed in this review (Sections 4 and 4.2), updated
health informatics and data science workflows with a renewed data management policy
are required to condense biomedical data vectors into an easily interpretable and transla-
tionally relevant form [7]. Data isolation in silos of non-communicating medical systems
was discussed for EHRs, as it represents one of the major issues of the big data era, also
affecting ND research. Only a few consortia initiatives have the resources to start collecting
data with a multi-omics or a personalized medicine approach in their mind, leading to a
multitude of isolated, low inter-operative datasets [7,9]. The adoption of FAIR principles
and other standardization and monitoring processes such as OmicsDI will help to develop
common ontologies and uniform data labels [39,57], while novel data-sharing initiatives
with a defined big data architecture in mind, such as the National Virtual Institute for
the investigation of Parkinson Disease in the Italian IRCCS Network of Neuroscience and
Neurorehabilitation are starting to collect data in ND [4,64]. These new data sharing and
encoding protocols are starting to shape a new direction in the biomedical field, and many
authors suggest that these initiatives will become increasingly used as data volume and
variety rapidly increases [7]. The implementation of a precision medicine approach in
ND requires complementing classical case-control studies on less frequent diseases with
community-based studies that are ideal for common neuropathologies [12]. Community
design studies produce data that can be repurposed in multiple ways to look at specific
outcomes, to derive new outcome measures, or to assess the interaction between many
biological systems. As we progressively approach a holistic representation of the patients
through an increasing volume, velocity, and variety of data generation, DL methods are
being used to integrate and model those high-dimensional datasets [23,41,50]. Neural
network architectures are flexible instruments uniquely allowing for labeled and unlabeled
data processing and analysis. They can be used in the data integration phase as dimension-
ality reduction/feature extractor tools, and they are especially suited to leveraging large
amounts of data from high-throughput omics studies or medical imaging. Notably, only
DL has the potential to integrate the entire medical record, including physicians’ free-text
notes [23]. Several limitations to DL implementation in personalized medicine research

https://biofinder.se/
https://biofinder.se/
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are being addressed, such as reduced sample size and reproducibility issues [50]. As an
example, Semi-Supervised Learning (SSL) algorithms work both with mixed labeled and
unlabeled data points, sometimes achieving a better performance than a fully supervised
approach because the model can learn from a much larger set [17]. Another relevant issue
in this field is the reproducibility of other studies and the implementation of other’s AI
models. This is due to the lack of open-source implementations provided by authors and
the difficulty of re-implementing a network in a different library. Automated code extrac-
tion from published papers is a scraping method enabled by DLPaper2Code to address
reproducibility issues for DL architectures and it can be integrated into well-known DL
frameworks [71]. Traditional DL issues, such as overfitting and interpretability represent
common challenges for the development of reliable models. A model overfits the training
data when it describes features that arise from noise or variance in the data, rather than
the underlying distribution from which the data were drawn. Overfitting usually leads to
loss of accuracy on out-of-sample data [72]. Overfitting is usually addressed using regular-
ization methods or implicit/explicit feature selection techniques [73,74]. Cross-validation
(CV) is a process for creating a distribution of pairs of training and test sets out of a single
dataset. CV techniques such as hold-out and k-fold cross-validations have become industry
standards, preventing the risk of overtraining. In k-fold CV, the data are partitioned into k
subsets, each called a fold. The learning algorithm is then applied k times, each time using
the union of all subsets other than the one left out, which will be used as a test set [72].
Moreover, DL models are commonly characterized by interpretability issues, reducing
their potential as insights generators for clinicians and researchers [75]. To address this
issue, several methods have been developed to understand how a DL architecture solves a
regression or a classification problem [76–78]. Finally, data sparseness in computer-aided
medical diagnosis and treatment still represents an unresolved challenge for machine
diagnosticians, undermining AI diagnostic efficiency [15]. Calculations showed that the
sparseness of actual symptom-treatments sets based on ICD-10 in the space of all possible
sets is astronomical, thereby requiring to provide AI with more “functional” information,
such as domain-specific medical reasoning processes and policies based on heuristic-driven
search methods derived from human diagnostician methods [15].

Figure 5. Multi-layer picture of neurodegenerative diseases. Separated data can be integrated to obtain a holistic representa-
tion of patients. Artificial intelligence techniques application for data processing leads to useful findings in ND research,
clinical management, and personalized treatment development.
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7. Conclusions and Future Directions

In this work, we reviewed how AI can be applied to biomedical big data for ND
research. After a brief introduction to ML and DL basics, we went through some notable AI
applications on the most important biomedical data kinds. We have seen how neuroimag-
ing, EHRs, and multi-omics data permit us to obtain better classification results when
integrated together in constituting a unified representation for patients. Databases offering
large-scale experimental data integration opportunities have been reviewed. Ultimately,
big data integration is showing to be the next level in biomedical research, offering many
advantages despite the limitations of such an approach, discussed in Section 6. Creating
straightforward and interpretable DL models is a challenge for AI research in the healthcare
field and several authors have attempted to address it [50]. A very interesting model for AD
big data analytics is BHARAT, an application for integrated data manipulation, storage, and
processing. BHARAT integrates brain structural, neurochemical, and behavioral data from
magnetic resonance imaging, magnetic resonance spectroscopy, and neuropsychological
testing, providing feature selection and ensemble-based classification. This framework’s
focus is not only on AD classification through DL methods, but also on determining rel-
evant information originating from the analysis of multi-modal integrated data, such as
early diagnostic biomarkers for AD pathogenesis [79]. Most of the biomedical research
fields will benefit from advanced health informatics applications involving DL. Despite
astonishing advances in biomedical data analysis through ML and DL applications for
novel biomarkers and therapeutic target identification, much work remains to be done to
develop more effective and personalized treatments, through the exploitation of integrated
data [51]. Big data analytics in the biomedical field, especially in ND research, is providing
promising opportunities as shown by the growing initiatives of data sharing and standard-
ized integration of multiple sources of information described in Sections 5 and 6. DL can
be used in a precision medicine framework and will be crucial to identify novel therapeutic
targets and early biomarkers for diagnosis and improve clinical management for patients
with complex and heterogeneous ND.
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