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Hepatic steatosis in HCV-infected persons
in the direct-acting antiviral era
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Abstract

Hepatitis C virus (HCV) infects 130–170 million people worldwide. Recently, direct-acting antivirals have been shown
to eradicate HCV infection in 90–95 % of non-cirrhotic patients depending on genotype, treatment experience, and
regimen used. Similar rates are achieved among compensated cirrhotics, although longer treatment duration and/
or ribavirin may be required. HCV uses host lipid metabolism for its lifecycle and can cause hepatic steatosis and
insulin resistance. Hepatic steatosis, defined as excessive triglyceride deposition in hepatocytes, affects
approximately half of HCV-infected individuals. Genetic factors and co-morbidities can drive further steatosis, which
in turn can instigate fibrosis and progression to cirrhosis and hepatocellular carcinoma. Polymorphisms in genes
that modulate lipid deposition in hepatocytes such as patatin-like phospholipase domain-containing protein 3
(PNPLA3) and transmembrane six superfamily member 2 (TM6SF2) predispose people to steatosis. Metabolic
syndrome, obesity, and insulin resistance are increasing worldwide and further contribute to hepatic steatosis, and
alcohol has long been recognized as a cause of lipid deposition in the liver. HIV and antiretroviral drugs, but not
HBV, may further drive hepatic steatosis. While many of these factors limit response to interferon-based regimens
for treating HCV, responses to direct-acting antivirals appear not to be impaired. The effect of HCV eradication on
hepatic steatosis and progression to fibrosis, cirrhosis, and hepatocellular carcinoma warrants further study in the
era of direct-acting antivirals.
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Background
Hepatitis C virus (HCV) infects 130–170 million people
worldwide, close to 3 % of the world’s population [1].
Approximately 80 % develop chronic viral hepatitis, which
can progress to liver fibrosis, cirrhosis, and hepatocellular
carcinoma (HCC). Recently, interferon (IFN)-free direct-
acting antiviral regimens have been developed for HCV
treatment. Despite their cost, these direct-acting antiviral
regimens are now the treatment of choice for all HCV
genotypes. Sustained virologic response (SVR) at 12 weeks
(SVR12), i.e., undetectable HCV RNA levels 12 weeks
after completing treatment, is achieved in 90–95 % of
non-cirrhotics, depending on genotype, treatment experi-
ence, and regimen used [2–4]. Comparable responses can
be achieved in cirrhotics, but an extended treatment
duration and/or ribavirin may be required based on the

regimen [2]. However, SVR12 may be achieved in
only 80–85 % of decompensated cirrhotics with most
regimens, although newer options approach SVR rates
of 95 % [2, 4–7].
HCV-infected persons with superimposed conditions

such as human immunodeficiency virus (HIV) infection
or hepatic steatosis progress to fibrosis and cirrhosis
more often and more quickly [8, 9]. In the IFN era,
many of these co-morbidities compromised treatment
success. Now, with HCV eradication possible in virtually
everyone, the sequelae of steatosis and its drivers will
garner more attention. Here, we explore the drivers of
hepatic steatosis in persons infected with HCV and how
these factors may contribute to clinical outcomes.

HCV and steatosis
Approximately 40–80 % of HCV-positive patients that are
biopsied have steatosis, defined as excessive triglyceride
deposition in hepatocytes [10, 11]. The prevalence of hep-
atic steatosis has a strong genotype dependence, [12, 13]
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and genotype 3 infection is now widely accepted as an
independent cause of steatosis. Increased severity of
hepatic steatosis correlates with higher viral loads, and
genotype 3-associated steatosis resolves after SVR with
antiviral treatment [12, 14]. Although HCV genotype 3
infection is independently associated with accelerated
fibrosis progression [15] and increased risk for HCC, the
steatosis associated with genotype 3 has not been shown
to increase these complications.
While genotype 3 patients have increased fibrosis

progression, enhanced risk of HCC development, and
lower SVR rates with direct-acting antivirals, genotype 1
patients with steatosis may also be at risk for poorer
clinical outcomes. This steatosis is likely not mediated
solely by HCV. Thus, SVR may not rectify the accelerated
hepatic injury and increased fibrosis progression, although
some recent studies have shown improvement in lipid
profiles following successful HCV treatment in genotype 1
patients [16].
Hepatic steatosis in HCV-infected persons can also

be caused by the same host factors that contribute to
steatosis in HCV-uninfected persons, such as meta-
bolic syndrome, increased body mass index (BMI),
hypertriglyceridemia, chronic alcohol use, other infec-
tions, or exposure to certain medications [17]. Unlike
steatosis caused by genotype 3, steatosis caused by meta-
bolic syndrome or insulin resistance is associated with
accelerated fibrosis progression, decreased response to
IFN-based treatment regimens, and increased risk for
HCC [15].
In many people both viral- and host-mediated factors

likely contribute to the development of hepatic steatosis.
Indeed, HCV replication relies on host lipid metabolism
for its lifecycle and results in hepatic steatosis by several
mechanisms such as enhancing lipogenesis, impairing
mitochondrial lipid oxidation, and downregulating
microsomal triglyceride transfer protein (MTTP) activity
[18–20]. Thus, steatosis itself may enhance HCV replica-
tion, which has been shown to occur in alcohol-altered
lipid metabolism [21].

Metabolic syndrome
Obesity results in increased accumulation of fat, primar-
ily triglycerides, which are synthesized from glycerol and
long chain fatty acids (LCFA). LCFA enter hepatocytes
via specific, facilitated transport processes, which are
regulated in obesity at least in part by insulin, leptin, and
spexin [22]. The metabolism of the increased cellular
triglyceride content may lead to cell-specific lipotoxicity,
contributing to several comorbidities, including hepatic
steatosis, non-alcoholic fatty liver disease (NAFLD), and
non-alcoholic steatohepatitis (NASH). Overall, in obesity
the development of hepatic steatosis is due to too many
triglycerides entering the liver via increased LCFA

uptake and synthesis, increased triglyceride uptake and
synthesis, and too little being removed due to decreased
ApoB100 synthesis, decreased triglyceride mobilization,
and decreased VLDL assembly and secretion [22].
The most frequent causes of hepatic steatosis in persons

that are infected with genotypes other than type 3, include
increased BMI and visceral obesity [23–25]. These two
factors provide strong evidence that insulin resistance is
the primary pathologic mechanism that leads to abnormal
lipid accumulation within hepatocytes. However, it is
difficult to determine if the insulin resistance is entirely
host-driven, due to HCV infection, or a combination
[20, 26–28]. With the increasing incidence of NAFLD
and non-alcoholic steatohepatitis (NASH) in the HCV-
infected population, underlying host factors are com-
monly superimposed on chronic HCV infection. HCV
itself has been shown to increase insulin resistance, and
insulin resistance increases with increasing viral load
and decreases after HCV treatment [29–31]. Based on
in vitro experiments, HCV core protein may increase
insulin resistance by down-regulation of glucose trans-
porter 2 (GLUT2), which is responsible for transporta-
tion of glucose to hepatocytes. TNF-alpha pathways
have also been shown to be involved in insulin receptor
substrate inhibition, leading to possible GLUT4 inhib-
ition and decreased uptake of glucose from hepatocytes
and other cells [32–35]. Just as for insulin resistance, it
is difficult to determine the extent to which host factors
are responsible for the development of diabetes mellitus
in HCV-infected individuals versus the amount the
viral infection itself contributes. Regardless, there is
now convincing evidence that HCV infection increases
the risk of developing diabetes, which then increases
the risk of developing hepatic steatosis [20].

Genetic predisposition to steatosis in HCV infection
Several genes have recently been identified as predis-
posing factors for hepatic steatosis, including in the
setting of HCV infection. Patatin-like phospholipase
domain-containing protein 3 (PNPLA3), a lipase that
may mediate lipid deposition in hepatocytes and adipo-
cytes [36, 37], is perhaps the best described of these
factors. Increased PNPLA3 expression is associated with
steatosis, with higher levels correlating with greater sever-
ity [38]. The rs738409 (C- > G) I148M polymorphism is
associated with increased risk of NAFLD and progression
of NAFLD to NASH and cirrhosis in HCV-uninfected
persons [39–41]. This polymorphism is also associated
with steatosis, steatohepatitis and fibrosis in HCV-infected
persons [42–44], even after adjusting for age, sex, body
mass index and diabetes [45]. Transmembrane six super-
family member 2 (TM6SF2) likewise modulates triglycer-
ide deposition in hepatocytes. The rs58542926 (A- > G)
E167K polymorphism in TM6SF2 is associated with
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increased steatosis in persons with chronic HCV infection
[46], albeit to a lesser extent than the PNPLA3 poly-
morphism [47], and increased hepatic steatosis, steatohe-
patitis, and fibrosis in NAFLD [46, 48]. Increased hepatic
steatosis and fibrosis on biopsy of HIV/HCV co-infected
patients were also associated with polymorphisms in the
Fat Mass and Obesity-Associated Protein (FTO) gene,
which may influence food consumption [49]. Among the
Chinese Han population, ApoC3 polymorphisms corre-
lated with higher hepatic and circulating triglyceride
levels and subsequently increased risk of NAFLD [50],
and among diabetic Taiwanese participants, a poly-
morphism of the adiponectin gene rendering lower
levels was associated with increased risk of NAFLD
[51]. In contrast, polymorphisms resulting in increased
concentrations of uncoupling protein 2 (UCP2), which
modulates reactive oxygen species production, confers
a decreased risk of NASH [52]. In sum, numerous
genetic factors may predispose people with and without
HCV infection to hepatic steatosis.

HCV and alcohol
The development of hepatic steatosis due to chronic
alcohol exposure involves several complex metabolic
pathways including the alcohol dehydrogenase (ADH)
pathway, microsomal ethanol-oxidizing system (MEOS),
peroxisome proliferator-activated receptor-α (PPAR-α)
and PPAR-γ, AMP activated protein kinase (AMPK),
sterol regulatory element-binding proteins (SREBPs),
endoplasmic reticulum stress and methionine metabol-
ism, and mitochondrial abnormalities and lipid peroxida-
tion [53]. Both acute and chronic alcohol use result in
increased production of reactive oxygen species (ROS)
and reductions in the levels of antioxidants, which is
partly mediated by the intermediate product of ethanol
metabolism, aldehyde. Due to increased activity of these
various metabolic pathways, oxygen requirement by
hepatocytes is increased, leading to ischemia and centri-
lobular liver necrosis. In addition, steatotic hepatocytes
are more susceptible to ischemic injury [54].
Cytokines produced by adipocytes and inflammatory

cells including Kupffer cells, such as adiponectin, leptin,
TNF-α, and IL-6, also play a role in the pathogenesis of
alcohol-mediated liver disease and NASH [53]. Through
many interactions, including with PPAR-α and PPAR-γ,
adiponectins decrease lipid synthesis and increase
lipolysis. Whether alcohol results in decreased adipo-
nectin levels remains controversial [55, 56]. Leptin
increases CD14 expression on Kupffer cells and acti-
vates hepatic stellate cells, promoting hepatic inflam-
mation and fibrosis, respectively [57]. Alcohol also
increases the permeability of the gut barrier, leading to
increased endotoxemia, and changes the intestinal
microbiome [58, 59], which further enhances cytokine

production and activation of hepatic inflammatory cells
and stellate cells.
There is an increased prevalence of HCV infection in

alcoholics [60, 61] and liver injury appears to be more
severe in HCV-infected persons with steatohepatitis.
People infected with HCV that are heavy drinkers have
accelerated fibrosis progression and are at higher risk of
developing HCC [62, 63]. Several factors have been
implicated in potentiating the effects of alcohol exposure
in HCV-infected persons, which includes impaired anti-
viral immunity, increased viral replication, increased
oxidative stress, increased iron overload, and steatosis.

Contribution of chronic HBV and HIV co-infections to
steatosis
Approximately 2.75 million people worldwide have HIV-
HCV co-infection and 2.6 million have HBV-HCV co-
infection [64]. HIV infection accelerates the progression
of HCV to cirrhosis [65], but HIV's contribution to stea-
tosis has only been recognized recently. NAFLD affects
13-50 % of HIV-infected persons [66–68]. In a study of
30 HIV-infected participants with unexplained elevated
transaminases, 72 % had steatosis and/or fibrosis, 53 %
had NASH, and 63 % had fibrosis [69]. HIV-HCV co-
infected participants have a higher rate of steatosis than
either mono-infected group in some studies [70–73].
Potential contributing factors may include dyslipidemia
and insulin resistance due to HIV and/or antiretrovirals,
obesity, sedentary lifestyle, and increased systemic in-
flammation [9, 74, 75]. Older antiretrovirals such as
stavudine appear more likely to contribute to steatosis
than the more commonly used agents today [75]. In
addition, decreased adiponectin with HIV infection may
contribute to the increased steatosis [76]. Thus, lipid
deposition in the liver is increased in HIV infection.
HIV-infected people with NAFLD are also more

likely to develop steatohepatitis [77]. HIV can directly
infect Kupffer cells, although these data are contro-
versial [78]. Regardless, HIV may increase the popula-
tion, proliferation, and turnover of Kupffer cells in
the liver, resulting in a pro-inflammatory state [78].
HIV infection is associated with increased transloca-
tion of microbial products from a permeable intestinal
barrier [79] through the portal circulation to the liver,
where they are phagocytosed by Kupffer cells and
may drive further hepatic inflammation [80]. The
mitochondrial dysfunction induced by HIV and antire-
trovirals induces reactive oxygen species production,
causing additional hepatic damage [81]. The overall
suppression of regulatory T cell pathways by HIV
infection may also inhibit modulation of this inflam-
matory state [9]. Ultimately, HIV accelerates progres-
sion to cirrhosis in HCV-infected persons, particularly
in the presence of steatosis [65, 82].
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HBV increases the rate of progression to cirrhosis and
hepatocellular carcinoma in HCV-infected persons [83],
but whether HBV can contribute to hepatic steatosis
remains controversial. The HBV protein HBx, which
facilitates HBV replication [84], induces hepatic steatosis
and fatty acid oxidation in mouse models [85, 86]. How-
ever, based on a meta-analysis of human studies, hepatic
steatosis is less common among HBV-infected compared
to HCV-infected persons [72] and is usually found in
conjunction with host factors such as hypertriglyceridemia
[72, 87]. Some data suggest that HBV infection may even
be associated with a lower risk of steatosis, but this was
also in the context of lower triglyceride levels and less
metabolic syndrome [88]. Unexpectedly, increased hepatic
steatosis is actually associated with lower HBV DNA levels
[72, 89], but this finding may be explained by the associ-
ation of PNPLA3 polymorphisms with both steatosis and
lower HBV DNA levels [90]. Thus, HBV does not clearly
increase the risk of steatosis.

The effect of comorbidities on HCV treatment response
The direct-acting antiviral agents for HCV infection
achieve SVR rates exceeding 95 % for non-cirrhotic
patients. Lengthening duration of therapy and/or adding
ribavirin can render similar SVR rates in cirrhotics, but
with most regimens, SVR rates are about 10 % lower in
decompensated cirrhotics [2]. Co-morbidities and con-
comitant medications may limit regimen options, which
could influence SVR rates. Co-morbidities that contrib-
ute to cirrhosis by increasing the risk of steatohepatitis
may also impact HCV treatment success.
These contributors to steatohepatitis have varying

impacts on response rates to HCV treatment. Whether
steatosis alone affects SVR rates to IFN-based regimens
in the absence of fibrosis is controversial, and few stud-
ies have been done with IFN-free regimens [82, 91–94].
Metabolic syndrome was associated with decreased SVR
rates in the IFN era [95, 96] but no longer seems to have
an effect [97, 98]. People with HIV infection had lower
SVR rates to IFN-based regimens than HIV-uninfected
people, 40 % versus 56 % [99], but now HIV-infected
persons achieve comparable SVR rates, exceeding 95 %
in the absence of cirrhosis [100–102]. HBV does not
decrease SVR rates regardless of the treatment regimen.
However, HBV and HCV inhibit each other's replication,
and consequently, HBV may reactivate with HCV treat-
ment [103–106], with the risk for progression to cirrho-
sis and HCC. No data demonstrate decreased SVR rates
to direct-acting antivirals with alcohol or even illicit
substance use [2]. However, binge drinking, illicit sub-
stance use and potential complications such as incarcer-
ation can interfere with a patient's adherence to antiviral
regimens and therefore warrant consideration. Thus,
most comorbidities do not appear to directly attenuate

responses to direct-acting antiviral treatment, but their
contributions to cirrhosis may lower the likelihood of
achieving SVR.

Conclusions
HCV infection is now a curable disease. However, HCV-
infected people have comorbidities that cause steatosis
and may continue to damage the liver after HCV eradica-
tion, including the increasingly prevalent metabolic syn-
drome. HCV may contribute to hepatic steatosis and to
metabolic syndrome, forming a positive feedback loop that
may further increase steatosis and culminate in steatohe-
patitis and fibrosis. Ultimately, after SVR, fibrosis can
regress in some patients [107, 108], but based on data
from the IFN era, the presence of these comorbidities may
prevent fibrosis regression. Long-term studies in HCV-
infected persons treated with direct-acting antivirals
will illuminate the degree to which steatosis, steatohe-
patitis, and/or fibrosis reverse with SVR, particularly
with persistence of other comorbidities. In sum, comor-
bidities may have less of an impact now on SVR with
the highly efficacious direct-acting antiviral therapy, but
their persistence may prevent complete return to health
in HCV-cured patients.
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