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A B S T R A C T   

Background: Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing 
autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. 
However, the success depends on countless factors such as: donor and recipient sites conditions, patient’s 
medical history, surgeon’s experience, restricted availability of high-quality autogenous tissues or stem cells, and 
increased surgical cost and time. 
Materials and Methods: Lately, teaming researchers, scientists, surgeons, and engineers, to address these limita-
tions, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. 
Results: Over the past few years, biomedical engineering has been evolving from the laboratory to clinical ap-
plications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. 
Conclusions: This review provides an outlook on the content, benefits, recent advances, limitations, and future 
expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial 
reconstruction.   

1. Introduction 

Oral and maxillofacial (OMF) impairment greatly impacts oral 
functions and esthetics, whereby, reduces the patients’ quality of life, 
and affects their psychological and socioeconomical status [Berebichez- 
Fridman and Montero-Olvera, 2018, Berthiaume et al., 2011, Dave and 
Tomar, 2018]. Tissues damage can be caused by trauma, cancer, 
congenital or acquired disorders. To restore the patients’ quality of life, 
interdisciplinary accurate planning, and performance of OMF recon-
struction is a must. Such reconstructive surgeries require precise resto-
ration of the fine details of multiple body tissues forming the affected 
area [Andrades et al., 2011]. During recent decades, autogenous grafts 
have been the benchmark of reconstructive surgeries [Berthiaume et al., 
2011]. However, donor site morbidity and limited availability of 
transplanted tissues restricted the achievement of desirable outcomes 
[Dave and Tomar, 2018]. Thereafter, scientists and clinicians tested 
allografts, xenografts, or synthetic substitutes in a search to address 
these limitations. Tissue engineering is a quickly evolving field that in-
volves biomaterials, cells, and relevant physical and biochemical ele-
ments, to build up a tissue-like construct. Scientists and clinicians aim to 

include this tissue-like construct within the damaged body site to restore 
its functions and esthetics [Berthiaume et al., 2011]. However, the 
shortage of the clinical applications is caused by the limitation in pro-
liferation and differentiation capacities of stem cells, cost, and time 
needed for the in vitro work. In this review, we shed light on the current 
biomedical engineering content, applications, recent growth, limita-
tions, and future predictions, hoping to motivate scientists and clinicians 
for the advancement of reconstructive surgeries. Due to the wide range 
of the basic and clinical studies in the biomedical engineering field, 
detailed information about the basic laboratory work will not be 
included in this review. This review summarizes the current research in 
the field of bioengineering and its applications in the oral and maxillo-
facial area. 

2. Tissue engineering basic content 

Tissue regeneration is achievable by three main components: the 
cellular elements, the scaffold, and the ligands (chemical molecules such 
as: growth factors) [Yazdanian et al., 2021a]. It is a complex process that 
involves inflammation, proliferation, and tissue remodeling. During 
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Canada. 

E-mail address: ola.maria@mcgill.ca (O.M. Maria).  

Contents lists available at ScienceDirect 

The Saudi Dental Journal 
journal homepage: www.ksu.edu.sa 

www.sciencedirect.com 

https://doi.org/10.1016/j.sdentj.2024.05.004 
Received 13 November 2023; Received in revised form 7 May 2024; Accepted 7 May 2024   

mailto:ola.maria@mcgill.ca
www.sciencedirect.com/science/journal/10139052
https://www.ksu.edu.sa
https://www.sciencedirect.com
https://doi.org/10.1016/j.sdentj.2024.05.004
https://doi.org/10.1016/j.sdentj.2024.05.004
https://doi.org/10.1016/j.sdentj.2024.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sdentj.2024.05.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Saudi Dental Journal 36 (2024) 955–962

956

regeneration, the signaling molecules start cell proliferation to fill in the 
tissue defect, then, induce cellular differentiation [Langer and Vacanti, 
1993]. These biological events are achieved by growth factors, which 
are secreted by the cells in situ or by some circulating blood cells. In 
addition, growth factors are stored in the extra-cellular matrix (ECM) to 
be released during tissue repair and remodeling. The extracellular ma-
trix acts as a 3D scaffold to facilitate cell migration and tissue-specific 
orientation [Mosaddad et al., 2020]. Thus, cells, ligands, and ECM 
work together to achieve tissue homeostasis and regeneration [Langer 
and Vacanti, 1993]. Of much importance, angiogenesis and tissue 
vascularization play a crucial role in cells manner, thus, controlling 
tissue repair. In addition, intact circulation is important for cell survival 
and tissue supply with undifferentiated progenitor cells, necessary for 
tissue repair [Schliephake, 2010]. 

Over the past few years, autografts have been the benchmark for 
tissue reconstruction in the OMF area. However, surgeons are still 
looking for other alternatives to overcome donor site morbidity and 
obtain better constructs. Allogeneic grafts were introduced as an alter-
native to repair simple defects, but several shortcomings could not be 
eliminated, such as the higher cost, the difference in tissue quality/ 
strength, the possibility of cross contamination, and the limited avail-
ability of cadaver [Costello and Kail, 2007]. Recently, researchers have 
developed the 3D biocompatible and bioactive scaffolds to support cells 
and signaling molecules, and to deliver them to where they should carry 
out their functions [Costello et al., 2010]. Different biomaterials have 
been employed as scaffolds to enhance tissue regeneration and cellular 
functions [Khayatan et al., 2024]. These scaffolds can be either organic 
or inorganic elements. The organic elements are either natural, such as 
collagen, chitosan, and silk, or synthetic, such as polylactic acid and 
polyglycolic acid. The inorganic elements are either minerals, alloys, or 
metals [Salgado et al., 2004]. The success of tissue engineered constructs 
depends mainly on the viability, longevity, and performance of its 
cellular component. 

Stem cells are undifferentiated or partially differentiated, self- 
renewable cells that may differentiate into many cell types and can be 
extracted from embryos and adult tissues [Jaenisch and Young, 2008]. 
The highest differentiation capacity is seen in the totipotent stem cells of 
the zygote. While the embryonic stem cells are pluripotent, the he-
matopoietic and mesenchymal stem cells are multipotent, the myeloid 
stem cells are oligopotent, and the epidermal stem cells are unipotent 
[Zakrzewski et al., 2019]. Current research has targeted three groups of 
stem cells: somatic/adult stem cells (ASCs), pluripotent stem cells 
(PSCs), and cancer stem cells (CSCs). Adult stem cells are scarce undif-
ferentiated cells that reside among other specialized cells in different 
tissues [Chagastelles and Nardi, 2011]. With their limited proliferation 
and specialization capacities, ASCs supply the damaged tissue with 
precursor cells that perform repair and regeneration [Pekovic and 
Hutchison, 2008]. ASCs include mesenchymal stem cells (MSCs), he-
matopoietic stem cells, skin stem cells, and neural stem cells [Gurusamy 
et al., 2018]. These cells are the main source of stem cell research and 
therapy in countries that have ethical concerns related to the use of 
embryonic stem cells. Pluripotent stem cells (PSCs) can be found in the 
cells of the embryo; they include the embryonic stem cells that reside in 
the inner blastocyst cell mass of preimplantation embryos, the epiblast 
stem cells and embryonic germ cells that can be extracted from post- 
implantation embryos, and the induced pluripotent stem cells that are 
obtained from direct reprogramming of postnatal/adult somatic cells, in 
vitro [Singh et al., 2016]. Cancer stem cells (CSCs) are tumor initiating 
cells that reside within tumors, but they develop from normal stem cells 
or tissue progenitors, following mutations, microenvironmental or 
epigenetic changes, and gene transfer [Soltanian and Matin, 2011]. In 
addition to proliferation and differentiation potentials of stem cells, 
CSCs can metastasize, suppress the immunity, enhance cancer growth 
and resistance to chemotherapy or radiotherapy [Atashzar et al., 2020]. 

Growth factors are proteins secreted by certain cells to send signals to 
specific cells to perform certain actions, such as cell proliferation, ECM 

secretion, and differentiation, which form the necessary steps for tissue 
repair and regeneration [Gerstenfeld et al., 2003]. There are six growth 
factors that participate in tissue regeneration, especially bone, and were 
applied in OMF reconstruction in some animal models [Rutherford et al., 
1993; Khayatan et al., 2023; Mosaddad et al., 2024]. These growth 
factors include platelet-derived growth factor, basic fibroblast growth 
factor, insulin-like growth factor, transforming growth factor beta, 
vascular endothelial growth factor, bone morphogenetic proteins. In 
general, regeneration of OMF tissue was based on three main therapies: 
1) recombinant protein therapy, 2) cell-based therapy, and 3) gene 
therapy. Recombinant protein therapy aims to deliver certain growth 
factor/s contained within a scaffold, to induce certain cells residing in 
the selected site. Employing this technique might help to decrease the 
need for autogenous grafts [Seeherman et al., 2003]. Cell-based therapy 
is based on direct involvement of added cells to tissue repair, regener-
ation, genetic alterations, and differentiation into different cell types 
[Gafni et al., 2004]. Gene therapy is a relatively recent technique that 
has an immense therapeutic capacity where a specific gene data can be 
transferred into cells to stimulate the secretion of targeted proteins 
[Hannallah et al., 2002]. In OMF construction, gene therapy was used in 
a few preclinical trials and some animal studies have tested genetically 
modified human bone marrow and MSCs for possible bone regeneration 
and further tissue engineering applications [Peterson et al., 2005]. 

3. Oral and maxillofacial engineered tissues  

1. Salivary Glands 

Dry mouth or xerostomia is known as salivary gland hypofunction, 
that is caused by tissue damage due to head and neck cancer radio-
therapy, Sjogren’s syndrome, aging, or medications. Dry mouth causes 
various oral complications that decrease the patient’s quality of life, 
such as bacterial and fungal infections, increased dental caries, chewing 
and deglutition difficulties [Maria et al., 2012]. These complications 
directed the attention of scientists towards salivary gland regenerative 
potentials [Zufferey and Aebischer, 2004]. Thereafter, Salivary glands 
3D cultures aimed at producing functional salivary-like structures, for 
future use in repair and regeneration of damaged glands [Shin 
et al.,2017]. Different hydrogel types that are made of fibrin, collagen, 
or Matrigel were studied for their possible salivary gland regenerative 
potential [Ozdemir et al.,2016; Maria et al.,2011a; Maria et al.,2011b]. 
When salivary gland cells were cultured on gel, they could multiply into 
sphere-like structures, then differentiate into acini-like forms and 
exhibit salivary gland specific proteins [Ozdemir et al.,2016; Maria 
et al.,2011a; Maria et al.,2011b; Iyer et al.,2023]. Although ECM could 
reinforce salivary cells and help them to polarize and aggregate into 
sphere-like structures, the degradation rate of these spheres is not 
controllable, and the presence of certain xenogeneic substances is un-
avoidable [Ozdemir et al.,2016; Iyer et al.,2023]. Salivary gland sus-
pension cultures use no scaffolds and no animal serum for production of 
sphere-like structures, which make it very suitable for clinical applica-
tions. However, the produced spheres take longer time to form and has 
no uniform shape or size [Iyer et al.,2023]. Due to the uncontrollable 
increase in their size after 5–10 days of culture, central apoptosis starts 
in the middle of the sphere; in the inner cells which are devoid of oxygen 
and nutrition. On the other hand, 3D ECM-produced salivary spheres can 
preserve their structure, viability, and unity for more than 10 days 
[Lilliu et al.,2016; Seo et al.,2019]. Bioprinting techniques employed 
magnetic labelling of cells with nanoparticles for easier and faster as-
sembly into uniform-shaped and − sized salivary sphere [Ferreira 
et al.,2019]. Offering a compatible approach of producing uniform 
salivary spheres, nevertheless, bioprinting is uneconomical and biolog-
ically incompatible [Ferreira et al.,2019; Charbonneau et al.,2019; 
Charbonneau and Tran, 2020]. The production of fully functioning 
salivary spheres is still in progress. Once achieved, it would assist in the 
analysis of different medications, such as radiation protective drugs. 
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On the other hand, gene therapy has been employed to improve 
saliva secretion [Shan et al.,2005] and more work is in progress, for 
future human trials [Voutetakis et al.,2005].  

2. Oral Mucosa 

Various oral mucosa designs have been produced to test the 
biocompatibility of different materials [Rahimi et al.,2018]. Collagen 
gel was proved to enhance cell adhesion, multiplication, and differen-
tiation into keratinocytes and fibroblasts [Zurina et al.,2018]. A double- 
phase culture technique was invented to produce a stratified epithelial 
structure from oral mucosa epithelial cells with the aid of a non-adhesive 
agarose, a hybrid matrix of poly lactide-coglycolide and collagen. This 
stratified epithelial structure contained polarized cells with epithelial 
intercellular connections and phenotype [Basso et al., 2018]. Epithelial 
tissue engineering continued to improve and was able to produce more 
complex structures which combines a stratified epithelium with a 
continuous basement membrane, and a subepithelial fibrous connective 
tissue layer, which reinforces and stabilizes epithelium during the 
regeneration process. This full thickness tissue engineered mucosal 
construct has been clinically used in vestibuloplasty, restoring superfi-
cial mucosal defects, and for “prelamination of free radial forearm flaps 
with subsequent transfer to the oral cavity”. Clinical results have 
revealed acceptable to outstanding integration degrees with successful 
blood supply extending from the recipient bed and reduced healing time 
[Hotta et al.,2007].  

3. Tooth Complex 

Tissue engineering of the dental complex has targeted the complete 
functional dental unit, as well as, a single dental tissue, such as enamel, 
dentin, cementum, dental pulp, periodontal ligament (PDL) and alveolar 
bone. For example, pulp regeneration is limited, owing to its limited 
blood supply through the apex, and enamel does not regenerate on its 
own. However, cement and dentin are self-healing structures, owing to 
odontoblasts and cementoblasts continuous sources; the dental pulp, 
and sac, respectively [Yen and Yelick, 2011]. In 2007, the first complete 
incisor was formed after combining mesenchymal and epithelial cells 
that were extracted from a tooth germ [Nakao et al.,2007]. Two years 
later, a fully functional mouse tooth was produced as a transplant of an 
engineered dental germ; this tooth showed successful eruption and oc-
clusion [Ikeda et al.,2009]. Thereafter, decellularized porcine dental 
buds were implanted with dental cells and have successfully developed 
and mineralized into complete teeth, in Yucatan mini pigs [Zhang 
et al.,2017]. Scientific trials to regenerate enamel were not successful 
until the assembly of bone marrow MSCs, tooth mesenchyme and 
epithelial cells into a dental crown within 20 days [Jayasudha et al., 
2014]. Odontoblasts were successfully obtained and induced to produce 
healthy tubular dentin when human exfoliated deciduous teeth stem 
cells were suspended in an injectable scaffold and planted into human 
teeth pulps [Rosa et al.,2013]. For years, the standard pulp damage 
therapy has been root canal treatment [Jang et al.,2017]. Nowadays, 
based on the limit and sort of pulp damage, various pulp regeneration 
techniques can be applied, such as, pulp circulation reestablishment, 
stem cell treatment, implantation or injection of different scaffolds, gene 
therapy, and 3D cell-scaffold printing [Jung et al.,2019]. Self-assembled 
3D-printed cell sheets were employed to regenerate pulpectomized teeth 
using human dental pulp stem cells (DPSCs) [Chandki et al.,2012]. In 
addition, certain scaffolds produced favorable clinical applications in 
regenerating teeth pulp [Colombo et al.,2014]. Many research groups 
have reported the safety and capacity of human and non-human DPSCs 
and other MSCs to regenerate dentin-pulp complex, produce semi-dentin 
tissue, and repair pulp [Chandki et al.,2012]. In addition, reports on the 
use of different growth factors with pulp capping have revealed suc-
cessful pulp regeneration [Dissanayaka et al.,2014]. 

In the complex process of root formation, multiple cell types play 

important roles inside the highly vascular and innervated dental sac 
[Jamal, 2016]. A group of researchers were able to produce a thin layer 
of acellular cementum at the root cervix and a thick layer of cellular 
cementum at the apex, simulating the regular tooth cementum [Liu 
et al.,2019; Soudi et al., 2021]. Cementoblasts isolated from the dental 
follicle were able to repair periodontal defects in a rat model [Zhao 
et al.,2004]. Another group obtained PDL tissue from PDL stem cells 
implanted on a hydroxy-apatite scaffold [Bakhtiar et al., 2018]. In 
addition, fat-derived stem cells and dental follicle stem cells were re-
ported to produce cementoblasts and reform PDL tissue [Liu 
et al.,2019]. Various growth factors, such as platelet-derived growth 
factor, recombinant bone morphogenetic protein, and transforming 
growth factor-β3 could stimulate cement-forming cells to deposit 
cementum and could form regular PDL, and Sharpey’s-like fibers [Zhang 
et al., 2016]. Furthermore, MSCs showed high potential for PDL 
regeneration through immunomodulation and revascularization of the 
inflamed PDL [Monsarrat et al.,2014]. 

Recently, the connection of the gingiva to dental implants has 
withdrawn the scientists’ attention, and different models have been 
employed to analyze this connection. A human gingiva construct was 
produced to test the epithelial attachment to the implant-abutment 
surface; natural gingival margin, junctional epithelium, and gingival 
sulcus were formed around the implant-abutment surface and expressed 
keratin 4 and 19 epithelial proteins [Roffel et al.,2019]. Gingival 
recession is a common oral problem with different causes, such as me-
chanical or occlusal trauma, anatomical, inflammatory, chemical, or 
biological factors [Chan et al.,2015]. The standard treatment of gum 
recession is the connective tissue graft. Recently, coronally advanced 
flap was used with platelets-rich plasma [Li et al.,2019], advanced 
platelet-rich fibrin [Sameera et al.,2018], leukocyte platelet-rich fibrin 
[Sameera et al.,2018], and all showed promising gingival regeneration 
outcomes. Collagen membranes were proved to be the best matrix that 
supports the gingiva during regeneration [Buskermolen et al.,2016]. 
Free gingival graft (FGG) surgery is the standard technique to increase 
the attached gum thickness and width, but recently, an allograft pre-
pared from acellular skin matrix revealed promising clinical outcomes 
[Shah et al.,2014], Fig. 1A and Fig. 1B. The esthetic outcomes of porcine 
xenogeneic collagen matrix combined with apically positioned flap 
(APF) were better than FGG combined with APF around human 
mandibular back implants, however, gum shrinkage was higher [Qiu 
et al.,2023].  

4. Dental Implants 

Dental implants have been the standard treatment for most edentu-
lous adults. For ideal esthetic and function outcomes, the alveolar ridge 
preparation to receive an implant is standardized with certain bone 
quality and dimension [Lafzi et al.,2016]. Alveolar ridge augmentation 
is necessary when limited gum or bone quality and quantity presents at 
the future implant site [Pandit et al.,2011]. Guided bone regeneration 
[Larsson et al.,2016] and guided tissue regeneration are the standard 
techniques for alveolar ridge preparation to receive an implant. The 
bone source in these techniques might be autogenous, allograft, or 
xenograft [Cho et al.,2019; Yazdanian et al., 2021b]. Owing to their 
excellent osteogenic capacity, MSCs originating from bone marrow, 
present the main cell source to enhance bone quality and quantity with 
different bone grafting techniques [Marolt et al.,2014]. Recent studies 
have used different proteins, minerals, and recombinant growth factors 
in conjunction with MSCs to regenerate the alveolar bone and have 
showed promising outcomes [Shimizu et al.,2019]. These and other 
studies present a new hope for restoration of damaged jaw bones due to 
trauma, cleft palate, and for maxillary sinus lift before implant place-
ment [Schimming and Schmelzeisen, 2004].  

5. Maxilla/Midface 
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The current available cancer treatment includes surgical resection 
and reconstruction, radiotherapy and/or chemotherapy [Elkashty 
et al.,2019]. Resection of the tumor produces a defect that can adversely 
affect the patients’ quality of life; by reducing the ability to chew, 
deglutinate, breathe, and speak clearly [Irish et al.,2009]. Radiation and 
chemotherapeutics reduce speech and chewing capacities within the 
first 24 weeks of treatment. Sometimes, the patient might recover within 
12 months, however, his quality of life remains reduced through the 
entire time of recovery [Rogers et al.,2002]. In addition, treatment with 
high radiation doses can damage the healthy bone, blood vessels, 
endosteum, and periosteum [Shenoy et al.,2007], thus, limiting tissue 
repair and regeneration. Intensity-modulated radiotherapy (IMRT) has 
been used for years, to limit the risk of damaging healthy tissues sur-
rounding the cancerous tissue. In IMRT, computer modeling and beam 
modifiers are used to control the doses of radiation delivered to specified 
cancer regions, thus, reducing the dose delivered to the surrounding 
healthy tissues [Boyer et al.,2014]. IMRT has reduced osteonecrosis and 
salivary glands damage [Bucci et al.,2005]. In the same way, chemo-
therapy causes multiorgan damage and fibrosis [Trotti, 2000]. Surgical 
cancer resection of the maxilla creates huge tissue defects that need to be 
restored with free tissue grafts or prosthetic obturators, however, both 
techniques have limitations that include compromised blood supply, 
increased risks of infection, and impaired healing [Javed et al.,2010]. In 
addition, with reduced quality of life and post-operative facial defor-
mation, patients develop psychological problems [Irish et al.,2009]. 
Autologous free tissue flaps are the standard treatment of most maxilla 
defects, as they restore the oral and nasal cavities, allowing no crossing 
of food or drinks between the two cavities. However, obtaining a free 
tissue flap means a second surgery site, this increases morbidity and 
mortality rates [Peng et al.,2005]. In addition, sometimes the autoge-
nous free flap is not the good match for certain maxillary defects 
reconstruction. Thereafter, tissue-engineered constructs have replaced 
autogenous free flaps. However, being directly exposed to oronasal 
normal flora, and lacking well-established initial blood supply, increase 
the risk of tissue-engineered construct failure. 

Radiation therapy following surgical resection and reconstruction 
further compromises the site vascularity. Therefore, careful pre- 
operative planning is needed for considering all the compromising fac-
tors and obtaining the best clinical outcomes. Included in tissue- 
engineered constructs, bone marrow MSCs were found to migrate pref-
erentially to the site defect [Zhou et al.,2011], MSCs are attracted by 
certain inflammatory mediators which are produced by cells residing in 
the wound site, these mediators are similar to those secreted in the 

tumor microenvironment [Belmar-Lopez et al.,2013]. These MSCs 
showed bone regeneration potential, which can subsequently limit the 
need for multisite surgeries. However, tissue engineered construct 
preparation in the laboratory is time consuming, plus, being non- 
vascularized, the risk of construct failure increases when the defect 
site has compromised vascular supply, due to major surgical resection or 
pre-operative radiotherapy or chemotherapy [Schimming, 2004]. 

Maxillary sinus lift has been a standard technique to augment bone 
necessary for dental implant placement at the posterior maxilla. A group 
of researchers successfully augmented significant bone masses for im-
plants placed in many patients. They used hydroxyapatite and trical-
cium phosphate combined with autologous bone marrow MSCs. After 3 
months healing period, 93 % of their patients showed significant new 
bone formation that made implant placement a big success [Shayesteh 
et al.,2008]. MSCs can differentiate into bone cells and regenerate bone, 
which is a promising potential for future clinical applications. Inclusion 
of growth factors, such as bone morphogenetic protein-2 (BMP-2) and 
β-fibroblast growth factor, highly improved the quality of regenerated 
bone, which could be employed in surgical defects reconstruction 
[Urkmez et al.,2008; Saleh Hasani Jebelli et al., 2024]. Recombinant 
human BMP-2 was proved to be safe and efficient when contained 
within absorbable collagen sponges to be used for maxillary sinus floor 
augmentation. These sponge scaffolds showed successful outcomes 
compared to autogenous bone grafts [Boyne et al.,2005], with the ad-
vantages of circumventing long-term pain, paresthesia, and walk trou-
bles related to the autogenous bone grafting from the hip or the lower 
leg bones [Triplett,et al.,2009].  

6. Mandible 

The periosteum-derived progenitor cells (PDPCs) can differentiate 
into osteogenic, adipogenic, chondrogenic, and myogenic cells [Park 
et al.,2007]. The interconnection between endothelial and bone pro-
genitor cells can mutually enhance angiogenesis and osteogenesis 
[Rouwkema et al.,2006]. In addition, PDPCs can secrete certain growth 
factors, such as BMP-2, that might improve the clinical outcomes of a 
tissue-engineered construct [Cheng et al.,2003]. Furthermore, PDPCs 
have chemotactic capacity, if employed in clinical applications, may 
direct PDPCS to migrate to the defect sites for better regenerative out-
comes [Stich et al.,2008]. However, harvesting PDPCs, laboratory ex-
penses, and the necessary time for construct preparation, should be 
planned early enough before the surgical resection to avoid possible 
morbidity. When PDPCs were seeded into polyglycolide-co-polylactide 

Fig. 1. (A): photograph shows acellular skin matrix allograft placed during a free gingival graft surgery for the treatment of thin receded gingiva at teeth 31, 41, 42 
(buccal aspect), in a 16-year-old male, after the completion of orthodontic treatment. (B): photograph shows nicely healed attached gingiva with complete root 
coverage of the lower incisors, three-months post-operative. Photo courtesy to Dr OMM. 
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scaffold to repair critical size bone defects in a rabbit model, they 
showed satisfactory outcomes [Redlich et al.,1999]. The success of 
surgical reconstruction relies on the potential of healthy patient’s cells 
that surround the defect site, to infiltrate and vascularize the tissue 
engineered construct. To further reinforce the construct, multiple small 
bone implants can be grown in the laboratory and transplanted later to 
the defect site [Steinhardt et al.,2008]. However, this technique will 
increase the number of required surgeries, time, and cost. Reconstruc-
tion of critical size bony defects remains one of the biggest challenges to 
oral and maxillofacial surgeons. A major step in OMF reconstructive 
surgeries was achieved when stem cell therapy was used in combination 
with BMPs to prepare a custom bone graft that was implanted into the 
latissimus dorsi muscle of a patient to be transplanted along with its 
blood supply to reconstruct a critical mandibular defect [Warncke et al., 
2004]. Mandible defects commonly result from trauma and surgical 
resection of benign or cancerous tumors. In most cases of cancer resec-
tion, radiotherapy is needed, but it might result in osteonecrosis. In 
addition, bisphosphonate that treats osteoporosis, is another cause of 
osteonecrosis [Otto et al.,2011]. In advanced osteonecrosis cases, 
segmental resection is the treatment of choice to eliminate dead bone 
segments, but it creates larger bony defects [Joo et al..2019]. If more 
than 10 % of the mandible is resected, spontaneous healing of the 
mandible fails [Brierly et al.,2016]. Currently, bone transplants, metallic 
appliances, and distraction osteogenesis are being clinically used, 
however, the free fibular flap transplant is the standard for mandible 
reconstruction [Kumar et al.,2016]. Such surgeries are complicated with 
possible bacterial contamination, donor site morbidity [Bede 
et al.,2019], and some patients might develop hyperalgesia (30.5 %) and 
neuropraxia (40 %) [Nørholt et al., 2011]. Metal appliances and osteo-
genesis distractors inevitably require numerous surgeries (with detailed 
presurgical planning), which raise both morbidity and esthetic problems 
[Pare et al.,2019]. MSCs derived from the mandible show distinctive 
osteogenesis capacity, owing to their neural crest neuroectoderm origin 
[Li et al.,2020]. Long bones which had originated from the mesoderm, 
form and heal by endochondral ossification, while craniofacial bones 
form and heal mainly by intramembranous ossification. Interestingly, 
the mandible distraction stimulates intramembranous ossification, 
while mandible fractures stimulate endochondral ossification [Achilleos 
and Trainor, 2012]. MSCs from tibia bone marrow have lower prolif-
eration [Dong et al.,2014], pluripotency, and osteogenesis differentia-
tion capacities compared to MSCs derived from the mandible bone 
marrow [Lee et al.,2019]. Clinically treated alveolar defects with 
autogenous mandibular bone grafts showed better outcomes compared 
to alveolar defects treated with autogenous iliac bone grafts [Barone and 
Covani, 2007]. Interestingly, grafting neural crest-originated MSCs into 
tibia defects and mesoderm-derived MSCs into mandible defects, resul-
ted in intramembranous ossification in the tibia defects and endochon-
dral ossification with fibrosis in the mandible defects [Leucht 
et al.,2008]. This means that MSCs keep the regenerative ossification 
pattern of their origin, which is very important to consider in planning 
and selection of stem cell source for regeneration and reconstruction of 
different defective sites. 

Hydrogel scaffolds work as carriers and protectors for seeded stem 
cells, allowing them to restore the defect sites with less risk of immune 
rejection [Kurtz, 2008]. In addition, hydrogels may release certain 
growth factors to recruit the patients’ own cells to migrate into the 
constructs [Ying et al.,2019; Ko et al.,2013]. Furthermore, hydrogels can 
control stem cells’ function and fate through sending physical and 
biochemical signals [Ko et al.,2013]. Together with different stem cell 
types, hydrogels show promising potentials for reconstruction of the 
mandible defects [Liu et al.,2016]. Certain growth factors, such as bone 
morphogenetic proteins, insulin growth factor, fibroblast growth factor- 
2, transforming growth factor-β, stromal cell-derived factor-1, vascular 
endothelial growth factor, and nerve growth factor, hold osteo-inductive 
and angiogenic properties, and play important roles in mandibular 
regeneration when included within the hydrogel [Dreyer et al.,2020]. 

Holding the highest osteogenic potential, BMP-2 has been the most used 
growth factor in mandibular reconstruction [Sheikh et al.,2015]. Re-
combinant human bone morphogenetic protein-2 (rhBMP-2)-sponge 
collagen or poloxamer-based gel provided the highest outcomes in 
mandibular reconstruction when combined with regular titanium 
meshes, Fig. 2 [Tatara et al., 2019]. 

Mandibular reconstruction following trauma or deformation shows 
promising clinical outcomes, since seeding different stem cells into 
hydrogels simulates real life biology, stimulating construct mineraliza-
tion and infiltration by the patient’s own cells, thus, enhancing bone 
regeneration. On the other hand, mandibular reconstruction following 
osteonecrosis or severe infections, might face the challenge of antimi-
crobial resistance when antimicrobials were given systemically while 
the construct blood supply is impaired. Therefore, hydrogel constructs 
can act as biological carriers to provide continuous antimicrobials 
release into the infected defect to enhance bone regeneration. Recent 
studies have focused on producing an appropriate hydrogel bio-ink to 
simulate the natural tissue physical and chemical properties, necessary 
for supporting seeded cells and growth factors [Genova et al.,2020]. 
Three dimensional bioprinting is a developing branch of tissue engi-
neering where the polymer concentration controls the viscousness and 
mechanical properties of the print. The polymer concentration needs to 
be balanced to allow easy printing and at the same time provide better 
environment for cell proliferation and differentiation at the recon-
struction site [He et al.,2016]. It is challenging to obtain the ideal hard 
and strong construct by using 3D bio-printed hydrogel. Therefore, many 
reports suggested using stiff polymers, such as polycaprolactone, poly 
lactic-co-glycolic acid and polyvinyl alcohol in combination with the 3D 
bio-printed hydrogels [Lee et al.,2014]. Thus, 3D bio-printing provides 
new chances for fabrication of site-specific constructs using many cell 
types and production of fine tissue details within these constructs, for 
promising mandibular reconstruction outcomes [Gaspar et al.,2020]. 
This allows for production of bio-printed constructs seeded with primary 
arch osteoblasts, and vascular-like vessels lined with primary endothe-
lial cells [Amler et al.,2021]. Moreover, 3D printed polycaprolactone/ 
hydrogel including dual drugs release, such as, resveratrol and stron-
tium ranelate, has significantly promoted in vivo mandible formation 
after 8 weeks of implantation [Zhang et al.,2020]. Besides, the perfect 
3D cultural conditions supported by the bio-printed hydrogel constructs, 
they improved stem cells activity and directed their fate towards pro-
liferation and differentiation [Kang et al.,2016]. 

Fig. 2. A photograph shows left side hemi-mandibular reconstruction using 
bmp-2 and autogenous bone graft from the iliac bone, supported by titanium 
mesh, for treatment of osteonecrosis, in a 65-year-old male. photo courtesy to 
Dr AH. 
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7. Temporomandibular Joint 

Temporomandibular joint (TMJ) tissue engineering might be very 
limited due to the complexity of TMJ anatomy, histology, and physi-
ology, which make it a very specialized joint to withstand the huge 
forces of mastication, pressure, and tension, for proper long-term func-
tion. In 1960S, TMJ disc replacement was first introduced with Teflon 
implants that failed shortly and caused foreign body granulations, pain, 
and joint bone loss [Henry and Wolford, 1993]. In addition, fat tissue 
was used to alleviate joint pain with no success [Acri et al.,2019]. 
Thereafter, MSCs were used in TMJ disc engineering. In 2015, perfo-
rated TMJ discs were repaired with fibrous tissue, 8 weeks after being 
implanted with collagen scaffolds seeded with autologous bone marrow 
MSCs, in a rabbit model [Kobayashi et al.,2015]. Furthermore, hyaline 
cartilage was studied by many scientists in a hope for TMJ cartilage 
replacement, but satisfying results are still in progress [Almarza and 
Athanasiou, 2004]. In 2023, a group of researchers developed TMJ disc 
constructs from decellularized rabbit TMJ discs that were supported 
with polycaprolactone. When installed in a rabbit TMJ disc recon-
struction model, these constructs restored the structure and function of 
the rabbits’ TMJs and were stable for 6 months. In addition, similar disc 
constructs were produced from decellularized porcine TMJ discs and 
implanted in a goat TMJ disc reconstruction model. These xenograft 
discs were functional and could stabilize the goats’ TMJs for 20 weeks 
post-operative. This shows the therapeutic potential of TMJ disc allo-
grafts and xenografts in the management of TMJ disc degenerative 
disorders [Jiang et al.,2023]. Hopefully soon, tissue engineering scien-
tists can provide precise human TMJ models by employing bone 
inductive scaffolds and stem cells with potentials to differentiate into 
TMJ disc fibro-chondrocytes. 

4. Conclusions & future expectations 

Tissue engineering is developing at a fast pace. At present, in some 
cases, oral and maxillofacial reconstruction cannot achieve optimal 
functional and esthetic outcomes, especially in cancer patients. This has 
negative impacts on these patients’ general and mental health. Never-
theless, each therapeutic approach has its beneficial outcomes, but 
optimization is necessary to achieve the ideal functional and esthetic 
outcomes in a reasonable time, with a reasonable cost, and the minimum 
number of surgeries, to improve the patients’ quality of life. Tissue- 
engineered constructs can be optimized via customization of the used 
scaffold, growth factors, stem cell type and origin, for each individual 
patient. The in vitro cell expansion and construct processing time needs 
to be shortened for faster application and cost reduction. Further 
research is necessary to test possible immediate stem cells trans-
plantation into the defect site at the time of resection, to possibly save 
time and reduce lab work cost. In the meantime, further research is 
needed to improve in vitro cell expansion and bone tissue formation 
(quality and quantity), in a shorter time by optimizing culture media and 
incorporation of different growth factors. 
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