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Abstract

Background

Administrative data are used to examine variation in thirty-day mortality across health ser-

vices in several jurisdictions. Hospital performance measurement may be error-prone as

information about disease severity is not typically available in routinely collected data to

incorporate into case-mix adjusted analyses. Using ischaemic stroke as a case study, we

tested the extent to which accounting for disease severity impacts on hospital performance

assessment.

Methods

We linked all recorded ischaemic stroke admissions between July, 2011 and June, 2014 to

death registrations and a measure of stroke severity obtained at first point of patient contact

with health services, across New South Wales, Australia’s largest health service jurisdiction.

Thirty-day hospital standardised mortality ratios were adjusted for either comorbidities, as is

typically done, or for both comorbidities and stroke severity. The impact of stroke severity

adjustment on mortality ratios was determined using 95% and 99% control limits applied to

funnel plots and by calculating the change in rank order of hospital risk adjusted mortality

rates.

Results

The performance of the stroke severity adjusted model was superior to incorporating comor-

bidity burden alone (c-statistic = 0.82 versus 0.75; N = 17,700 patients, 176 hospitals).
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Concordance in outlier classification was 89% and 97% when applying 95% or 99% control

limits to funnel plots, respectively. The sensitivity rates of outlier detection using comorbidity

adjustment compared with gold-standard severity and comorbidity adjustment was 74% and

83% with 95% and 99% control limits, respectively. Corresponding positive predictive values

were 74% and 91%. Hospital rank order of risk adjusted mortality rates shifted between 0 to

22 places with severity adjustment (Median = 4.0, Inter-quartile Range = 2–7).

Conclusions

Rankings of mortality rates varied widely depending on whether stroke severity was taken

into account. Funnel plots yielded largely concordant results irrespective of severity adjust-

ment and may be sufficiently accurate as a screening tool for assessing hospital

performance.

Introduction

Administrative data are widely used to examine variation in thirty-day mortality across health

services in several international jurisdictions [1–6]. These analyses flag outlier hospitals associ-

ated with higher or lower than expected mortality, implying that variation in death rates are

attributable in part to quality of care. As administrative data do not typically incorporate stan-

dardised measures of disease severity, a persistent criticism is that hospital performance mea-

sures do not adequately account for differences in case-mix between hospitals, risking

misclassification of “performance outliers”.

It is widely assumed that severity adjustment is necessary for credible examination of inter-

hospital variability. However, evidence that this improves the accuracy of hospital profiling is

scant. Moreover, different methods are used to assess hospital performance, including statisti-

cal control charts and “league tables” that rank order hospitals [1–6]. It is unclear whether the

impact of disease severity adjustment depends on how hospital performance is determined.

In stroke medicine, adjusting for disease severity improves the prediction of risk-adjusted

models [1,7–9] inviting the conclusion that severity adjustment is crucial for valid hospital

profiling. However, as risk adjustment is primarily concerned with reducing confounding

arguably the emphasis should be on determining the impact of severity adjustment on hospital

outlier status. Only two studies have addressed the impact of ischaemic stroke severity adjust-

ment on hospital outlier status using a gold-standard measure of severity, the National Insti-

tutes of Health Stroke Scale (NIHSS) [7,8]. Results were conflicting and limitations included

substantial missing stroke severity data (>55%) [8], and analyses involving select patients and

hospitals [7,8], such as those participating in voluntary quality improvement programs with

questionable representation [8].

Obtaining unbiased measures of stroke severity is challenging and measurement will be

subject to error if severity is not assessed as close as possible to stroke onset and if documenta-

tion is incomplete [1,8,10,11]. For example, severity measured several hours after admission

may capture deterioration or improvement, which partly reflects quality of care particularly in

the context of time-critical interventions. Severity assessment also may be error-prone if retro-

spectively ascertained, inferred from clinical notes and/or recorded unblinded to clinical pro-

gression, in-patient mortality, or discharge status. One recent study noted that NIHSS scores

measuring ischaemic stroke severity were preferentially documented in patients receiving
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thrombolysis or with severe stroke [11]. The same study and another noted documentation

significantly varied between hospitals [10,11]. Therefore, inconsistencies in severity documen-

tation rather than severity per se, may in part underpin inter-hospital variation in mortality.

Missing stroke severity data may bias hospital mortality estimates towards greater risk because

deaths cannot be attributed to prognostic indicators while more diligent recording allows hos-

pitals to ascribe fatalities to severe stroke. Ideally, risk-adjusted models incorporating stroke

severity indicators that are standardised, universally available, reliably assessed in real-time at

first point of contact with health services and recorded blinded to processes of care and out-

comes are needed [1]. However, severity indicators meeting these criteria are yet to be widely

implemented.

We sought to address these two gaps in the current literature. We first developed a risk

adjusted model incorporating a universal, real-time stroke severity measure ascertained pro-

spectively and independently of hospital staff managing patients and blinded to processes of

care and patient outcomes. Applying this model, we then determined the accuracy of comor-

bidity-adjusted hospital performance measures against gold-standard severity adjustment,

assessing the extent to which comorbidity adjustment produces valid results for hospital per-

formance evaluation. Further, we compared two common approaches to assess hospital per-

formance, specifically statistical control charts and league tables to test whether the accuracy of

comorbidity adjustment depends on how performance is determined.

Material and methods

Analyses presented here are part of the Home to Outcomes Study (H20), which aims to assess

stroke health service management and epidemiology across New South Wales (NSW), Austra-

lia’s largest jurisdiction (population ~7.7 million). Pre-hospital vital signs data informed stroke

severity at onset and were linked to routinely collected hospital admissions and emergency

department (ED) data (S1 Appendix). As described elsewhere [12], data linkage was carried

out by a government provider of linkage services using ethically approved gold-standard and

privacy preserving protocols. Deterministic and probabilistic linkages were undertaken to

enable de-identified patient level-analysis. Variables utilised for linkage included patient iden-

tifiers and dates of health service delivery (for example, dates of admission and discharge,

transport dates). Automated algorithms for linkage, supplemented by manual quality assur-

ance checks ensured that the false-positive linkage rate for the project was less than 5 per

1,000.

Ethics statement

The NSW Population and Health Services Ethics Committee approved the study (HREC/14/

CIPHS/17) allowing a waiver of consent as the study utilised routinely collected data from

which direct patient identifiers were removed.

Patient selection

We identified ischaemic stroke admissions from all public hospitals in NSW from July, 2011 to

June, 2014 using the Admitted Patient Data Collection (APDC), a census of all NSW hospitali-

sations. The APDC records the main reason for the admission (principal diagnosis) and up to

49 comorbid diagnoses according to the International Classifications of Diseases, Version 10,

Australian Modification (ICD-10AM) [13]. We selected all admissions with a principal diag-

nosis of ischaemic stroke in patients aged 15 years or older using ICD-10AM codes 163 and

I64 as elsewhere [13–16]. Acute strokes recorded in secondary positions were included upon

manual review with agreement amongst the authors if the principal diagnosis was consistent
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with a stroke presentation unless flagged as an in-hospital event or as a post-procedural stroke.

We excluded strokes recorded more than three days after admission as presumed in-hospital

events to avoid ascribing a severity score recorded distally from the stroke diagnosis and for a

condition unrelated to stroke. Cases with concomitant codes for primary or metastatic cerebral

neoplasms and severe head injury or trauma were ineligible complying with accepted “gold

standard” case selection for stroke [17].

Other exclusion criteria were applied to reduce misclassification of case selection. We

excluded patients with stroke diagnoses revised to other diagnoses upon transfer to another

hospital by the end of the next day after presentation [2] as such cases reduce the accuracy of

cohort ascertainment [18] and their retention may systematically bias HSMR estimates. In

cases transferred soon after presentation, a discharge diagnosis of stroke may indicate a provi-

sional diagnosis while in non-transferred cases working diagnoses will instead be discarded in

favour of the established reason for the hospital admission. In hospitals with relatively low

transfer rates, final diagnoses will more likely represent stroke cases, while a discharge diagno-

sis of stroke may represent both confirmed and provisional stroke diagnoses in hospitals more

likely to transfer patients, potentially leading to differential case ascertainment between hospi-

tals with different transfer rates. Cases discharged home alive within 48 hours were also

excluded as potential misclassified strokes, consistent with our a-priori case selection as

reported elsewhere [12], and with approaches to improve the specificity of case selection [19–

21]. While early discharges may include very mild strokes, symptom resolution allowing dis-

charge within a short time was considered to be more likely to indicate either transient ischae-

mic attacks or provisional stroke diagnoses given almost half (48.4%) were coded as non-

specified strokes. We undertook a post-hoc sensitivity analysis to determine the effect of these

two exclusion criteria on study findings.

Non-NSW residents and those discharged outside the state were also excluded to improve

the accuracy of 30-day mortality ascertainment as deaths occurring outside our jurisdiction

are not usually recorded in the NSW death register. We attributed care to the hospital of first

presentation akin to an intention-to-treat principle, as the decision to retain or transfer

patients has ramifications for patient outcomes [2]. This was considered to allow fairer assess-

ment for centres which have implemented pathways for inter-hospital transfers as opposed to

others which have not structured services to enable patient access to better resourced facilities.

For patients with multiple hospitalisations, we selected the first admission (“index admission)

for analysis in keeping with other approaches [3].

Outcome measure

Thirty-day mortality was derived from linking admissions to the NSW Registry of Birth,

Deaths and Marriages which records all deaths occurring in NSW.

Risk adjusted models

We defined a base model comprising year of admission, sex, stroke history, a measure of socio-

economic status derived from geographical location of patient residence [22] and age. We

added atrial fibrillation (ICD-10 code I48) and a modified, validated version of the Charlson

Comorbidity Index [23,24] to produce comorbidity risk-adjusted estimates (Model 1, comor-

bidity adjusted). To reduce misspecification, we modelled linear and quadratic terms for age

and summed empirically derived weights for individual Charlson comorbidities. Stroke his-

tory (ICD-10-AM I60-I64, I62.9, I69.0-I69.4) and comorbidities were ascertained by interro-

gating linked admissions recorded during the stroke admission and the maximum available

“look-back” period of ten years.

The impact of severity adjustment on hospital performance measurement
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A second model incorporated a five-point measure of stroke severity (Model 2, severity and

comorbidity adjusted) based on the Glasgow Coma Scale Score (GCS) [25] and arrival to hos-

pital by private transport, both prognostic of ischaemic stroke mortality [1,26–28].

Data for patients accessing ambulance transport were linked to GCS scores assessed by

paramedics at time of first contact with patients, as recorded in the Ambulance NSW elec-

tronic medical record (eMR) and Patient Health Care Record (PHCR) data-sets. GCS scores

were complete in almost all eligible cases (99.4%, N = 79 missing cases) providing a universal

measure of stroke severity recorded in real-time closest to onset for almost every recorded

stroke patient accessing NSW ambulance services. Patients were categorised as fully conscious

(GCS = 15), or as having Mild (GCS = 13–14); Moderate (GCS = 9–12) or Severe (GCS = 3–8)

brain injury using pre-specified cut-offs [26,27]. As GCS scores were not recorded for patients

arriving to hospital using private transport, a fifth category was created presuming milder

strokes at onset than for patients requiring paramedical assistance. Our measurement of

“mild” or “ambulant” stroke was therefore objectively and prospectively ascertained at presen-

tation and recorded independent of clinicians managing patient care. Arrival to hospital via

ambulance or private transport was identified using linkage to ambulance data.

We evaluated model goodness of fit using the Aitake Information Criteria (AIC). Calibra-

tion was determined using the Brier score and Nagelkerke generalised r2, while the c-statistic

assessed discrimination. Higher c-statistics and Nagelkerke r2 values and lower Brier scores

and AIC values indicated better model performance. C-statistic values, ranging from 0 to 1

indicate the probability that a randomly selected patient dying within 30-days had a higher

predicted probability of dying than a patient surviving to Day 30 [3]. Values greater than 0.70

or 0.80 indicate a reasonable or strong model, respectively, while a c-statistic of 0.50 indicates

categorisation of vital status is no better than chance [3]. Performance was validated against an

external data-set applying the same selection criteria used to derive data for the main study

period. The external data-set comprised three years of linked administrative data recording

information about ischaemic stroke patients from July 1, 2008 to June 30, 2011.

Hospital profiling

Hospital risk-adjusted standardised mortality ratios (HSMRs) were calculated by dividing the

observed by the expected number of deaths obtained from logistic regression parameter esti-

mates for each model tested [2,29–31]. Hospital was fitted as a random intercept using PROC

GLIMMIX (SAS 9.4, SAS institute Inc, Cary, USA) accounting for patient data clustered

within hospital. This approach compares the hospital-specific mortality rate to the expected

risk of death for patients treated in a hospital with “average mortality” [2,29–31]. All admis-

sions contributed to risk adjustment, while HSMRs were computed for hospitals with at least

one observed and one expected death thereby removing highly unreliable HSMRs from analy-

sis [2,32]. HSMRs were plotted using statistical control charts also known as funnel plots. This

approach places a higher threshold for meeting outlier status for hospitals with a relatively

small caseload compared to centres with higher throughput.

Impact of stroke severity adjustment: Standard models. We identified outlier hospitals

with higher or lower than expected mortality using funnel plots generated by plotting HSMRs

against the expected number of deaths, with control limits constructed using a gamma-distri-

bution applied to the number of observed deaths. Hospitals falling outside 95% and 99% con-

trol limits were designated outliers representing liberal and conservative criteria for an “alert”

signal selected to inform quality improvement activities [2,3,33,34]. These respective control

limits indicated HSMRs around 2 and 2.5 standard deviations above or below the expected

mortality rate. Results applying 99.8% control limits indicating ± 3 standard deviations around

The impact of severity adjustment on hospital performance measurement
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the expected mortality rate favoured to minimise false-positive results, are reported as sensitiv-

ity analyses.

HSMR outliers derived from Model 2 (severity and comorbidity adjusted) were the gold-

standard against which Model 1 derived outliers (comorbidity adjusted) were compared. Posi-

tive Predictive Values (PPV), sensitivity and false-positive (FP) and false-negative (FN) rates

were computed. Concordance of outlier classification was calculated using percentage agree-

ment and the Kappa statistic [35] (Medcalc version 17.9.7, Medcalc Software, Ostend,

Belgium).

Risk-adjusted mortality rates (RAMRs) were obtained by multiplying the HSMRs by the

overall crude mortality rate. RAMRs derived from Model 1 and Model 2 were rank ordered,

reflecting the commonly used “league table” approach in public reporting [1]. Agreement

between RAMRs was assessed using Bland-Altman Plots [36], graphing differences in rank

order against the mean rank derived from comorbidity risk adjusted models with and without

severity adjustment. 95% upper and lower bounds of agreement representing two standard

deviations away from the mean rank difference were superimposed on the plot and the disper-

sion of data points around the mean difference was visually examined. Greater agreement is

suggested by narrower 95% bounds of agreement around the mean difference.

Funnel plot analyses included all eligible hospitals while analyses of rank order excluded

hospitals with fewer than 25 strokes to minimise random error in RAMRs [8]. Correlations

were calculated using the Spearman rho statistic.

Impact of stroke severity adjustment: Enhanced risk adjustment models. We hypothe-

sised that additional prognostic information will improve both model performance and the

accuracy of HSMRs, particularly for Model 1 which adjusted for comorbidity burden alone.

We added mode of hospital arrival (ambulance versus private transport), and the most urgent

triage level mandating immediate treatment upon ED presentation, as severity variables pro-

spectively assessed in real-time. A GCS score less than 9 is one indicative criterion qualifying

for immediate treatment in ED [37]. These real-time prognostic indicators are not widely

available [1–6]. In our jurisdiction these are reliably ascertained via linkage to ED and ambu-

lance data. We compared model performance and outlier classification of this enhanced

comorbidity adjusted model (Model l) with the severity and comorbidity adjusted model

(Model 2) enhanced by incorporating urgent triage.

Results

Patient and hospital Cohort

The crude 30-day mortality rate was 14.8% (N = 2,613 deaths) based on data from 17,700 eligi-

ble ischaemic stroke patients treated in 176 hospitals (S1 Appendix). Stroke severity as mea-

sured using the GCS was strongly associated with 30-day mortality (Table 1). Of the 5,164

(29.2%) ischaemic stroke patients arriving to hospital using their own transport, 276 (5.3%)

died within 30-days, while 8.8% with GCS scores of 15 died within 30-days. Almost one-fifth

of patients with a GCS score of 13–15 died within 30-days, increasing to 38.5% and 65.4% of

those with initial GCS scores of 9–12 and 3–8, respectively. Patient characteristics by vital sta-

tus are shown in S2 Appendix.

Measuring the impact of stroke severity (Standard models)

Model performance. Adjusting for stroke severity in addition to comorbidity burden

(Model 2) versus comorbidity adjustment alone (Model 1) produced superior model perfor-

mance statistics. The c-statistic for the model adjusting for comorbidities only was 0.75,

The impact of severity adjustment on hospital performance measurement
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compared to 0.82 when adding stroke severity (Table 2). Performance statistics were replicated

when validated against an external data-set (S3 Appendix).

HSMRs for 30-day mortality were calculated for 114 hospitals treating 17,451 patients with

at least one observed and one expected death. Classification of HSMRs as within or outside the

expected range was concordant between the two models for 102 (89%) and 111 (97%) hospitals

when applying 95% or 99% control limits, respectively. Kappa statistics demonstrated “sub-

stantial” or “almost” perfect agreement [35] in outlier classification between Model 1 (comor-

bidity adjusted) and Model 2 (severity and comorbidity adjusted) (Table 3).

Analysis of funnel plots: 95% control limit outliers. Twenty-three comorbidity adjusted

HSMRs (Model 1) were identified as outlier services. Five were flagged as having higher than

expected mortality. Seventeen, including three with higher than expected mortality, were

“true” outliers with gold-standard severity and comorbidity adjustment (Model 2)

(PPV = 74%, FP = 7%) (Table 3; Fig 1).

Gold-standard stroke severity and comorbidity risk adjustment (Model 2) yielded 23 “true”

HSMR outliers. Seventeen of these were detected with comorbidity adjustment alone (Model

1, Sensitivity = 74% and FN = 26%, Table 3). Five outliers had higher than expected mortality

identified with gold-standard severity and comorbidity adjustment (Model 2). Three of these

were flagged as outliers with only comorbidity adjustment (Model 1) (Table 3; Fig 1).

Analysis of funnel plots: 99% control limit outliers. Eleven comorbidity adjusted

HSMRs were detected as outliers (Model 1). Of these, ten were “true” outliers with severity

and comorbidity adjustment (Model 2) (PPV = 91%, FP = 1%, Table 3). There were twelve

“true” outlying severity adjusted HSMRs (Model 2). Ten of these were detected using comor-

bidity adjustment alone (Model 1) (Sensitivity = 83%, FN = 17%) (Table 3; Fig 1).

Analysis of funnel plots: 99.8% control limits (sensitivity analysis). When applying

99.8% control limits, all seven outliers detected using comorbidity adjustment alone were also

Table 1. Mortality by stroke severity.

Stroke severity measure N Died (%, 95% CI) Total Adjusted

Odds Ratio�

Ambulant�� 276 (5.3;4.8–6.0) 5,164 Ref

GCS = 15 655 (8.8;8.2–9.5) 7,406 1.27 (1.09–1.47)

GCS = 13–14 (Mild) 434 (17.8; 16.3–19.1) 2,438 2.13 (1.80–2.53)

GCS = 9–12 (Moderate) 733 (38.5;36.3–40.7) 1,905 6.38 (5.43–7.50)

GCS = 3–8 (Severe) 515 (65.4;62.1–68.9) 787 20.52 (16.80–25.0)

�Adjusted for Age, age2, sex, year of admission, prior stroke, socio-economic status, Charlson comorbidities, Atrial

Fibrillation

��Patient arrived to hospital using their own transport.

https://doi.org/10.1371/journal.pone.0216325.t001

Table 2. Model performance statistics (Standard Models).

Model Akaike Information Criterion Nagelkerke r2 c-statistic

(95% CI)

Brier Score

Base Model� 13,460 0.13 0.72 (0.71–0.73) 0.12

Model 1: Base+Comorbidities�� 13,048 0.17 0.75 (0.74–0.76) 0.11

Model 2: Base+Comorbidities+Stroke Severity 11,487 0.31 0.82 (0.82–0.83) 0.10

�Age, age2 (quadratic term), sex, year of admission, prior stroke and measure of socio-economic status.

��Charlson comorbidities, Atrial Fibrillation.

https://doi.org/10.1371/journal.pone.0216325.t002
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detected as “true” outliers with both comorbidity and severity adjustment (PPV = 100%).

Comorbidity adjustment detected seven out of eleven “true” outliers (Sensitivity 64%,

Kappa = 0.76, 95% CI = 0.53–0.98, 97% concordance).

Rank order of RAMRs. For the 78 hospitals with at least 25 cases, 30-day crude mortality

rates ranged from 7.8% to 41.4% (Median 15.6%, IQR = 12.8%-23.2%). Rates ranged from

5.8% to 30.6% (Median 13.2, IQR = 10.9–17.7%) when adjusted for comorbidity burden

(Model 1) and 6.7% to 31.7% (Median 12.9%, IQR = 10.8–17.1) when adjusted for both stroke

severity and comorbidity burden (Model 2).

The lower and upper bounds of agreement showed that 95% of rank order differences ran-

ged from -13.8 to 13.8 with wide dispersion around the mean rank difference (Fig 2). The

absolute change in hospital rank order of RAMRs obtained from Model 1 and Model 2 ranged

from 0 to 22 (Median = 4.0, IQR = 2–7). The median absolute difference in RAMRs was 1.0%

(IQR = 0.51%;2.0%). The change in hospital rank order correlated moderately with absolute

differences in RAMRs (rho = 0.39; 95% CI = 0.18–0.56; p = 0.0004). Relatively small changes

in rank order were associated with large differences in RAMRs and vice versa. For example,

the greatest change in rank of 22 places corresponded to a 3.1% difference in RAMRs and a dif-

ference of one expected death over the three-year study period.

Measuring the impact of stroke severity adjustment (Enhanced models)

Model performance. The c-statistic for Model 1 (comorbidity adjusted) improved from

0.75 to 0.80 when enhanced by adding mode of arrival (ambulance versus private transport)

and the most urgent ED triage category. In comparison, discrimination improved marginally

for Model 2 (severity and comorbidity adjusted) when enhanced by adding triage category (c-

Table 3. Number of outliers and inliers using comorbidity adjusted (Model 1) funnel plot results compared against “gold standard” severity and comorbidity

adjusted (Model 2) funnel plot results (Standard Models).

Gold Standard Risk Adjustment (Model 2) N = 114 Hospitals

95% Control Limits 99% Control Limits

Comorbidity adjustment (Model 1) Number of outliers Number of inliers Number of outliers Number of inliers
Number of Outliers 17 6 10 1

Number of Inliers 6 85 2 101

Accuracy Metric 95% Control Limits 99% Control Limits

Percent agreement� (17+85)/114 = 89% (10+101)/114 = 97%

Kappa (95% CI) 0.67 (0.50–0.84) 0.85 (0.69–1.00)

Sensitivity (95% CI)† 17/(17+6) = 74% (52%-90%) 10/(10+2) = 83% (52%-98%)

PPV (95%CI)†† 17/(17+6) = 74% (56%-86%) 10/(10+1) = 91% (58%-98%)

False Positive Rate‡ 6/(6+85) = 7% 1/(1+101) = 1%

False Negative Rate‡‡ 6/(6+17) = 26% 2/(2+10) = 17%

�Percentage of hospitals with concordant classifications between comorbidity (Model 1) and gold-standard adjustment (that is, comorbidity and severity adjustment,

Model 2).

†Proportion of true outliers according to gold-standard comorbidity and severity risk adjustment (Model 2) detected as outliers according comorbidity adjustment

alone (Model 1).

††Proportion of outliers detected by comorbidity risk adjusted modelling (Model 1) that are true outliers according to gold-standard severity and comorbidity

adjustment (Model 2).

‡Number of hospitals falsely detected as outliers using comorbidity risk adjustment alone (Model 1) divided by the number of “inlier” hospitals according to gold-

standard risk adjustment (Model 2).

‡‡Number of hospitals missed as “true outliers” using comorbidity risk adjustment alone (Model 1) divided by the number of “true outlier” hospitals according to gold-

standard risk adjustment (Model 2).

https://doi.org/10.1371/journal.pone.0216325.t003

The impact of severity adjustment on hospital performance measurement

PLOS ONE | https://doi.org/10.1371/journal.pone.0216325 May 21, 2019 8 / 21

https://doi.org/10.1371/journal.pone.0216325.t003
https://doi.org/10.1371/journal.pone.0216325


statistic = 0.83 versus 0.82) although this enhanced model was the best performing of all those

tested (Tables 2 and 4). These enhanced models were well-validated (S3 Appendix).

Analysis of funnel plots. When examining funnel plots, concordance in hospital outlier

classification between these two enhanced models was almost perfect (~95% using 95% and

99% control limits, respectively) (Table 5; S4 Appendix). HSMRs were highly correlated

(rho = 0.98, 95% CI = 0.97 to 0.99) (p<0.0001).

Comorbidity adjusted HSMRs for 30 hospitals were outside 95% control limits. Twenty-

four of these were “true” outliers with enhanced “gold-standard” stroke severity and comor-

bidity adjustment (Model 2) (PPV = 80%) (S4 Appendix).

Fig 1. Change in outlier status of comorbidity adjusted HSMRs without and with severity adjustment. --- 95%

Control Limits--- 99% Control Limits Stroke severity adjustment changes health service from an outlier to a non-

outlier designated with a green diamond Stroke severity adjustment changes health service from a non-outlier to an

outlier designated with a red square Alert signal “downgraded” from an 99% to 95% control limit outlier with stroke

severity adjustment designated with a green circle. Alert signal “upgraded” from an 95% to 99% control limit outlier

with stroke severity adjustment designated with a red circle.

https://doi.org/10.1371/journal.pone.0216325.g001
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When 99% control limits were applied, 17 outliers were identified using enhanced comor-

bidity adjustment with 13 signalling as “true” outliers with enhanced severity adjustment

(PPV = 76%). The four “false-positives” were, however, identified as “true” outliers using 95%

control limits. Enhanced comorbidity adjustment detected all gold-standard enhanced severity

and comorbidity adjusted HSMRs lying outside 95% (N = 24) or 99% (N = 13) control limits

(Sensitivity = 100%) (Table 3).

Eleven outliers using comorbidity adjustment alone were identified using 99.8% control

limits all of which were also severity and comorbidity adjusted outliers. Similarly, eleven out of

12 “true” outliers using severity and comorbidity adjustment were identified using comorbid-

ity adjustment only (Concordance = 99%; PPV = 100%, Sensitivity 92%, Kappa = 0.95, = =

95% CI = 0.86–1.00).

Rank order of hospital RAMRs. Hospital RAMRs ranged from 6.3% to 34.9% when

adjusted for comorbidities alone and 7.0% to 31.5% when adjusted for both stroke severity and

comorbidities. The median change in absolute differences in the hospital rankings produced

from the two enhanced models was three (IQR = 1;5) and ranged from 0 to 17. Bland-Altman

plots revealed upper and lower 95% confidence limits of agreement of 9.8 ranks.

Fig 2. Bland-Altman plot displaying differences in rank order comorbidity adjusted RAMRs with and without

severity adjustment.

https://doi.org/10.1371/journal.pone.0216325.g002

Table 4. Model performance statistics (enhanced models).

Model Akaike Information

Criterion

Nagelkerke r2 c-statistic

(95% CI)

Brier

Score

Base 13,460 0.13 0.72 (0.71–

0.73)

0.12

Model 1: Base�+Comorbidities��+Arrival by ambulance versus private transport+Urgent

triage category

12,145 0.25 0.80 (0.79–

0.81)

0.11

Model 2: Base�+Comorbidities��+Stroke severity†+Urgent triage category 11,334 0.32 0.83 (0.82–

0.84)

0.10

�Age, age2 (quadratic term), sex, year of admission, prior stroke and measure of socio-economic status.

��Charlson comorbidities+Atrial Fibrillation.

†Arrival by private transport is included in the stroke severity measure.

https://doi.org/10.1371/journal.pone.0216325.t004
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Our post-hoc sensitivity analysis including presumed misclassified cases of stroke yielded

similar results to the original analysis (S5 Appendix).

Stroke unit care and hospital performance. We undertook a post-hoc examination to

determine whether the 31 hospitals offering stroke unit care in NSW, 19 of which had 24/7

acute thrombolysis capacity, would have lower than expected mortality. The median SMR

for hospitals without stroke units was 1.19 (Interquartile range = 0.85 to 1.61), indicating

the median mortality rate was 20% higher than expected in hospitals without stroke units.

In contrast, the median SMR for hospitals offering stroke units with or without 24/7

thrombolysis capacity indicated the median mortality rate was 39% and 19% lower than

expected, respectively (Median 0.61, Interquartile range = 0.60 to 0.78 and Median 0.81,

Interquartile range = 0.77 to 0.83, respectively) (Kruskall-Wallis test = 33.2, df = 2,

p<0.001).

Twenty hospitals had lower than expected mortality using HSMRs derived from the best

performing enhanced “gold-standard” severity and comorbidity risk-adjusted model (Model

2) using 95% control limits. These hospitals included 17 offering stroke units, twelve of which

also had 24/7 thrombolysis capability. None of the four hospitals with higher than expected

mortality offered stroke unit care. When analyses were restricted to the peer-group of 31 hos-

pitals with stroke unit facilities, six signalled as outliers with 95% control limits applied to

HSMRs derived from the enhanced “gold-standard” model. All six were identified with

comorbidity adjustment alone with no additional outliers flagged. Therefore, complete con-

cordance between results adjusting for comorbidities with and without severity adjustment

was achieved.

Table 5. Number of outliers and inliers using comorbidity adjusted (Model 1) funnel plot results compared against “gold standard” severity and comorbidity

adjusted (Model 2) funnel plot results (Enhanced Models).

Gold Standard Risk Adjustment (Model 2) N = 113 Hospitals

95% Control Limits 99% Control Limits

Comorbidity adjustment (Model 1) Number of outliers Number of inliers Number of outliers Number of inliers

Number of Outliers 24 6 13 4

Number of Inliers 0 83 0 96

Accuracy Metric 95% Control Limits 99% Control Limits

Percent agreement� (24+83)/113 = 95% (13+96)/113 = 96%

Kappa (95% CI) 0.85 (0.74–0.97) 0.85 (0.70–0.99)

Sensitivity (95% CI)† 24/24 = 100% (86%-100%) 13/13 = 100% (75%-100%)

PPV (95%CI)†† 24/(24+6) = 80% (65%-90%) 13/(13+4) = 76% (55%-89%)

False Positive Rate‡ 6/(6+83) = 7% 4/(4+96) = 4%

False Negative Rate‡‡ 0/24 = 0% 0/13 = 0%

�Percentage of hospitals with concordant classifications between comorbidity (Model 1) and gold-standard adjustment (that is, comorbidity and severity adjustment,

Model 2).

†Proportion of true outliers according to gold-standard comorbidity and severity risk adjustment (Model 2) detected as outliers according comorbidity adjustment

alone (Model 1).

††Proportion of outliers detected by comorbidity risk adjusted modelling (Model 1) that are true outliers according to gold-standard severity and comorbidity

adjustment (Model 2).

‡Number of hospitals falsely detected as outliers using comorbidity risk adjustment alone (Model 1) divided by the number of “inlier” hospitals according to gold-

standard risk adjustment (Model 2).

‡‡Number of hospitals missed as “true outliers” using comorbidity risk adjustment alone (Model 1) divided by the number of “true outlier” hospitals according to gold-

standard risk adjustment (Model 2).

https://doi.org/10.1371/journal.pone.0216325.t005
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Discussion

Main findings

We found that the impact of stroke severity adjustment on hospital performance assessment

depended on how it was assessed. HSMRs calculated using comorbidity burden with or with-

out stroke severity adjustment often generated dramatic differences in hospital rank and the

extent of disagreement largely precluded interchanging rank order. In contrast, identifying

hospital outliers using funnel plots produced largely concordant results whether or not the

severity measure was incorporated into the risk adjusted model. This was particularly the case

when broader control limits were applied to signal outlier status or when model performance

was enhanced with additional prognostic indicators, specifically ED triage information.

Concordance of outlier classification was at least 89% irrespective of which “alert” limits

were applied. Varying control limits altered the sensitivity and specificity of the outlier signal.

Both the sensitivity and PPV for the standard comorbidity adjusted model were 74% when

using 95% control limits, increasing to 83% and 91%, respectively, when 99% control limits

were applied. Applying 99.8% control limits increased the PPV of comorbidity adjustment

results further.

By comparison, there was limited agreement between the rank order of hospital specific

RAMRs with and without accounting for stroke severity. However, changes in rank order were

largely inconsequential. For 50% of hospitals, differences in RAMRs generated from the two

models were less than 1%. League tables have been criticised for overstating spurious differ-

ences between hospitals [38] and for being excessively susceptible to random variation [39].

These results show that rank order methods also exaggerate differences between risk adjusted

models incorporating different prognostic indicators. There are two main implications of

these findings. First, rank ordering hospitals is vulnerable to error when risk adjustment does

not account for stroke severity. Second, using statistical control charts to measure hospital per-

formance appears to limit misclassification of outliers when identified using comorbidity

adjustment alone.

Misclassification of hospital outliers derived using comorbidity adjustment alone was mini-

mised when prognostic indicators were added to enhance risk adjustment. Including ED triage

data and mode of arrival improved model performance, increased the sensitivity of outlier

identification and also reduced rank order differences. The sensitivity of outlier ascertainment

with this enhanced comorbidity adjusted model was 100%, irrespective of whether 95% or

99% control limits were applied to funnel plots. There were no false negatives while false posi-

tives appeared unaffected with stringent limits. Whether comorbidity risk-adjusted models are

sufficiently accurate cannot be completely resolved using statistical methods and inevitably

involves a subjective judgement. When analyses are applied to screen hospitals for further

review, a higher proportion of false-positives may be tolerated to maximise sensitivity and

reduce false negatives. Data used to justify financial incentives or disincentives will likely

demand higher specificity and therefore more stringent control limits may be warranted

[31,33,34]. On the other hand, a patient-centred approach justifies maximising sensitivity as

patients may eschew methods that deliberately reduce the risk of false positives and potentially

increase the number of false negatives.

Comparison with previous research

Stroke severity adjustment improved model performance when predicting mortality consistent

with previous research [7–9]. However, whether stroke severity adjustment is necessary for

valid outlier assessment is uncertain. Two previous studies measured hospital performance
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with and without ischaemic stroke severity adjustment using the NIHSS involving 782 [8] and

64 [7] hospitals. Another study of 28 hospitals measured ambulation upon admission as a

proxy stroke severity measure without distinguishing ischaemic from haemorrhagic stroke or

using nested models to systematically test the impact of severity adjustment [40].

Consistent with findings reported here, changes in rank order in two of the studies indi-

cated substantial differences according to whether case-mix accounted for severity [8,40]. One

of these studies used the NIHSS [8], we used a measure based on GCS scores and others mea-

sured “ability to walking upon admission” [40]. The existing evidence therefore suggests that

ranking methods do not produce reliable results without stroke severity adjustment, and the

evidence supports this to be the case irrespective of how severity is measured. Another study,

however, found severity adjustment did not significantly alter hospital specific mortality rates,

although results were inconclusive due to an overall low mortality rate unlikely to be represen-

tative (<5%) [7].

We found reduced misclassification of comorbidity adjusted HSMRs when analysed using

funnel plots. In contrast, another study demonstrated inaccurate outlier classification when

assessed using either a rank order method or an analysis of 95% credible limits of hospital

effect estimates to identify mortality rates divergent from expected values [8]. Previous studies

did not compare funnel plot results with different risk adjustment methods, so we cannot

make direct comparisons between our results and those reported elsewhere. We acknowledge

that sub-optimal severity adjustment may have driven our finding of minimal misclassification

here and we cannot rule out that a more sensitive measure of severity may have produced dif-

ferent results.

Previous research has been limited due to a large amount of missing severity data with evi-

dence of non-random capture [8], retrospective assessment of severity [7,8,40], incomplete

case ascertainment and voluntary hospital participation [8,40]. These factors may underpin

the differences in findings reported here and elsewhere. Variations in the way hospitals mea-

sure stroke severity rather than differences in case-mix may explain the confounding effect of

stroke severity in hospital performance assessment seen in previous analyses [1]. Large

amounts of missing data may have introduced bias particularly if the proportion of missing

cases varied between hospitals, indicating differential bias in severity ascertainment. A recent

publication has reported that missing severity data leads to inaccuracies in outlier classifica-

tion, although residual bias remained, particularly for smaller hospitals [41]. Our severity mea-

sure is less prone to selective assessment with the advantage of maximising available cases for

analysis (and therefore power), and minimizing differential ascertainment.

Selective severity assessment and non-standardised methods for assessing and reporting

severity between hospitals will also bias hospital performance metrics. For example, there is

evidence that severity recording varies between hospitals and is preferentially recorded in

patients undergoing thrombolysis and those with severe stroke [10,11]. As robust measures of

severity such as the NIHSS are best assessed by those with training and accreditation, assessors

may differ in their reliability of assessment. Other sources of differential severity ascertainment

include variability in the timing of assessment in relation to stroke onset. When severity is

recorded prospectively in real-time or inferred retrospectively from medical notes, the quality

and depth of information available for assessment is likely to differ. In hospitals offering

thrombolysis the recorded NIHSS may be more likely to be prospectively recorded than hospi-

tals not offering thrombolysis or with lower uptake. Severity may be preferentially recorded or

be more accurately inferred in patients to facilitate and reflect end of life care, for those requir-

ing rehabilitation, or to explain patient mortality. A lack of blinding to patient outcome may

be particularly biasing. If the reasons for severity assessment differ across hospitals, then con-

founding is created by different hospitals assessing and reporting severity in different patients
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for different reasons. In our analysis, these potential sources of differential severity ascertain-

ment are not present as hospital processes do not influence which patients receive severity

assessment. The advantage of more sensitive severity assessment may be offset by these poten-

tial sources of bias when the NIHSS is used to risk-adjust hospital performance measures.

Previous studies included hospitals volunteering their participation in registries [8,40]. In

contrast, our assessment is health system-wide, non-selective and includes rural and urban

centres, facilities which do and do not offer stroke units and/or thrombolysis, and high and

low volume hospitals, supporting the generalisability of our findings. While it is unclear how

heterogeneity of hospitals affects case-mix adjustment and hospital profiling, we found evi-

dence for the validity of comorbidity adjusted HSMRs whether analyses were system wide or

when restricted to hospitals offering stroke units, although accuracy was greater with the latter.

More research is required to examine the circumstances in which severity adjustment is more

or less critical to hospital performance assessment. However, stroke severity may be more

likely to confound the association between hospital and patient mortality in an analysis of hos-

pitals volunteering their inclusion and with selective NIHSS assessment because stroke severity

may differ between hospitals more widely than would be expected in a representative cohort

with universal stroke severity assessment.

Ascertaining stroke severity

We have demonstrated the feasibility and validity of a cost-effective approach for measuring

stroke severity across a large health system which is “captured among all patients and reliably
recorded for all hospitals”, [1] as recommended. Independent and standardised real-time

assessment is invulnerable to biases that occur with retrospective ascertainment or severity

scoring unblinded to patient outcome or processes of care.

To our knowledge, this is the first study assessing the impact of stroke severity adjustment

on hospital profiling using real-time assessment of stroke severity at first point of patient con-

tact with the health system, recorded blinded to processes of care and outcomes and ascer-

tained by clinicians independent to those managing patients after admission. The universal

coverage of severity assessment and mode of arrival to hospital–cost-effectively obtained–and

of hospitals and patients within a large, representative and administratively defined state-wide

jurisdiction are novel strengths of the analyses.

We acknowledge that the GCS, and our composite severity measure which assumes the

mildest of strokes in patients arriving by private vehicles, public transport or walking, is not

preferred over the NIHSS or other measures like it that are more sensitive in detecting stroke

specific deficits. We use the GCS and our composite severity measure as a predictor of 30-day

mortality and cannot be certain of the impact of scores such as the NIHSS in our analyses. To

resolve this question, a definitive analysis would use the NIHSS measured in the same manner

as the GCS here, that is, prospectively, blinded to patient outcome and ascertained by clini-

cians independent of those delivering the hospital care.

A validation of simpler measures of stroke severity has been advocated to facilitate wide-

spread economical collection of severity information [1]. The GCS is a compelling candidate

for inexpensive simplified stroke severity assessment given it is universally incorporated into

emergency responder recordings of vital signs and integrated into criteria for the most urgent

triage category upon emergency department presentation. Level of consciousness has been

found to be a good proxy for the NIHSS for predicting 30-day ischaemic stroke mortality in a

study validating prediction models in two separate validation cohorts [42]. The c-statistics for

the model including the NIHSS were 0.86 for both cohorts restricted to ischaemic stroke cases.

When the NIHSS was substituted with its four-point level of consciousness subscale, c-
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statistics were 0.81 and 0.86, respectively affirming good predictive accuracy. The broader

range of scores in the GCS may allow better discrimination than that afforded by the 4-point

consciousness NIHSS subscale. In another study of 1,217 patients, higher c-statistics were

reported for the subset of dysphasic patients compared with the total cohort for models mea-

suring mortality or residential care placement at 90-days, provided all GCS subscales were

summed, allaying concerns that the GCS is not sufficiently sensitive to predict mortality in

patients with focal neurological deficits [26].

In our study, model c-statistics, with and without enhancement (0.83 and 0.82, respec-

tively), corresponded well with those derived from NIHSS adjusted models (for example,

0.79–0.82 [15], 0.82 [8] and 0.85 [28]) using 30-day mortality outcomes. As a prognostic indi-

cator of 30-day mortality, our measure provided mortality rates comparable with those pro-

duced using a validated NIHSS categorisation [28]. For example, 5.3% of “ambulant” patients

died within 30-days, compared with 4.2% for patients with low NIHSS scores (0–7) with 65.4%

versus 54.5%, respectively, dying in severest GSC and NIHSS categories. In patients with GCS

scores indicating moderate brain injury (scores between 9 and 12) 38.5% died, while 31.6% of

patients with moderate to severe ischaemic stroke according to NIHSS classification died.

While this should not imply that the GCS and the NIHSS are interchangeable, the comparison

suggests convergent validity of these measures when assessing mortality following an ischae-

mic stroke.

The GCS has been shown to be a validated measure of mortality after ischaemic stroke

[26,27] and arrival mode is also highly prognostic [eg 1,28]. Integrating ED triage information

overcame limitations of using mode of arrival as triage criteria mandating immediate treat-

ment include a GCS score of less than nine and other dire vital signs [37]. Therefore, our mea-

sures account for any relatively poor status in patients presenting without paramedical

assistance and deterioration in the condition of patients delivered by ambulance with good ini-

tial vital signs.

Significant barriers exist to implementing the gold-standard NIHSS as a feasible universal

measure. The NIHSS is frequently missing, retrospectively inferred from medical records and

often recorded unblinded to patient deterioration or outcome in quality assurance registries

[8,10,28]. Experts have called for the development of appropriate surrogate measures [1],

which can be cost-effectively implemented on a system-wide scale, and our method does this.

When severity adjusted HSMRs were also adjusted for urgent ED triage, 17 out of twenty hos-

pitals with lower than expected 30-day mortality provided stroke unit care furnishing prima

facie real-world validity for this model. As a group, these hospitals had lower than expected

mortality compared with others while those offering thrombolysis had even lower rates. Access

to stroke unit care should, when adjusted for severity indicators, translate to improved patient

outcomes and our analysis provides evidence for effective knowledge translation. Further, the

majority of hospitals with lower than expected mortality were higher volume providers, consis-

tent with reports demonstrating lower mortality in higher caseload hospitals [43,44].

Strengths and limitations

Potential limitations include the use of a severity measure that is not a gold-standard measure

of stroke severity as discussed above. Coding inaccuracy is a potential limitation here although

principal stroke diagnoses–the vast majority of admissions studied here (97.9%)–have been

validated as 95% accurate within our jurisdiction [45,46]. Coding accuracy for cerebrovascular

disease when validated against an “expert coder” was high in another Australian jurisdiction

(Sensitivity = 89%, Positive Predictive Value = 93% and Kappa for inter-rater reliability = 0.91)

[47]. Unspecified stroke cases (ICD-10 I64) were included in keeping with previous research
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[14–16]. The assumption these cases are predominately ischaemic is supported by validation

studies that demonstrate incorporating unspecified strokes improves the sensitivity of ischae-

mic stroke ascertainment without compromising PPV [48].

Ambulance bypass may complicate hospital profiling analyses by altering case-mix. This

may bias HSMRs against larger hospitals that have the capacity to manage more complex

patients, making fair comparisons between hospitals challenging. However, we found that

larger hospitals and those offering stroke units to which less well patients may be preferentially

diverted, had lower than expected mortality providing limited evidence of bias against these

hospitals with or without severity adjustment. In health systems where diversion is widespread,

stratification of analyses by hospital characteristics is one approach to minimise confounding.

However, system-wide analyses remains desirable and we have identified a feasible and cost-

effective method for case-mix adjustment incorporating a measure of severity that is likely less

biased than current methods.

The years under study predate evidence supporting mechanical thrombectomy. Rates of

mechanical thrombectomy at the time were low and access was usually through inter-hospital

transfers. Our analysis attributed care to the first presenting hospital on the grounds that deci-

sions made at the first hospital have flow-on effects for patient outcomes with the gatekeeping

of access to thrombectomy being just one of these decisions. This immunises against the bias-

ing effect inter-hospital transfers have on hospital case-mix variability and system-wide linkage

allows for reliable attribution of care. We note that the impact of endovascular clot retrieval on

mortality was reported as neutral in a meta-analysis, although mortality has varied between tri-

als [49]. If procedure coding can identify these cases, then the impact of these cases on hospital

profiling can be researched.

Previous studies have each used different variables for comorbidity adjustment, although

studies share common factors such as age, prior stroke, socioeconomic status and comorbidi-

ties relevant to stroke risk supporting the generalisability of findings, including our own [2–

9,40]. We selected the Charlson Comorbidity Index, as this index is widely validated for

30-day mortality outcomes [50]. Our modelling strategy reduced misspecification and

employed a long look-back period to minimise comorbidity misclassification which are

strengths of the analysis, maximising accuracy. Analyses yielded similar model performance

indicators suggesting generalisability of these measures.

We produced two sets of analyses, one using a standard risk adjustment model and another

using an enhanced risk adjustment model. This had the effect of substantially improving

model performance for the comorbidity adjusted model but only marginally so for the stroke

severity adjusted model. Improved prediction also improved concordance between comorbid-

ity and stroke severity adjusted models suggesting outlier misclassification is reduced with

more optimal comorbidity adjustment.

Thirty-day mortality is widely favoured as a performance metric and therefore our results

have direct application to analyses intended to inform health policy and practice. While mor-

tality is easily quantified with high validity it is not the only outcome that matters in stroke.

Low mortality rates may favour hospitals which more aggressively pursue life-sustaining inter-

ventions to prolong survival. We do not know the complex social and inter-personal commu-

nication that may have led to decisions influencing mortality rates and the capacity to measure

the quality of decision-making in a systematic way is currently limited. Trade-offs between

survival and disability are genuinely challenging for clinicians, patients and their families

given evidence that prognostication is inexact [51]. The development of hospital performance

metrics incorporating disability, quality of life outcomes and doctor-patient interactions is an

area for future research.
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We acknowledge that there are different methods for risk adjustment and calculating

HSMRs. For example, risk adjustment may be performed using a fixed effects or random

effects approach either with or without smoothing of observed counts, while HSMRs may be

derived using direct or indirect standardisation [2,29–32,52,53]. No single method is univer-

sally preferred and every method has advantages and disadvantages. As opposed to using

“smoothed” observed counts (ie shrinkage estimates), HSMRs calculated using observed

deaths enable funnel plot analyses [2,29–31]. We were able to illustrate the validity or other-

wise of two widely used approaches for hospital profiling and our comparisons derived from

severity adjusted and unadjusted models were not confounded by the statistical approach.

Two key considerations for valid modelling were met, namely accounting for inter-dependen-

cies of outcome data within hospitals and minimising the instability of HSMRs for smaller

hospitals.

Conclusions

The validity of hospital performance measurement depends on the perceived credibility of

analyses. Case-mix adjustment has traditionally accounted for comorbidity burden without

including stroke severity measures or other prognostic indicators to enhance prediction [1–6].

Performance analysts have assumed that comorbidity adjustment serves as a valid proxy for

disease severity despite significant disquiet about the accuracy of this approach [1].

Using a universal severity measure ascertained prospectively and in real-time, we reported

that the impact of stroke severity adjustment on hospital rank order appeared impressive.

However, differences in estimated mortality rates with and without stroke severity adjustment

were often trivial. Our results therefore caution against using rank order methods, as hospital

rankings appear greatly influenced by minor differences in RAMRs. Funnel plots were less vul-

nerable to differences in risk-adjustment and may be recommended to suggest further review

in jurisdictions which either lack measures of severity or where there is evidence of biased

and/or incomplete severity ascertainment.

We have also demonstrated the feasibility of linking routinely collected pre-hospital, hospi-

tal and mortality data to create a virtual stroke registry, cost-effectively integrating a measure

of severity, to monitor outcomes and performance. Prehospital GCS combined with other var-

iables from routinely collected data provided effective case mix adjustment for predicting

30-day mortality after stroke.
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