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Nanoscopic diffusion of water on a topological
insulator
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Martin Bremholm 6, Philip Hofmann7, John Ellis2 & William Allison2

The microscopic motion of water is a central question, but gaining experimental information

about the interfacial dynamics of water in fields such as catalysis, biophysics and nano-

tribology is challenging due to its ultrafast motion, and the complex interplay of inter-

molecular and molecule-surface interactions. Here we present an experimental and com-

putational study of the nanoscale-nanosecond motion of water at the surface of a topological

insulator (TI), Bi2Te3. Understanding the chemistry and motion of molecules on TI surfaces,

while considered a key to design and manufacturing for future applications, has hitherto been

hardly addressed experimentally. By combining helium spin-echo spectroscopy and density

functional theory calculations, we are able to obtain a general insight into the diffusion of

water on Bi2Te3. Instead of Brownian motion, we find an activated jump diffusion mechanism.

Signatures of correlated motion suggest unusual repulsive interactions between the water

molecules. From the lineshape broadening we determine the diffusion coefficient, the diffu-

sion energy and the pre-exponential factor.
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Water is ubiquitous in everyday life, yet its nanoscale
motion at surfaces is a major challenge to theory,
which suffers from the lack of experimental insight1–9.

The motion of protons, the vibrational dynamics and electronic
transitions of water at surfaces usually happens at ultrafast time
scales (in the order of femtoseconds)10. These processes are
accessible with ultrafast optical spectroscopy11–13, whereas the
interfacial diffusion of molecules typically occurs in the pico- to
nanosecond regime and is monitored either in real space using
microscopic techniques or in reciprocal space using scattering
techniques. However, to make these fast diffusive motions
accessible to microscopy studies, the process typically needs to be
considerably slowed down. At the same time an intrinsic problem
of scanning probe microscopy is that the probes inevitably induce
perturbation to the fragile water structure, due to the excitation of
tunnelling electrons and the tip–water interaction forces10,14.

The studied Bi2Te3 surface is classified as a topological insu-
lator (TI)15, a class of materials which exhibit topologically pro-
tected metallic surface states (TSS) and an insulating bulk
electronic structure16–18. The distinct properties of their surface
states make TIs promising candidates for possible applications in
spintronics and quantum information17–19, while surface-
dominated transport is currently one of the major objectives on
the way to technical applications20,21. However, topology can
have implications far beyond electronic transport properties and
topological materials provide a perfect platform for studying
phenomena such as heterogeneous catalysis. Since the TSSs are
insensitive to details of the surface such as defects or other kinds
of disorder, in contrast to trivial surface states, TIs allow to study
processes such as the catalytic activity where the condition of the
surface is one of the most important, but also most difficult to
describe parameters22.

The stability of the electronic structure of TI surfaces upon
adsorption has been widely studied due to being crucial for
future TI based devices23–29, including also the modification of
the electronic structure upon adsorption and doping30–35. On
the one hand, Bi2Se3 reacts with water vapour giving rise to an
n-doping of the surface23. In the case of Bi2Te3 on the other
hand, it was shown that water adsorption is less pronounced
than the adsorption of oxygen26,36, even though the reactivity
of water with Bi2Te3 is still under debate

26,27,37. Except for the
influence of adsorbates on the electronic structure, chemistry
on TI surfaces has been largely ignored, even though it was
shown that TIs hold great potential for sensing applications38,39

and exfoliation in liquid environment has been used to obtain
nanosheets with unique properties40–42. With respect to cata-
lysis, the existence of TSS can modify the catalyst–adsorbate
interactions43, e.g. acting on the adsorption energy of small
molecules irrespective of surface modifications22, and effect
processes sensitive to the adsorbate binding strength such as
hydrogen evolution reactions44. It has been suggested that the
TSSs can be used as an additional parameter to adjust the
catalyst–adsorbate interactions, with the TSS acting as a tunable
electron bath22.

Given such implications a thorough investigation addressing
the interaction of TI surfaces with water is overdue, as is an
experimental study about the dynamics and diffusion of adsor-
bates on TI surfaces in general. Up to now studies about the
diffusion and mobility of adsorbates on TI surfaces are solely
based on theoretical methods and include the diffusion of metal
and alkali metal atoms on Bi2Se345,46 and the diffusion of Pb47.
Since the kinetics of surface chemical reactions and epitaxial
processes used to build advanced TI based structures depends on
the mobility of adsorbates, an accurate characterisation of these
phenomena and a precise understanding of the diffusion
mechanism is crucial.

In this work we provide a detailed insight into the atomic-scale
motion of water on the TI surface of Bi2Te3(111). Our experi-
ments provide a unique insight into wetting, friction and physi-
sorption for an important class of materials. Therefore, we use
helium-3 spin-echo (HeSE) spectroscopy48 which allows to follow
the atomic-scale motion of atoms and molecules on surfaces,
resolving diffusion processes on timescales from ns to sub-ps. The
experimental data is analysed in terms of an analytical model for
adsorbate diffusion and compared with density functional theory
(DFT) calculations including dispersion corrections. The data
provides a measure of the diffusion barrier and coefficient and
shows that the motion of water molecules on Bi2Te3(111) occurs
by activated hopping on a hexagonal lattice. Our results illustrate
that the structure and dynamics of water is determined by an
intricate interplay of intermolecular interactions and molecule-
surface interactions with signatures of correlated motion due to
repulsive interactions between the individual water molecules as
further detailed in kinetic Monte Carlo (MC) simulations. Finally,
since HeSE is capable of delivering detailed information on the
energy landscape during diffusion49,50, it allows us to elucidate
the physics of energy dissipation at solid–liquid interfaces i.e. the
mechanisms in which vibrational (e.g. phonons) and electronic
energy (e.g. electron–hole pairs) is transferred between the
adsorbates and the surface which eventually governs tribology.
We conclude from the observed motion that energy dissipation in
nanoscale motion of water on TI surfaces lies in the medium to
low-friction regime.

Results
Water uptake and dynamics measurements. The tendency of
water to aggregate upon adsorption on metallic surfaces is well
documented in the literature4–7,51. After dosing water on Bi2Te3
at 105 K (to different coverages), diffraction scans do not show
any sharp peaks, indicating the absence of long range order and
the adsorption of water as amorphous multilayers. Between 105
and 130 K (where desorption starts to become significant, see
Supplementary Figs. 2 and 3), we could not detect a diffusion
signature. Hence, our diffusion measurements were performed in
a temperature range of 135–160 K where dynamics could be
clearly resolved, while maintaining a small equilibrium water
pressure (around 10�9 mbar) against desorption and ensuring
small water densities which allows interpretation of the dynamics
observed.

The dynamics of H2O adsorbed on Bi2Te3 were studied
experimentally by measuring the intermediate scattering function
(ISF), using a HeSE spectrometer48. The ISF, IðΔK; tÞ, describes
the correlation at the surface after time t, for the scattering
condition of the helium beam, ΔK—the parallel momentum
transfer. Loss of correlation (dephasing) at ðt1;ΔK1Þ, as
manifested in the helium beam intensity, is a measure for the
dynamics at the surface during time t1, with the characteristic
periodic length scale 2π=ΔK1. When the adsorbate dynamics are
well described as hopping between adsorption sites that form a
Bravais lattice, the ISF is known analytically and for a fixed ΔK
consists of an exponential decay in t with a rate that depends on
ΔK52. Allowing for a static offset due to surface defects, IðΔK; tÞ
can then be written as:48,53

IðΔK; tÞ ¼ I0ðΔK; 0Þ � e�αðΔKÞ�t þ CðΔKÞ ð1Þ

where α is the dephasing rate and I0 the amplitude at t ¼ 0 (see
Fig. 1(c) for a typical ISF). The dynamics can then be extracted
from the form of IðΔK; tÞ and the functional dependence of
αðΔKÞ on ΔK.

Most dynamics measurements were performed at 150K at a
specular attenuation of I0=3 and I0=5 which corresponds to a
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coverage of 0.05 and 0.08 monolayer (ML), respectively (see
Supplementary Methods). The motion of H2O on Bi2Te3(111)
was then extracted from HeSE measurements based on a
single exponential fit of the experimentally measured ISF
according to (1).

At short times, the data shows the expected deviation from a
single exponential and we use an iterative routine to optimise the
range for inclusion (see Supplementary Methods and Supple-
mentary Fig. 4). Note that the intermediate scattering function
may contain information about dynamical processes at different
timescales. In particular, the short-range limit typically includes
signatures from substrate phonons or may also contain informa-
tion about intra-cell diffusion48. However, in the present work we
concentrate on the longer times which are related to the long-
range part in diffusion—i.e. the translational part of the diffusion
mechanism. The data points within the time-window related to
the long-range (translational) diffusion are best fitted with a
single-exponential decay and there is no evidence for a double-
exponential decay53 within this window.

Diffusion mechanism of H2O. The atomic-scale diffusion of
molecules on surfaces is typically described by molecules moving
or hopping along the surface while the substrate provides the
thermal energy for the motion48,55–57. For an activated diffusion
process, motion of the adsorbates is governed by the interaction
of the molecule with a corrugated potential energy surface (PES).
Information about the PES and the hopping motion of the
molecule can be obtained from the temperature dependence and
the functional form of αðΔKÞ48.

First, the activation energy for the diffusion of H2O on Bi2Te3
(111) can be obtained via temperature dependent measurements
at a fixed momentum transfer ΔK ¼ jΔKj. On a not-too-weakly
corrugated surface, adsorbate diffusion proceeds by thermally
activated hopping whose rate is given by an Arrhenius
relation48,56,58,59. We will shortly see that α at a fixed ΔK is

proportional to a hopping rate (Fig. 3). Therefore, as long as the
diffusion mechanism does not change significantly with tem-
perature, αðTSÞ at a fixed ΔK is also expected to follow an
Arrhenius relation:

α ¼ α0 exp � Ea

kB TS

� �
ð2Þ

where α0 is the pre-exponential factor describing the jump
attempt frequency, Ea is the activation energy for diffusion, kB the
Boltzmann constant and TS the temperature of the sample
surface.

Figure 2(a) shows an Arrhenius plot for two different
momentum transfers (ΔK ¼ 0:22 Å−1 and ΔK ¼ 0:55 Å−1 along
ΓM) over a temperature range from 130 to 160 K. The plot of
lnðαÞ clearly shows a linear dependence upon 1=TS as expected
for activated motion. To ensure a constant H2O coverage of 0.05
ML at all temperatures, the over-pressure at each temperature
was adjusted to maintain an attenuation of the specularly
reflected signal by a factor of 3. The uncertainties are the
corresponding confidence bounds (1σ) of the single-exponential
fit and the activation energy Ea is then obtained from the slope of
a weighted fit to the Arrhenius plot (Fig. 2(a), see Supplementary
Methods for more details), whereupon the intercept gives α0.
Based on both data sets shown in Fig. 2(a) we obtain an activation
energy Ea of:

Ea ¼ ð34 ± 4ÞmeV:

While the temperature range of the measurements is limited by
the timescale accessible to the instrument, the range is greater
than achieved for water diffusion by some other techniques2.
There is no evidence of a curvature, which would indicate a
temperature dependence of the pre-exponential factor (see
Supplementary Note and Supplementary Fig. 6). Only a
pathological coincidence where the diffusion mechanism changes
in the experimental temperature window would lead to any
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Fig. 1 Bi2Te3 structure and dynamics measurements from the lineshape broadening. a Top and side view of the (111) surface of Bi2Te3. The surface layer
is terminated by a Te layer and the red rhombus highlights the hexagonal surface unit cell. b Surface Brillouin zone with the corresponding scanning
directions. c A typical intermediate scattering function (ISF) showing the normalised polarisation versus spin-echo time t. The measured data (filled circles)
is fitted with a single exponential decay ((1), solid green line) characterised by the dephasing rate α. The logarithmic time axis shows that a single
exponential provides a good description of the experimental data.
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systematic error in terms of the activation energy or pre-
exponential factor.

Having established the diffusion barrier for the motion we now
turn to the spatial correlation of the motion. The characteristics
of the dephasing rate α versus the momentum transfer ΔK reflects
the underlying energy landscape. The dependence of αðΔKÞ on
the momentum ΔK for the diffusion of H2O on Bi2Te3(111)
(TS ¼ 150K) is shown in Fig. 2(b) for both high symmetry crystal
directions (see Fig. 1(b) for the scanning directions).

Simple hopping motions of an adsorbate can be described by
an analytical model, the Chudley–Elliott (CE) model48,52,55. It
assumes that a particle rests for the mean residence time τ
between motion from one adsorption site to the other. In the case
of motion on a Bravais lattice, the dephasing rate αðΔKÞ becomes:

αðΔKÞ ¼ 2
τ

X
n

pnsin
2 ΔK � ln

2

� �
ð3Þ

where ln are the corresponding jump vectors and pn is the
probability that a jump to the corresponding site occurs.

Figure 2(b) shows that the experimental data can be very well
described using a CE model (green dash-dotted line). The best fit
using (3) corresponds to jumps on a simple hexagonal Bravais

lattice (a ¼ 4:36 Å) with nearest and next-nearest neighbour
jumps, respectively (p1 ¼ 63%, p2 ¼ 37%). Based on the
momentum transfer dependence (Fig. 2(b)), the hopping motion
of the water molecules occurs between equivalent adsorption
sites, on a hexagonal Bravais lattice with the substrate spacing a
(see (Fig. 1(a)).

Any hopping motion between inequivalent adsorption sites
would lead to additional decaying exponential components in the
tail of the ISF53. There is no direct evidence for multi-exponential
components in our data, and the fitted αðΔKÞ shows clear zeros at
the Bragg condition along both high symmetry directions, where
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Fig. 2 Dephasing rates αðΔKÞ as determined from measurements of IðΔK; tÞ. a Arrhenius plot showing the temperature dependence at two different
momentum transfers along the ΓM-azimuth for the diffusion of water on Bi2Te3(111). The measurements were taken at an H2O coverage of 0.05ML.
b Momentum transfer dependence for the diffusion of H2O on Bi2Te3(111) at a fixed temperature. The measurements were taken at a constant surface
temperature of TS ¼ 150K and a water coverage of 0.05ML (blue circles) and 0.08ML (red triangles), respectively. The dash-dotted line corresponds to
the analytic model for jump-diffusion with jumps on a hexagonal lattice to nearest and next-nearest sites as illustrated in the small inset. The red and yellow
circles illustrate the jump distance to the next and next nearest sites, respectively. The extracted barriers Ea and pre-exponential factors α0 for two different
momentum transfers ΔK as well as the pre-exponential hopping rate Γ0 for the diffusion process at 150 K are given in Table 1. The error bars correspond to
the confidence bounds (1σ) upon determination of αðΔKÞ from the measurements of IðΔK; tÞ—see text.

Table 1 Diffusion parameters as determined from the
experimental data in Fig. 2.

ΔK (Å-1) Ea (meV) α0 (ns−1)

0.22 32±4 107 ± 45
0.55 36±4 171 ± 72

Extracted diffusion barriers Ea and pre-exponential factors α0 for two different momentum
transfers ΔK. The pre-exponential hopping rate Γ0 for the diffusion process at 150 K is then
Γ0 ¼ ð1:7±0:6Þ � 1011 s�1
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a faster second exponential component would be clearly seen if
present53. Therefore, the data is entirely consistent with a single
relevant adsorption site per primitive cell. In accordance with the
results from the vdW corrected DFT calculations (see “DFT
Results”), we conclude that jumps occur between the adsorption
site above the second layer Bi atoms as shown in the inset of Fig. 2
(b).

The corresponding mean residence time of the water molecules
in the adsorption sites is τ � 95 ps based on the CE model.
Together with the temperature dependent data (α0 from (2)), the
hopping rate from the CE model at 150 K can be related to a pre-
exponential factor, now also in terms of a hopping rate
Γ0 ¼ ð1:7 ± 0:6Þ � 1011 s�1. Note that compared to the diffusion
of water on other substrates this is at least an order of magnitude
smaller2,60.

In the region of ΔK close to zero and around the diffraction
peak positions (vertical lines in Fig. 2(b)), the experimental data
points lie above the analytical CE model. This is likely to be due
to adsorbate-adsorbate interactions which will be discussed below
(see “Adsorbate Interactions”). Furthermore, the diffusion
coefficient D for two-dimensional motion can be calculated from
the hopping rate as determined from the CE model using:

D ¼ 1
4

lh i2Γ ð4Þ

where Γ is the hopping rate and hli the mean jump length48,55.
Using the hopping rate at 150 K (Fig. 2(b), Γ ¼ 1:05 � 1010 s�1)
together with the mean jump length of 5.6 Å we obtain a diffusion
coefficient of D ¼ 8:2 � 10�10 m2 s�1.

Compared to the surface diffusion of other small molecules this
is rather slow, especially when compared to the diffusion of NH3
on graphite, where an ultra-fast diffusion with D ¼ 3:9 �
10�8 m2 s�1 was observed at a temperature of 94 K61. On the
other hand, theoretical studies predict a generally quite small
diffusivity on TI surfaces45. The reported (ab-initio) diffusion
barriers for metal atoms on TI surfaces are typically much larger,
in the range of 110–320 meV depending on the adsorbate45–47, in
line with the predicted small diffusivity. The alkali metal Rb is the
only studied adsorbate which shows a diffusivity (as extracted
from a kinetic Monte Carlo approach—although at higher
temperature45) comparable to the one of water found in
our study.

DFT results. We have studied the adsorption of H2O on Bi2Te3
for a number of different adsorption geometries and initial water
configurations using van der Waals (vdW) corrected DFT cal-
culations (see “DFT Methods” and Supplementary Fig. 5 for the
setup of the supercell). The initial water configurations include
both OH bonds pointing down or up, a single OH bond pointing
down and a horizontal configuration.

The adsorption energy of a single water molecule is 271 meV
with the H2O molecule at a distance of about 4Å from the
surface. The optimised structures for the minimum energy
configuration on the three considered adsorption sites are shown
in Fig. 3. The most favourable adsorption site is on top of the
second layer Bi atom (Fig. 3a), followed by adsorption above the
third layer Te atom (Fig. 3b) with an energy difference of only 21
meV. The first layer Te atom is the least favourable for adsorbing
H2O, being 100 meV higher in energy than the absolute
minimum. Yashina et al.26 reported the third layer Te atom as
the most favourable adsorption site, however, they did not
consider adsorption above the second layer Bi atom in their
study, where we find the largest adsorption energy. In addition,
we obtain the same adsorption site and optimised configuration

for a ð2 ´ 2Þ supercell as shown in Fig. 3(d), i.e. when considering
a smaller coverage of water molecules on the surface.

Table 2 summarises different orientations of the molecule for
adsorption on top of the second layer Bi atom and on the third
layer Te atom (for the complete set of DFT calculations including
all considered adsorption geometries please refer to the
Supplementary Tables 1 and 2). We conclude from Fig. 2 that
the optimal orientation of the water molecule on both adsorption
sites is at an intermediate angle (skew), i.e. with the OH bond
being neither perpendicular nor horizontal to the surface.

The second most stable adsorption site is where we would
approximately localise the diffusion barrier. Based on the results
of these static vdW corrected DFT calculations (the temperature

a b

c d

Fig. 3 Van der Waals corrected DFT calculations of the adsorption site
for H2O on Bi2Te3(111). The Bi and Te atoms are illustrated as purple and
brown spheres, respectively. The energetically most favourable adsorption
site is on top of the second layer Bi atom (a), followed by adsorption on top
of the third layer Te atom (b) with a difference of 21 meV. Adsorption on
top of the first layer Te atom (c) is the least favourable adsorption
geometry, being 100meV higher in energy than the absolute minimum. The
optimised configuration of the water molecules for a ð2 ´ 2Þ supercell in d is
essentially the same as for the higher coverage in a.

Table 2 Adsorption energies and orientations for water at
different adsorption sites on Bi2Te3.

Position Orientation Ea (eV) ΔEa (meV)

1-Te ho −0.171 100
1-Te ld −0.158 113
2-Bi skew −0.271 0
2-Bi ho −0.225 46
3-Te skew −0.250 21
3-Te ho −0.241 29

The adsorption energy Ea and the energy difference ΔEa relative to the most favourable
adsorption site for H2O on Bi2Te3. The table shows adsorption on top of the first layer Te atom
(1-Te), the second layer Bi atom (2-Bi) and the third layer Te atom (3-Te). The optimised
orientations of the H2O molecule on the according positions are horizontal (ho), with a single
OH bond pointing down (ld) or at an intermediate angle (skew)—i.e. with the OH bond being
neither perpendicular nor horizontal to the surface
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of the system is ignored) using the energy differences between the
adsorption sites (Fig. 2) would result in a diffusion barrier of
about 20 meV, which is in excellent agreement with the value
found in the experiment.

As shown in Fig. 3(d), calculations using a ð2 ´ 2Þ supercell give
rise to the same adsorption site as for the ð1 ´ 1Þ supercell. As can
also be seen by a comparison with further results in the
Supplementary Table 2, the relative energies and therefore the
diffusion barrier do not significantly depend on the water
coverage used for the calculations. Hence the experimentally
determined barrier for H2O diffusion as well as the one found via
vdW corrected DFT are significantly smaller compared to the
diffusion barriers of metal atoms on TI surfaces as found by DFT
calculations45–47.

Since the DFT calculations are static (essentially corresponding
to an ideal state at a temperature of 0 K), more evolved theoretical
studies such as ab-initio molecular dynamics simulations could
address phonons and molecular vibration/rotation effects at finite
temperatures but they are computationally extremely demanding
for the current system. Furthermore, in most weakly-bound
supramolecular systems, zero-point energy effects do not affect
substantially the magnitude of the barrier height and are usually
ignored since the weak frustrated translation and out-of-plane
bending modes are extremely difficult to accurately calculate61,62.
Hence while the DFT calculations provide a good measure for the
energetics of adsorption sites and configurations, for further
dynamic properties we rely on other computationally less
expensive theoretical approaches as explained below.

Adsorbate interactions. One reason for the steep rise of αðΔKÞ at
small ΔK values, which is not reproduced by the analytic CE
model, may be repulsive interactions between the adsorbates. The
characteristic shape of the curve for such a case, with a peak at
small ΔK values followed by a de Gennes narrowing dip, has been
described theoretically and observed experimentally for surface
diffusion48,56,58. The location of the dip corresponds to a peak in
the static structure factor63, verifies the repulsive nature of the
force and allows also a coverage estimation of the adsorbates (see
Supplementary Methods).

The momentum transfer dependence for two different
coverages along ΓM is shown in Fig. 2(b). α increases slightly
when increasing the coverage from 0.05 to 0.08ML (blue circles
vs. red triangles). The difference is quite subtle but seen when
zooming into the region at small ΔK as plotted in Fig. 4(b).

The repulsive nature of the interactions can be verified by a
simple kinetic Monte Carlo (MC) simulation, which is illustrated
by the red solid line in Fig. 4(a). Therein, we assume that the
water molecules move on a hexagonal grid between adjacent sites
(based on the results of the analytical model above). Repulsive/
attractive inter-adsorbate interactions were included with a
pairwise dipole–dipole potential. Using the trajectories of the
MC simulation, the dephasing rate α is then determined from the
calculated ISFs (see Supplementary Methods for more details).
For no interaction between the molecules we obtain the same
αðΔKÞ from the MC simulation as the CE model (green dash-
dotted line). Attractive interactions between the molecules cannot
explain the de Gennes dip (turqouise dashed line). Only the
introduction of repulsive forces in the MC simulation can
reproduce the experimental data including also the de Gennes dip
at small ΔK and around the diffraction peaks as illustrated by the
red solid line in Fig. 4(a). The effect is however much less
pronounced compared to other systems e.g. to Na on Cu(001)58

and to the diffusion of water on the hydrophobic graphene
surface60.

The repulsive forces will increase the hopping rate in the long-
range limit (for jΔK ±Gj approaching 0), i.e. if one adsorbate
moves it pushes the other ones in the vicinity due to the repulsive
forces, thus increasing the overall hopping rate. The situation of
the individual water molecules depends on the distance between
the adsorbates and the actual configuration at the surface.
Consequently, the dipole moment associated with an adsorbate
used in the simulations that describe the experimental data
provides a good measure of the interactions. Using a dipole
moment of about 2 debye in the MC simulations provides a good
description of the experimental data, which corresponds roughly
to the dipole moment of an isolated water molecule and is by a
factor of three smaller than compared to the Na/Cu(001)
system58.

Energy dissipation and atomic-scale friction. Based on the low
corrugation of the PES (from experiment and DFT calculations)
in combination with the rather small diffusion constant we may
already anticipate that the system exhibits an unusual atomic-
scale friction. Friction in surface diffusion processes can be caused
by a variety of dissipative mechanisms, interactions with phonons
and electrons in the substrate54 as well as interactions between
adsorbates64 and coupling of the internal molecular degrees of
freedom with the motion of the centre of mass65. For Brownian
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motion, the atomic-scale friction η can be directly extracted with
Einstein’s relation61,66, while it is not possible for hopping
motion. In principle the CE model for hopping motion contains
Brownian diffusion as a long range diffusion limit (for ΔK ! 0,
αðΔKÞ converges to a parabola), but this approach is proble-
matic61, in particular for the interacting case. Furthermore, we are
not able to resolve any frustrated translational vibration of the
water molecule, thus allowing conclusions about the friction force
from the broadening of the vibrational mode56.

Instead, we base our analysis on the rate of barrier crossing
obtained from a Langevin description of the dynamics, where the
friction is a direct measure of the coupling between the centre-of-
mass motion and the heat-bath of the substrate67. Friction has a
direct influence on the diffusion as it affects the rate of energy
transfer between the adsorbate and the substrate. In the present
study we seek to understand the relatively low rate of diffusion
noted above. In ideal Brownian diffusion, where there are no
barriers, the rate decreases as the friction increases. However, if
the diffusion is activated, as in the present case, then there exists
also a low-friction regime where the rate decreases as the friction
is reduced.

The phenomenology is well understood from a theoretical
perspective, where it is known as Kramer’s turnover theory68.
Motion in the high-friction regime is dominated by single-jumps,
while behaviour in the low-friction regime includes both single-
and multiple-jumps, though single-jumps always dominate.
Comparison with the analysis in Fig. 2(b), and in particular the
significant fraction of double jumps, suggest that the observed
motion lies in the low-friction regime. Notably, the finding differs
from the observation of other molecular adsorbates which
generally showed a higher friction65.

Understanding the energy dissipation channels during diffu-
sion on TI surfaces is interesting due to their insulating interior,
so that the only contribution to electronic friction arises from the
metallic surface state. There is no simple way to disentangle the
electronic from the phononic contribution to the friction54 but it
is noteworthy that Bi2Te3 has a low Debye temperature with
phonons having correspondingly low frequencies69,70. The energy
mismatch between the acoustic phonons and the internal modes
of a water molecule, together with a mismatch between the mass
of the water molecule and the heavy substrate atoms, suggests
that phononic friction will occur predominantly through multi-
phonon processes (see also Supplementary Discussion and
Supplementary Table 3). The likely absence of single-phonon
coupling suggests that electronic friction may therefore be a
significant contribution. Electron–hole excitation in a metallic
band is the predominant mechanism for electronic friction54. In
the present instance any contribution is restricted to the density
of surface states arising from the topological character of the
substrate.

Taken together, these observations are suggestive of a system
where both the phonon and electron contributions are limited.
The picture is consistent with the experimental results in Fig. 2
(b), where a high proportion of multiple-jumps is required to
explain the data. The newly available data may provide the
necessary experimental benchmarks in order to study these effects
from a theoretical point of view.

Future work will be required to resolve the importance of the
above mentioned effects towards energy dissipation and to
explain the measurements fully; in particular considering the full-
dimensional potential of the diffusing molecule together with
possible internal degrees of freedom of the H2O molecules65,71.
Other routes for first-principle theoretical calculations regarding
the frictional forces are possible within the harmonic approxima-
tion and have been applied in the past for calculations, especially
for atomic self-diffusion. However, its validity for weakly-bonded

supramolecular systems is questionable, especially in the context
of a well-known multidimensional and temperature-dependent
contribution to the friction force from surface phonons, excitons
and other non-adiabatic effects72. Furthermore, more evolved
theoretical studies such as ab-intio molecular dynamics simula-
tions are on the verge of what is currently possible in terms of
computing time considering the observed relatively slow diffusion
process on a rather complex surface.

Discussion
In summary, to our knowledge, this work reveals for the first time
the mechanism of water diffusion on a TI surface based on
experiments. Our analysis and understanding of the correlated
motion of H2O on Bi2Te3(111) provides a more general insight
into the mobility of small molecules at TI surfaces. The diffusion
of water molecules on Bi2Te3(111) follows an activated hopping
motion on a corrugated potential energy surface, with a diffusion
barrier of 34 meV, in good agreement with the results of vdW-
corrected DFT calculations. Jumps of the water molecules occur
on a hexagonal lattice corresponding to the substrate lattice
spacing, with a significant fraction of longer jumps (37%).

The mechanism is remarkable as it shows signatures of
repulsive interaction between the individual water molecules. The
experimentally determined diffusion coefficient is 2–3 orders of
magnitude larger than the theoretically calculated atomic mobi-
lities of most metal atoms on TI surfaces, yet slower than the
diffusion of small molecules on flat metal surfaces. In addition to
the experimental insight into wetting, friction and physisorption
of water on an important class of materials, the hereby studied
system provides also a special platform for an atomic level
investigation in what ways kinetic and chemical energy is trans-
ferred between adsorbates and the substrate—not least due to the
insulating interior and the existence of topologically protected
metallic surface states on TIs.

The observed diffusive properties differ strongly from those at
low-index metal surfaces for molecular diffusion on solid sur-
faces. The experimental data obtained during this study provides
the necessary benchmarks for further theoretical progress since
experimental and theoretical findings suggest that energy dis-
sipation between the water adsorbates and surface atoms governs
the diffusion mechanism.

Methods
Experimental details. All measurements were performed on the Cambridge
helium-3 spin-echo apparatus which generates a nearly monochromatic beam of
3He that is scattered off the sample surface in a fixed 44.4° source–target–detector
geometry. The detailed setup of the apparatus has been described in greater detail
elsewhere48,50. The crystal structure of Bi2Te3 is rhombohedral, consisting of
quintuple layers bound to each other through weak van der Waals forces which
gives easy access to the (111) surface by cleavage15. The (111) cleavage plane
(Fig. 1a) is terminated by Te atoms and exhibits a hexagonal structure
(a ¼ 4:386 Å21). The Bi2Te3 single crystals used in the study were attached onto a
sample holder using electrically and thermally conductive epoxy. The sample
holder was then inserted into the chamber using a load-lock system73 and cleaved
in situ. The sample holder can be heated using a radiative heating filament on the
backside of the crystal or cooled down to 105 K via thermal connection to a liquid
nitrogen cooling reservoir. The sample temperature was measured using a
chromel-alumel thermocouple.

Water was dosed onto the sample with a microcapillary array beam doser which
was brought close to the surface. Previous to the dynamics measurement H2O is
dosed up to a certain attenuation (corresponding to a certain H2O coverage, see
Supplementary Fig. 1) of the specularly reflected helium signal. Therefore the
partial pressure of water in the scattering chamber is adjusted using an automatic
leak valve and the reflected helium signal is monitored until equilibrium is
obtained.

The dynamics of H2O adsorbed on Bi2Te3(111) were extracted from helium
spin-echo measurements, via the intermediate scattering function (ISF), IðΔK; tÞ
with a single exponential decay according to (1). While a signal exponential decay
provides the best fit to the data throughout the experiments presented here, note
that for different types of motion occurring on different timescales IðΔK; tÞ will
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deviate from the single exponential form in (1) and is better fitted using multiple
exponential decays48.

Computational details. For the DFT calculations presented in this work we
employed CASTEP74, a plane wave, periodic boundary condition code. The plane
wave basis set is truncated at an electron energy cut-off of 1000 eV and we employ
fully-relativistic pseudopotentials. The Brillouin zone was sampled with a
ð5 ´ 5 ´ 1Þ Monkhorst–Pack k-point mesh. The Perdew–Burke–Ernzerhof (PBE)
exchange-correlation functional75 was applied in combination with the
Tkatchenko–Scheffler (TS) dispersion correction method76. The electronic struc-
ture was minimised to the ground state energy by fully including spin-orbit cou-
pling (SOC) and non-collinear spin treatment. Due to the topologically non-trivial
nature of Bi2Te3 the inclusion of SOC leads to the formation of the TSS, i.e. the
Dirac cones in the surface electronic structure69. The Bi2Te3 substrate was mod-
elled with a single quintuple layer in a ð1 ´ 1Þ supercell, and an additional 25Å
vacuum layer for separating the periodically repeated supercells in the z-direction.
The positions of the atoms in the substrate and adsorbate were left fully uncon-
strained, except for the set of calculations with the frozen substrate. For the
structural optimisations, the force tolerance was set to 0:05 eVA�1.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code for the kinetic Monte Carlo simulations is available from https://doi.org/
10.5281/zenodo.3531646 under the GNU/GPL-3.0 license.
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