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Abstract

Chagas’ disease is responsible for significant mortality and morbidity in Latin America. Cur-

rent treatments display variable efficacy and have adverse side effects, hence more effec-

tive, better tolerated drugs are needed. However, recent efforts have proved unsuccessful

with failure of the ergosterol biosynthesis inhibitor posaconazole in phase II clinical trials

despite promising in vitro and in vivo studies. The lack of translation between laboratory

experiments and clinical outcome is a major issue for further drug discovery efforts. Our

goal was to identify cell-based assays that could differentiate current nitro-aromatic drugs

nifurtimox and benznidazole from posaconazole. Using a panel of T. cruzi strains including

the six major lineages (TcI-VI), we found that strain PAH179 (TcV) was markedly less sus-

ceptible to posaconazole in vitro. Determination of parasite doubling and cycling times as

well as EdU labelling experiments all indicate that this lack of sensitivity is due to the slow

doubling and cycling time of strain PAH179. This is in accordance with ergosterol biosynthe-

sis inhibition by posaconazole leading to critically low ergosterol levels only after multiple

rounds of division, and is further supported by the lack of effect of posaconazole on the non-

replicative trypomastigote form. A washout experiment with prolonged posaconazole treat-

ment showed that, even for more rapidly replicating strains, this compound cannot clear all

parasites, indicative of a heterogeneous parasite population in vitro and potentially the pres-

ence of quiescent parasites. Benznidazole in contrast was able to kill all parasites. The work

presented here shows clear differentiation between the nitro-aromatic drugs and posacona-

zole in several assays, and suggests that in vitro there may be clinically relevant heteroge-

neity in the parasite population that can be revealed in long-term washout experiments.

Based on these findings we have adjusted our in vitro screening cascade so that only the

most promising compounds are progressed to in vivo experiments.
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Author summary

Chagas’ disease is caused by the protozoan parasite Trypanosoma cruzi, and is a major

health problem in Latin America. There is an urgent need for new treatments as the few

currently used drugs have many serious drawbacks. New potential drugs inhibiting para-

site ergosterol biosynthesis have recently failed in the clinic in spite of showing promising

results in lab-based cellular models of the disease. To understand why these may have

failed we have devised new cellular assays that predict poor performance of ergosterol bio-

synthesis inhibitors. The new assays comprise of a T. cruzi strain panel drug efficacy assay

that encompasses the six key genetic lineages and a compound washout assay that assesses

the ability of candidate drugs to kill all parasites. The ergosterol biosynthesis inhibitor

posaconazole performed poorly against the slow replicating/ cycling PAH179 strain and

in the washout assay. We conclude that a minimum number of replications are likely to

be required for posaconazole to cause a cytocidal effect and not all parasites are susceptible

to inhibition of ergosterol biosynthesis. Our new assays will allow early identification of

such compounds so that only the most promising drug candidates are progressed towards

the clinic.

Introduction

Trypanosoma cruzi is a protozoan parasite (Order Kinetoplastida, Family Trypanosomatidae)

responsible for Chagas’ disease, also known as American trypanosomiasis. T. cruzi parasites

are predominantly transmitted to humans as metacyclic trypomastigote forms (non-dividing)

in the faeces of infected haematophagous triatomine bugs at the bite site. Entry is either

through the wound or transfer to neighbouring mucosa [1]. T. cruzi transmission can also

occur congenitally, via organ transplantation, blood transfusion, or orally by ingestion of para-

site contaminated food and drink [2–5]. Chagas’ disease is a zoonotic disease which is endemic

in Latin America with an estimated 7–8 million people infected across 21 countries resulting

in 12,500 deaths per year, making it one of the leading causes of cardiovascular morbidity and

premature death in this region [6, 7]. It has a severe economic impact [8] and is also becoming

a global public health problem through human migration [9–14]. Chagas’ disease has two

phases, an initial acute phase (typically lasting 2 months) [15], followed by a chronic phase

which is life-long. Once the acute phase subsides, patients enter the chronic indeterminate

phase. Several years later approximately 30% of people display severe clinical pathologies

developing cardiac problems and 10% of cases will develop digestive disorders such as megaco-

lon and megaoesophagous, or neurological dysfunction or a combination of these [16, 17].

In addition, reactivation can occur in patients with the indeterminate chronic form if they

become immuno-compromised [18, 19].

T. cruzi is a highly genetically diverse parasite having diversified from its most recent com-

mon ancestor an estimated 3–4 million years ago [20]. T. cruzi strains have been categorised

into six major genetic lineages or discrete typing units (DTU) TcI-VI [21–24]. DTU distribu-

tion is associated with geography, ecology and transmission cycle, and it is thought that genetic

diversity between strains may be associated with variation in Chagas’ disease pathology and

outcome [23, 25]. TcI, II and V cause most human infections. TcI is widely distributed with

many silvatic reservoirs and is genetically highly diverse. DTU TcV and VI are hybrid lineages

which have originated from recent (within 60,000 years) hybridisation between TcII and TcIII

[20]. TcV and VI are almost exclusively found in domestic transmission cycles, particularly in

areas where cases of severe Chagas’ disease manifesting with megasyndromes are common
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[25–27]. TcV is also involved in 80–100% of congenital transmission cases in Argentina,

Bolivia, Southern Brazil, Chile and Paraguay [28–32]. On average congenital transmission

occurs in 5% of chronically infected mothers [33]. The success of vector control programmes

means that congenital transmission is increasingly important, indeed a recent report estimated

that 22% of new cases annually were caused by congenital transmission rather than vectorial

transmission [34]. Despite this genetic diversity and its epidemiological and likely clinical rele-

vance, a very limited number of strains are used in drug development.

The current drugs available to treat Chagas’ disease are benznidazole (2-nitroimidazole)

and nifurtimox (5-nitrofuran) which were developed over four decades ago. These nitroheter-

ocyclic compounds are most effective in the acute phase of disease [35, 36]. However, efficacy

varies geographically and there is no consistently effective treatment for established chronic

Chagas’ disease [35, 37–40], which is the most prevalent clinical presentation. These drugs can

also cause severe side effects and require long treatment duration (60–90 days) which adversely

affects patient compliance. The urgent need for new, less toxic drugs led to the identification

of ergosterol biosynthesis inhibitors as new potential chemotherapeutics. Triazole derivative

posaconazole is a selective inhibitor of the T. cruzi ergosterol biosynthesis pathway at the C14α
sterol demethylase (CYP51) level. T. cruzi requires endogenous sterols for survival and prolif-

eration at all life cycle stages [41]. Posaconazole was shown to be active against T. cruzi in vitro
and in vivo, and produced beneficial effects in combination with benznidazole in vivo [42–44].

However, these drugs failed in Phase II clinical trials with up to 92% of cases relapsing during

the 10–12 month follow-up period (as determined by detection of T. cruzi DNA in blood by

PCR) [45, 46]. A more recent Phase II trial involving asymptomatic carriers also reported high

relapse rate for posaconazole (87%), with benznidazole monotherapy giving 13% relapse dur-

ing the follow-up period with discontinuation of treatment in 32% patients receiving benzni-

dazole alone or in combination with posaconazole due to adverse side effects [47]. The lack of

translation of in vitro data and in vivo model data to clinical outcome is of clear concern. It

may be due to differences in T. cruzi strain response, drug mode of action being dependent on

parasite replication, or sub-optimal systemic drug exposure in patients [48]. Indeed there is

evidence that response to triazole drug treatment varies between T. cruzi strains in vivo [49,

50]. More recently, strain-specific variation in triazole activity was reported using an in vitro
intracellular assay where nitroheterocyclic compounds were largely active across TcI-VI and

fast acting, while marked variation in potency against T. cruzi strains was observed for posaco-

nazole [51]. In addition, using a sensitive in vivo bioluminescence imaging system to deter-

mine T. cruzi burden in tissues, it was reported that posaconazole has limited effect on both

acute and chronic T. cruzi infections in mice while benznidazole gave 100% sterile cure after

20 days treatment followed by immunosuppression to increase the detection of relapse [52].

To develop future chemotherapy against Chagas’ disease and improve translation to a suc-

cessful clinical outcome we must ensure robust in vitro assays are employed in conjunction

with reproducible in vivo models that clearly demonstrate sterile cure. To identify new pheno-

typic hits against T. cruzi our screening cascade consists of an intracellular image-based in
vitro assay using T. cruzi strain Silvio X10/7 subclone A1 (DTU TcI) and Vero host cells, fol-

lowed by rate of kill and cidality assays [53]. A CYP51 assay is also carried out so only cidal

compounds that do not have CYP51 mode of action are progressed to drug metabolism, phar-

macokinetic and in vivo efficacy studies. The mouse model uses highly sensitive non-invasive

bioluminescence imaging to detect transgenic CLBrener expressing the variant firefly lucifer-

ase RE9h [54] in BALB/c mice. This methodology provides accurate assessment of parasite

burden over time and in specific tissues at endpoints, which is difficult to achieve by PCR

analysis. To investigate potential T. cruzi strain response variation in new drug candidates we

have developed a T. cruzi strain panel of clinically relevant strains encompassing the six major
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DTUs (TcI-VI) using an in vitro image-based intracellular assay. Here we determine in vitro
efficacy of current nitrohetercyclic drugs nifurtimox and benznidazole, and failed triazole

posaconazole against the replicating amastigote form of TcI-VI strains. For comparison these

compounds were also tested in a non-replicative trypomastigote bioluminescence assay using

strains Silvio X10/7 clone A1 (TcI) and Tulahuen βgal (TcVI). Further assessment of the prolif-

eration status of intracellular parasites remaining after drug treatment was carried out. In addi-

tion, an intracellular T. cruzi washout assay was developed to determine if very low numbers

of viable parasites remain after treatment that could help explain failure in the animal model

and clinical trials.

Materials and methods

Trypanosoma cruzi in vitro culture

A panel of T. cruzi strains originally isolated from humans was established which included

one representative from each of the six major DTU’s (Table 1). TcI strain Silvio X10/7 sub-

clone A1 [55]; TcII strain Y [56], TcIII M6241 Clone 6 [57], TcIV ERA Clone 2 [58], TcV

PAH179 Clone 5 [59] and TcVI Tula Clone 2 [57]. TcI strain Silvio X10/7 subclone A1 was

provided by A. Fairlamb (University of Dundee); TcII strain Y, TcIII M6241 Clone 6, TcV

PAH179 Clone 5 and TcVI Tula Clone 2 were all donated by M. Miles (London School of

Hygiene and Tropical Medicine, LSHTM, UK); TcIV ERA Clone 2 was also obtained from

M. Miles LSHTM with agreement of Hernan Carrasco (Universidad Central de Venezuela);

CLBrener expressing pTRIX2-PpyRE9h red-shifted was obtained from J. Kelly (LSHTM, UK).

Henceforth, these strains will be referred to by name without the clone information. In

addition, our animal model strain CLBrener [60] expressing pTRIX2-PpyRE9h red-shifted

luciferase [54] was also included in the panel (CLBrenerLuc, TcVI). Tulahuen strain parasites

(TcVI) stably expressing β-galactosidase (Tulahuen βgal) [61] were not included in the T. cruzi
strain panel but were used in the trypomastigote assay. These were kindly provided by F. Buck-

ner (University of Washington, Seattle, USA).

All T. cruzi strains described above, with the exception of the Tulahuen βgal strain, were

maintained as epimastigotes in vitro at 28˚C in RTH/ FCS culture medium (RPMI1640 supple-

mented with 0.4% trypticase peptone, 0.017 M hepes, 25 μM haemin,10% heat inactivated FCS

(GE Healthcare) [62, 63]. Epimastigotes (106 ml-1) were inoculated into RTH/ FCS and grown

until a high proportion of metacyclic trypomastigote parasites were observed (~7–10 days).

Trypomastigote-rich cultures were incubated with a monolayer of Vero cells (African green

monkey kidney cells, ECCAC 84113001) at a multiplicity of infection (MOI) of 10–15 over-

night at 37˚C 5% CO2 in Dulbecco’s modified Eagles’s medium (DMEM 4.5 gL-1 Glucose &

L-Glutamine) (Lonza) supplemented with 10% FCS (GE Healthcare). Extracellular parasites

were removed the following day by aspirating cell culture media, washing the Vero cell

Table 1. T. cruzi strain panel encompassing the six major T. cruzi discrete typing units (DTU’s) TcI-VI.

DTU T. cruzi Strain ID Host Date Origin

Tc I Silvio X10/7 Clone A1 Human 1979 Pará, Brazil

Tc II Y Human 1953 São Paulo, Brazil

Tc III M6241 Clone 6 Human 1988 Pará, Brazil

Tc IV ERA Clone 2 Human 1999 Anzoátegui, Venezuela

Tc V PAH179 Clone 5 Human 2000 Chaco, Argentina

Tc VI Tula Clone 2 Human 1988 Tulahuén, Chile

Tc VI CLBrener Triatoma Infestans 1963 Rio Grande do Sul, Brazil

https://doi.org/10.1371/journal.pntd.0006612.t001
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monolayer with serum-free DMEM three times, followed by addition of fresh complete

DMEM. T. cruzi infected Vero flasks were maintained at 37˚C 5% CO2, DMEM/ FCS replaced

every 48h until trypomastigotes emerged from Vero cells to be used to set-up new Vero cell

infections. The routine cycling time through Vero cells varied considerably between strains

from 3 to 12 days, therefore, for more slowly cycling strains (PAH179 & Tula), infected Vero

cells were pre-incubated for 3 days prior to assay plating to coordinate parasite cycling times

through Vero cells.

Tulahuen βgal parasites were maintained in culture by weekly infection of LLC-MK2

cells (Rhesus macaque kidney epithelial cells) in DMEM (Life-Technologies) supplemented

with 2% FBS (Biowest, USA) and 100 Uml-1 penicillin and 100 μgml-1 streptomycin (Sigma-

Aldrich). Trypomastigote forms were obtained from the supernatants of LLC-MK2 infected

cultures harvested between days 5 and 9 of infection.

Host cell culture

Vero cells were maintained at 37˚C 5% CO2 in DMEM (Lonza) supplemented with 10% FCS

as described above. Vero cells were sub-cultured every 2 days at a ratio of 1:5 after 5 min treat-

ment with Trypsin-EDTA (Gibco).

LLC-MK2 cells were cultivated in DMEM (Life-Technologies) supplemented with 10% FCS

(Biowest, USA), 100 Uml-1 penicillin and 100 μgml-1 streptomycin (Sigma-Aldrich) at 37˚C,

5% CO2 and>95% humidity. This cell line was maintained twice a week at a ratio of 1:10.

Leishmania donovani in vitro culture

Leishmania donovani strain MHOM/ET/67/HU3:LV9 originally isolated from a patient in

Ethiopia 1967 were maintained as promastigotes at 28˚C in RPMI1640 (Sigma, Dutch modifi-

cation) supplemented with 20% FCS (Hyclone), 100 μM adenine, 20 mM MES hydrate, 5 μM

haemin, 6-biopterin 3 μM, biotin 1 μM, 1% penicillin and streptomycin. Parasites were estab-

lished at 105 ml-1 and sub-cultured every 3 days.

T. cruzi strain genotyping

Total genomic DNA was isolated from T. cruzi epimastigote or trypomastigote cultures using

Qiagen DNAeasy tissue & blood kit according to manufacturer’s instructions.

Single-locus typing assay. T. cruzi TcSC5D gene encodes a putative C-5 sterol desaturase

(TcCLB.473111.10, TcCLB.507853.10), this was amplified by PCR followed by direct sequenc-

ing to determine DTU-specific genotypes using eight key discriminating single nucleotide

polymorphisms (SNP’s) as previously described [64]. Briefly, a 832bp TcSC5D fragment was

amplified under the following PCR conditions: 50 pmol TcSC5D-forward (5´-GGACGTGG

CGTTTGATTTAT-3´) & reverse primers (5´-TCCCATCTTCTTCGTTGACT-3´), 100 ng

genomic DNA, Platinum PCR Supermix High Fidelity (ThermoFisher Scientific) in a final vol-

ume of 50 μl. Samples were denatured at 94˚C for 5 min, followed by 35 cycles at 94˚C 30 s,

58˚C 30 s, 72˚C 30 s, and extension at 72˚C for 5 min. Amplification products were visualised

on 1.2% agarose with ethidium bromide as a single 832 bp product, and subsequently

sequenced with the same PCR primers using Applied Biosystems 3730 DNA Analyser. Chro-

matograms were analysed using Chromas software and alignments generated using Clustal

Omega to identify nucleotides at key position 138, 168, 336, 495, 618, 648, 657 and 747 and

determine DTU assignment TcI-VI (S1 Table).

Triple assay. DTU assignment was made based on genotypes for three PCR-based assays:

the amplicon size polymorphism of the 24S rRNA locus [65] and two restriction fragment
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length polymorphism assays based on SNPs in the HSP60 & GPI loci [66]. The combined geno-

types were used to infer the DTU according to the scheme described by Lewis et al [67].

Amplification reactions contained 0.2 mM of each dNTP, 1.5 mM MgCl2, 1 pmol μl-1 of

each primer, 1 Unit of Taq DNA polymerase (Promega, UK) and approximately 10 ng gDNA.

For the 24S rDNA, PCR primers D71 (5’-AAGGTGCGTCGACAGTGTGG-3’) and D72

(5’-TTTTCAGAATGGCCGAACAGT-3’) were used and conditions comprised an initial

denaturation step of 94˚C for 3 min then 27 amplification cycles (94˚C for 1 min, 60˚C for 1

min, 72˚C for 1 min) followed by a final elongation step at 72˚C for 5 min. Amplicon sizes

were visualised on 1X Tris-acetate-EDTA (TAE), 3.5% NuSieve 3:1 agarose (Lonza) gels.

For GPI and HSP60, PCR amplification conditions comprised an initial denaturation step

of 3 min at 94˚C followed by 4 cycles (94˚C for 30 s, 64˚C for 30 s, 72˚C for 1 min) followed by

28 cycles (94˚C for 30 s, 60˚C for 30 s, 72˚C for 1 min) and then a final elongation step at 72˚C

for 10 min. GPI primers were 5’-GGCATGTGAAGCTTTGAGGCCTTTTTCAG-3’ (Fwd)

and 5’-TGTAAGGGCCCAGTGAGAGCGTTCGTTGAATAGC-3’ (Rev). HSP60 primers

were 5’-GTGGTATGGGTGACATGTAC-3’ (Fwd) and 5’-CGAGCAGCAGAGCGAAACAT-

3’ (Rev). For restriction enzyme digestion, 10 μl of PCR product (typically ~1 μg) was digested

with 0.25 U μl-1 of either HhaI for GPI or EcoRV for HSP60 for 4 h at 37˚C. Restriction frag-

ment sizes were visualised on 1X TAE, 2% agarose gels.

Compound handling

Compounds included current treatments for Chagas’ disease benznidazole and nifurtimox

(both from Sigma), and CYP51 inhibitor posaconazole (Sequoia Research Products). Com-

pound (250 nl in DMSO) was dispensed using LabCyte ECHO into each well (Corning black

flat bottomed 384-well plates for the intracellular amastigote assay; Greiner white 384-plates

for the trypomastigote assay). Ten-point potency curves were generated (one in three dilu-

tion), with technical duplicates for the intracellular assay and in triplicate for the trypomasti-

gote assay. All potency determinations were performed a minimum of 3 independent times. A

top concentration of 50 μM was used for benznidazole and nifurtimox, and 1 μM for posaco-

nazole in the intracellular assay (all wells contained 0.5% DMSO), while a top concentration of

50 μM was used for all three drugs in the trypomastigote assay. Drug potencies are reported as

pEC50 which is–Log (EC50 [M]).

T. cruzi intracellular assay

Silvio X10/7, Y, M6241, ERA and CLBrenerLuc trypomastigotes were incubated at 37˚C 5%

CO2 with 1.6×107 Vero cells overnight at MOI10 in a T225 flask. Extracellular parasites were

removed by aspirating cell culture supernatant, and washing Vero monolayer with 10 ml

serum-free DMEM three times. Vero cells were then harvested by trypsinization and dis-

pensed at 2×103 per well (50 μl in DMEM/ 1% FCS) into 384 well plates pre-stamped with

drug in DMSO using automated washer/ dispenser EL406 and liquid handling software (Bio-

tek). Plates were then incubated at 37˚C in 5% CO2 for 72, 96 and 120 h.

Plates were subsequently fixed with 4% formaldehyde for 20 min, permeabilised and

stained with 5 μgml-1 Hoechst 33342/ 0.1% Triton/ PBS Thimerosal 20 min. Automated imag-

ing was performed by the Operetta high content imaging system using 20x objective (Perki-

nElmer). Images were analysed with an algorithm generated in Columbus (PerkinElmer) to

segment Vero cell nuclei, Vero cell cytoplasm and parasite nuclei/ kinetoplasts, reporting

number of amastigotes per Vero cell and total number of Vero cells. Compound potencies

against T. cruzi parasites were calculated in IDBS Activitybase using total number of amasti-

gotes per well and Vero toxicity curves generated using number of host cells. All data was
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normalised to percent inhibition based on the raw data values for the 100% effect control

(50 μM nifurtimox) and the 0% effect control (DMSO) on each plate at each time point. Curve

fitting was carried out using a four-parameter equation as previously described [68].

Parasite replication

To determine amastigote replication rates for each strain, the T. cruzi intracellular assay was

established as described above with identical plates set-up for each strain and fixed daily to

determine number of amastigotes from Day 0 (day of plating) up to Day 5. T. cruzi amastigote

doubling time (DT) was determined by fitting the 0–72 h growth data to exponential expres-

sion N = N0.eKe.t (N = number of cells at time t, N0 = number of cells at t = 0 h, Ke is the expo-

nential constant). DT was calculated as ln(2)/Ke. There are 32 technical replicates for each

time point per plate, and at least 3 biological replicates for each strain.

T. cruzi trypomastigote assays

Silvio X10/7 trypomastigotes were harvested from infected Vero cells in a T225 flask infection

set-up at MOI 5 for 5 days. Trypomastigotes (5×104 per well) in 50 μl of DMEM/ 10% FCS

were dispensed into white 384 plates (Greiner) pre-stamped with 250 nl compound. Plates

were incubated at 37˚C in 5% CO2 for 24, 48 and 72 h. Cell Titer-Glo cell viability solution

(Promega) was added to each well (50 μl) incubated at room temperature for 10 min and lumi-

nescence read by Envision plate reader (Perkin Elmer). This assay quantifies the amount of

ATP present which is directly proportional to the number of metabolically active cells. All data

was normalised as described above (100% effect control 50 μM nifurtimox, 0% effect control

DMSO).

Tulahuen βgal trypomastigotes were harvested from LLC-MK2 host cells after 5–9 days

infection. Trypomastigotes (5×104 per well) in 50 μl of DMEM/ 2% FCS/ 100 Uml-1 penicillin

and 100 μgml-1 streptomycin were dispensed and processed as described above.

Cell proliferation, antibody labelling and imaging

Proliferation of Silvio X10/7 trypomastigotes was measured using Click-iT Plus EdU Alexa-

Fluor 488 Imaging Kit (ThermoFisher Sci). EdU (5-ethynyl-2-deoxyuridine) is a nucleoside

analog of thymidine that is incorporated into newly synthesised DNA. Detection is via a cop-

per catalysed covalent click reaction between picolyl azide which is contained in the EdU and

an alkyne contained in the AlexaFluor 488 label. Silvio X10/7 trypomastigotes (2×107) were

harvested from Vero cells, washed with PBS, labelled live with 10 μM EdU labelling solution

for 2 h at 37˚C 5% CO2. L. donovani LV9 mid-log promastigotes were included as a replicating

cell control and incubated at 28˚C 2 h. After media aspiration, cells were fixed in 4% formalde-

hyde/PBS for 20 min, washed three times with 3% fatty acid free BSA blocking solution (BB

International), permeabilised with 0.5% Triton X-100 20 min, washed with blocking solution,

and incubated with 100 μl of Click-iT Plus reaction cocktail for 30 min in the dark. Cells were

washed twice and incubated in blocking reagent overnight at 4˚C. Edu labelled cells were also

labelled with L. major rabbit polyclonal anti-PFR1 (paraflagellar rod) antibody [69] 1:200 in

blocking solution for 1 h. Parasites were washed in block, incubated with goat anti-rabbit IgG

AlexaFluor-647 for secondary detection of anti-PFR 1 h (1:200; ThermoFisher Sci), washed in

PBS and resuspended in 5 μgml-1 Hoechst 33342 (DNA stain) 20 min. Parasites were subse-

quently washed in PBS, resuspended in 100 μl PBS and allowed to adhere to poly-D-lysine

coated 96 well Cell Carrier black plates (Perkin Elmer) for 20 min before imaging with the

Operetta high content microscope 40XHi NA objective. EdU (Ex/ Em 495/ 519 nm), PFR/

Development of Trypanosoma cruzi in vitro assays for Chagas’ disease drug discovery

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006612 July 12, 2018 7 / 22

https://doi.org/10.1371/journal.pntd.0006612


AlexaFluor 647 (Ex/ Em 650/ 670 nm), Hoechst (Ex/ Em 350/ 461 nm) plus bright field, ten

1 μm slice stack.

Silvio X10/7 and PAH179 infected Vero cells (MOI10) were also labelled with EdU and

Hoechst as described above. However, labelling was performed on infected Vero cells which

were already adherent on 96 well black Cellbind plates (Corning) seeded at 4×103 and 103 per

well after 5 days treatment with 1 μM posaconazole, 50 μM benznidazole, 5 μM nifurtimox or

0.5% DMSO. Control wells without EdU labelling were also set-up for each condition and

were processed the same way but without incubation with EdU labelling solution. Plates

were imaged using the Operetta high content microscope with 40X objective for EdU, Hoechst

and bright field as above, five 1 μm slice stack, 16 fields/well. An algorithm was generated in

Columbus to determine percent infected cells, percent EdU positive Vero and EdU positive

intracellular parasites. For publication purposes deconvolution images were acquired.

T. cruziwashout assay

Vero cells (1.6 ×107) were infected at MOI 5 with Silvio X10/7 trypomastigotes in MEM media

(Gibco) containing 10% FCS (Hyclone) followed by washing of the monolayer to remove any

extracellular trypomastigotes. Total Vero infection time with Silvio X10/7 trypomastigotes

prior to compound treatment was either 40 h or 16 h. Infected cells were trypsinised and plated

in T25 flasks (1.8×106 cells per flask, MEM, 1% FCS) or incubated for a further 24 h prior to

trypsinisation and plating. Infected cells were incubated with compounds at the indicated con-

centrations for either 8 days or 16 days. Every 4 days the media was replaced with fresh com-

pound-containing media. After the treatment period, monolayers were washed extensively.

The cultures were then maintained, replacing media twice weekly, until trypomastigotes could

be observed by light microscopy. Observations were carried out twice weekly for up to 60 days

post washout.

Results

T. cruzi strain genotyping

All T. cruzi strains included in this study were confirmed to be the expected DTU by either

the triple assay (PCR product size polymorphism of the 24S rRNA locus; PCR-RFLP based on

SNP’s in the GPI and HSP60 loci) and/ or the single assay (DTU discriminating SNP’s in T.

cruzi TcSC5D gene) (S2 Table, S1 Fig).

T. cruzi amastigote growth rate & level of Vero cell infection varies between

strains

Growth of intracellular amastigotes varies between T. cruzi strains. Silvio X10/7, M6241, Tula

and CLBrenerLuc strains demonstrated the fastest doubling times and higher starting (day 0)

percent infected Vero cells. Silvio X10/7 and M6241 gave similar Vero cycling times (4–5 days

between infection and egress of parasites) while CLBrenerLuc and Tula cycled every 6–8 d

(Table 2). Y, ERA and PAH179 strains displayed the slowest doubling times (24 to 26 h).

However, Vero cycling times varied considerably with Y and ERA cycling rapidly (every 3–4

days), while PAH179 had the slowest cycling time (8–12 days). The duration of our established

primary T. cruzi screening assay using Silvio X10/7 infected Vero cells is 72 h. To improve

assessment of compounds that may have modes of action that are replication dependent, the

T. cruzi strain panel assay was extended to 120 h post-infection (Table 2). At this time point Y

strain trypomastigotes had emerged and some re-infection was observed. Although there was

some variation in doubling time between biological replicates, strain PAH179 achieved the
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lowest number of divisions at 120 h and reached stationary growth phase at lower total amasti-

gote counts than other strains (Table 2, S2 Fig). Strains Y and PAH179 gave the lowest starting

percent infected Vero (day 0). Despite differences between strains in infection level and dou-

bling times the total number of amastigotes counted at the assay end point (120 h) was always

more than 103 per well for all T. cruzi panel strains providing a sufficient window between the

0% (DMSO) and 100% (50 μM nifurtimox) effect controls to generate potency curves.

Intracellular assay—Posaconazole shows poor activity against slowly

replicating/ cycling T. cruzi
Nifurtimox was active across all seven T. cruzi strains from six major DTUs with a maximum

six-fold difference in potency observed between strains (CLBrenerLuc v Y) at 120 h (Table 3;

Fig 1A illustrates nifurtimox dose response data for three key DTU strains). Benznidazole

showed good activity across five T. cruzi strains with a maximum inhibition of at least 99% rel-

ative to nifurtimox at 120 h (Table 3). However, reduced efficacy against strain Y was observed.

Benznidazole was 5–13 fold less potent against strain Y than other strains at 120 h reaching

90% maximum inhibition (Table 3, Fig 1B).

The triazole posaconazole, was active against five T. cruzi strains at low nanomolar concen-

trations at 120 h (Table 3, Fig 1C). However, posaconazole was more slowly acting than the

nitroheterocyclic compounds tested, with clear differences between the strains. While >90%

inhibition was observed for Silvio X10/7, Y, and M6241 at 72 h, ERA, Tula and CLBrenerLuc

showed<75% inhibition (S3 Table). By 120 h>90% inhibition was observed against these

strains (Table 3, Fig 1C). Interestingly, posaconazole showed only minimal activity against

strain PAH179. Intracellular T. cruzi inhibition was only 17% at 72 h, reaching a maximum of

Table 2. T. cruzi strain panel amastigote doubling time (DT), average ±SD, calculated using 0-72h growth curve data [see Methods] for at least 3 biological repli-

cates. This value was used to calculate the number of divisions in 72 h. Number of divisions in 120 h were calculated from DT determined using number of amastigotes at

0 and 120 h. Cycling time defines the time in days between the start of Vero cell infection with T. cruzi tissue culture derived trypomastigotes and the emergence of trypo-

mastigote parasites. Level of parasite infection (Day 0) for each strain represented as percent infected Vero cells (average± SD).

Doubling Time (h) Divisions/ 72 h Divisions / 120 h Cycling times (d) % infected Vero

Silvio X10/7 19.6 ± 1.5 3.7 ± 0.3 4.6 ± 1.3 4–5 31 ± 15

Y 25.3 ± 5.8 3.0 ± 0.7 3.5 ± 1.7 3 11 ± 10

M6241 18.9 ± 1.6 3.8 ± 0.3 4.3 ± 0.7 4–5 25 ± 15

ERA 24.3 ± 4.8 3.0 ± 0.6 3.9 ± 0.8 4 30 ± 16

PAH179 25.6 ± 7.4 3.0 ± 0.8 3.3 ± 1.2 8–12 16 ± 11

Tula 19.5 ± 2.9 3.7 ± 0.5 5.7 ± 1.8 7–8 23 ± 19

CLBrenerLuc 19.5 ± 2.8 3.7 ± 0.6 3.9 ± 1.3 6–7 32 ± 21

https://doi.org/10.1371/journal.pntd.0006612.t002

Table 3. Drug efficacy against T. cruzipanel strains at 120 h. pEC50 = –Log (EC50 [M]), average of at least three biological replicates ± SD. Additional data for 72 h and

96 h time points available in S3 and S4 Tables respectively.

T. cruzi Strain ID Nifurtimox Benznidazole Posaconazole

pEC50 Max inhibition (%) pEC50 Max inhibition (%) pEC50 Max inhibition (%)

Silvio X10/7 6.1 ± 0.2 100 ± 1 5.7 ± 0.2 100 ± 2 8.6 ± 0.1 97 ± 3

Y 5.7 ± 0.2 103 ± 5 4.8 ± 0.1 90 ± 4 8.6 ± 0.2 108 ± 10

M6241 6.0 ± 0.1 105 ± 5 5.5 ± 0.2 105 ± 5 8.7 ± 0.3 104 ± 6

ERA 6.3 ± 0.0 103 ± 3 5.9 ± 0.1 103 ± 3 8.9 ± 0.1 91 ± 9

PAH179 6.3 ± 0.2 102 ± 5 5.7 ± 0.1 102 ± 5 <6.0 65 ± 14

Tula 6.3 ± 0.4 100 ± 1 5.9 ± 0.1 99 ± 2 8.4 ± 0.1 94 ± 5

CLBrener Luc 6.5 ± 0.1 100 ± 2 5.9 ± 0.2 101 ± 2 8.5 ± 0.2 94 ± 6

https://doi.org/10.1371/journal.pntd.0006612.t003
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65% at 120 h (Tables S3 & 3, Fig 1C). After 72 h and 96 h treatment there was little discernible

effect of posaconazole on intracellular PAH179 parasite counts while at 120 h parasite numbers

started to decrease at high compound concentrations but not to the extent observed for other

strains (Fig 2). (S3 Fig illustrates non-normalised dose-response data for nifurtimox, benznida-

zole and posaconazole at 120h for all strains). This poor activity against the strain that repli-

cates and cycles most slowly suggests posaconazole mode of action is replication dependent,

possibly requiring completion of several replication cycles for full activity.

Trypomastigote assay—Posaconazole has minimal activity against

trypomastigote stage parasites

Nifurtimox and benznidazole were both active against Silvio X10/7 (TcI) and Tulahuen βgal

(TcVI) trypomastigote parasites (non-replicating stage) (Table 4, Fig 3A, 3B, 3D and 3E).

However, posaconazole was not active against Tulahuen βgal trypomastigotes and poorly

active against Silvio X10/7 at 72 h (Table 4, Fig 3C and 3F), with a very large drop-off in

potency (> 3000-fold at 72 h) between the intracellular and trypomastigote assays, again sug-

gesting posaconazole efficacy is replication dependent.

EdU labelling- Non-replicating trypomastigotes and replicating amastigote

stage PAH179 strain parasites remain after posaconazole treatment

The above data are in agreement with posaconazole being inactive against parasites that do not

go through a sufficient number of cell divisions. To determine if PAH179 parasites remaining

after posaconazole treatment are non-replicating forms we assessed the effect of posaconazole

on the fraction of replicating parasites using EdU (nucleoside analog of thymidine) labelling to

identify cells in S-phase of growth. As a positive proliferative cell control, EdU labelling of L.

donovani LV9 mid-log promastigotes was performed where EdU staining was observed in 54%

of LV9 (118 cells analysed) co-localising with the parasite nucleus (S4A Fig). This is a non-syn-

chronous population but it also cannot be ruled out that not all replicating cells are detected

Fig 1. Drug efficacy against T. cruzi intracellular amastigotes. Strains Silvio X10/7, Y and PAH1790 assessed after 5 days treatment

with nifurtimox (A) benznidazole (B) and posaconazole (C). (Representative dose-response curves of at least 3 biological replicates

normalised to 0% effect DMSO and 100% effect 50 μM nifurtimox controls. Average±SD). The x axis is the Log of the compound

concentration in Molar.

https://doi.org/10.1371/journal.pntd.0006612.g001
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under these labelling conditions. As expected, no EdU labelling was detected in Silvio X10/7

trypomastigotes (161 cells analysed) which are a non-replicating developmental form (S4C

Fig). Presence of a flagellum was detected by PFR1 labelling in both LV9 and Silvio X10/7 con-

firming Silvio X10/7 trypomastigote morphology in conjunction with Hoechst staining reveal-

ing characteristic positioning of nuclei and kinetoplasts (S4C Fig).

EdU labelling of intracellular Silvio X10/7 and PAH179 was subsequently performed. After

5 days incubation without drugs (0.5% DMSO, vehicle control) 46% of Silvio X10/7 and 13%

of PAH179 amastigotes were EdU positive (Fig 4B). After 5 days treatment with 5 μM nifurti-

mox, 50 μM benznidazole, or 1 μM posaconazole, a significant reduction in total number of

Silvio X10/7 amastigotes and EdU positive amastigotes was observed (Fig 4A and 4B Anova

p<0.001). These drug concentrations were chosen as they show good activity against Silvio

X10/7 but are not toxic to Vero cells. Of the Silvio X10/7 amastigotes remaining after each

treatment only 4–5% of remaining parasites were categorised as EdU labelled. However,

visual inspection of the images showed that the majority of remaining parasites were EdU false

Fig 2. Raw dose-response data for T. cruzi intracellular amastigotes after treatment with posaconazole at 72 h, 96 h and 120 h

for strains Silvio X10/7 (A-C) and PAH179 (D-F) (3 biological replicates shown). The x axis is the Log of the compound

concentration in Molar.

https://doi.org/10.1371/journal.pntd.0006612.g002

Table 4. Efficacy of nifurtimox, benznidazole and posaconazole against T. cruzi Silvio X10/7 and Tulahuen βgal trypomastigotes at 72 h. pEC50 = –Log (EC50 [M]),

average of at least three biological replicates ± SD. Additional data for 24 h and 48 h time points available in S5 Table.

T. cruzi Strain ID Nifurtimox Benznidazole Posaconazole

pEC50 Max inhibition (%) pEC50 Max inhibition (%) pEC50 Max inhibition (%)

Silvio X10/7 5.8 ± 0.1 100 ± 0 5.4 ± 0.0 100 ± 0 4.7 ± 0.2 70 ± 4

Tulahuen βgal 6.1 ± 0.0 100 ± 1 5.2 ± 0.0 100 ± 1 <4.3 -5 ± 2

https://doi.org/10.1371/journal.pntd.0006612.t004

Development of Trypanosoma cruzi in vitro assays for Chagas’ disease drug discovery

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006612 July 12, 2018 11 / 22

https://doi.org/10.1371/journal.pntd.0006612.g002
https://doi.org/10.1371/journal.pntd.0006612.t004
https://doi.org/10.1371/journal.pntd.0006612


positive detections by the image analysis algorithm (Fig 4C bottom three panels). After 5 days

5 μM nifurtimox, or 50 μM benznidazole treatment, a significant reduction in total intracellu-

lar PAH179 parasites was also observed (Anova P<0.005) with only 2–6% EdU positive (Fig

4A and 4B). Again, upon image visualisation, no EdU positive remaining parasites were

observed (Fig 4D middle two panels). However, 5 days 1 μM posaconazole treatment only

cleared half of the intracellular parasites, and 12% of the remaining parasites were EdU positive

(Fig 4A and 4B) which is a similar proportion as DMSO treatment (13%). Thus, posaconazole

is not active against non-replicating intracellular PAH179 strain parasites and replicating

PAH179 can be refractory to killing by posaconazole, consistent with parasite death only after

several replication cycles (Fig 4D bottom panel). Although it is possible that slowly replicating

parasites would not be detected under these EdU labelling conditions, this method does detect

replicating T. cruzi. Individual images for each strain are shown in S5 and S6 Figs. Infected

Vero control wells not incubated with EdU show no background staining (S7 and S8 Figs).

The proportion of EdU labelled Vero cells did not significantly change with any of the drug

treatments (Anova p>0.05) (S9 Fig).

T. cruziwashout assay—Benznidazole is curative in vitro and posaconazole

is not

The experiments above do not demonstrate that the nitroheterocyclic compounds can kill

all parasites, neither do they exclude that longer treatment with posaconazole could be effica-

cious. To address these questions a washout experiment was performed using Silvio X10/7

infected Vero cells treated for either 8 or 16 days with high concentrations of benznidazole or

Fig 3. Drug efficacy against T. cruzi trypomastigotes. Silvio X10/7 (A-C) and Tulahuen βgal (D-F) trypomastigotes after 24, 48 and

72 h treatment with nifurtimox (A & D), benznidazole (B & E) and posaconazole (C & F). (Dose-response curves of three biological

replicates. Average±SD). The x axis is the Log of the concentration of the drug in Molar.

https://doi.org/10.1371/journal.pntd.0006612.g003
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posaconazole (12.5–50 times EC50). Treated cells were then maintained for up to 60 days and

culture flasks were assessed for presence of trypomastigotes. Lack of recrudescence within

60 days was considered evidence for complete inactivation of all parasites. Recrudescence of

parasites was seen for both compounds with the 8 day treatment regimen, but emergence of

trypomastigotes was significantly delayed with benznidazole compared to posaconazole (benz-

nidazole relapse: 14 to 21 days after washout, posaconazole: 3 days after washout) (Table 5).

After 16 days of treatment no parasite recrudescence was seen with benznidazole for over 60

days, suggesting it is able to kill all parasites in vitro. Posaconazole treated cells did relapse,

with parasites emerging after only 11 days.

Fig 4. Detection of cells in S phase growth by EdU labelling of intracellular T. cruzi strains Silvio X10/7 and PAH179. Number of amastigotes per well

(average ±SD) determined by Hoechst staining after 5 days treatment with DMSO, 5 μM nifurtimox, 50 μM benznidazole and 1 μM posaconazole (A). Percent

EdU positive amastigotes (B) after treatments described above using the automated image analysis algorithm. Imaging by HTS microscopy of Silvio X10/7 (C)

and PAH179 (D) infected Vero labelled with EdU AlexaFluor 488 and Hoechst, treated for 5 days with DMSO, 5 μM nifurtimox, 50 μM benznidazole and

1 μM posaconazole. Parasites remaining after treatment are highlighted by white arrows (Hoechst), replicating parasites remaining after treatment are

highlighted by red arrows (EdU AlexaFluor488). Bar 10μm.

https://doi.org/10.1371/journal.pntd.0006612.g004
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Discussion

Here we describe development of a T. cruzi strain panel intracellular assay and a washout assay

to test the ability of compounds to show activity across the six main T. cruzi DTU’s and achieve

sterile cure in vitro. The purpose of this work is to assess if these assays could improve transla-

tion from in vitro cellular assays to in vivo efficacy.

In the strain panel we observed variation in both doubling time and host cell cycling time

between strains, with PAH179 (TcV) displaying both the slowest replication rate and longest

cycling time. The reported amastigote doubling times are estimates using day 0 to day 3

counts. The actual replication rates may be higher than we report for fast cycling parasites

such as the Y strain which cycles every 3 days as extracelluar trypomastigotes are removed by

washing before staining and counting. In addition, growth rate and cycling time of some

strains increased over time in culture. However, the PAH179 strain continued to be the slowest

cycling strain with a minimum of 8 days before trypomastigotes emerged.

Interestingly we observed strain-dependent differences for the drugs tested. In general the

nitroheterocyclic compounds nifurtimox and benznidazole were active across strains, with a

lower level of potency against the Y strain (TcII), especially for benznidazole, whereas posaco-

nazole was markedly less active against PAH179 (TcV), suggesting that replication and cycling

times may affect posaconazole efficacy. This is supported by the very poor activity of posacona-

zole against non-replicative trypomastigotes. Our results align with the data generated by

Moraes et al., in their U2OS intracellular assay strain Y cycled every 4 days and was the least

sensitive to benznidazole and nifurtimox (together with strain Dm28c TcI) [51] [strain Y has

previously been characterised as partially resistant [70]]. Furthermore, in Moraes et al. ERA

clone 2 (TcIV) was partially resistant to CYP51 inhibition, not reaching 100% inhibition

which we also observed, while 92–80 clone 2 (TcV) showed the highest level of resistance giv-

ing a maximum inhibition of only 27% against posaconazole [51]. Interestingly, not only is

strain 92–80 clone 2 the same DTU as strain PAH179 but Moraes et al. state it grows very

slowly. A difference between the studies is that we did not see the low maximum inhibition

with CLBrenerLuc for posaconazole that was observed by Moraes et al. using wild type

CLBrener.

A previous report indicates that endogenous sterols need to be depleted before cell death

occurs [42]. Our finding that posaconazole has very little effect on non-replicative trypomasti-

gotes or that it is less active against more slowly replicating / cycling T. cruzi strains supports

this conclusion. This suggests that several replications are required to see an effect in the pres-

ence of CYP51 inhibition. This is further supported by the EdU labelling experiment which

shows that the fraction of actively replicating amastigotes in strain PAH179 is not changed by

posaconazole treatment. Thus, replication per se does not provide sensitivity to CYP51 inhibi-

tion, instead a number of rounds of replication are required to see a cytocidal effect. However,

it is possible that slow replication/ cycling correlates to another genetic factor which is directly

involved in drug sensitivity / resistance.

Table 5. T. cruziwashout experiment with benznidazole and posaconazole treated Silvio X10/7 infected Vero cells. Regimen indicates the number of continuous days

the cells were treated with each concentration. Compounds were replaced every 4 days. Relapse day was the first day trypomastigotes can be observed by light microscopy

in culture after washout, negative numbers indicate that trypomastigotes were observed prior to washout.

Compound DMSO Benznidazole Posaconazole

Regimen 8 d 16 d 8 d 16 d 8 d 16 d

Concentration (fold EC50) 0 12.5 25 50 25 50 12.5 25 50 50

Relapse Day -4 -12 14 17 21 >60 >60 3 3 3 11 11

https://doi.org/10.1371/journal.pntd.0006612.t005
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A key result presented here is that long-term in vitro washout experiments, with the fast-

replicating strain Silvio X10/7, show very clear differentiation between the nitroheterocyclic

drugs and posaconazole. In particular, we demonstrate that even 16 days treatment with

posaconazole at 50 fold the EC50 cannot prevent parasite recrudescence, whereas benznida-

zole treatment is able to prevent parasite recrudescence. Cal et al. [71] have previously car-

ried out washout experiments with the same compounds but the conclusions from their

study are limited by the short treatment duration used (4 days versus 16 days here) and

short washout period (7 days versus 60 days here). The authors show that 4 days treatment

with posaconazole does not kill all amastigotes, as could be expected from its slow rate-of-

kill [53] and due to the relatively short washout period they could not unequivocally demon-

strate complete killing of all parasites with benznidazole. Another key finding we present is

that benznidazole does not prevent relapse after 8 days treatment, which is interesting as

nearly all parasites are killed within 96 h of treatment [51, 53, 71]. Dormant parasites that

are less susceptible to benznidazole in vitro have recently been reported [72] and our data

supports the existence of such a subpopulation of persister parasites. Sánchez-Valdéz et al.

further demonstrated that the relapsed parasites have not acquired permanent resistance to

benznidazole. Importantly, the long interval between benznidazole washout and relapse (�2

weeks) demonstrates the need for long-term in vitro washout assays to assess compounds

Fig 5. Updated in vitro screening cascade for Chagas’ disease with addition of the newly developed T. cruzi strain

panel and washout assays. (Cpd, compound; TA, turnaround time).

https://doi.org/10.1371/journal.pntd.0006612.g005
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and potentially the need for an extensive assessment period after immunosuppression in the

in vivo model if sterile cure is to be demonstrated. Our findings correlate well with results

from mouse model studies where posaconazole is not curative [52] and benznidazole treat-

ment generally gives a much higher cure rate after 20 days compared to 10 days treatment

[44, 73, 74].

Taken together we present three distinct in vitro assays where benznidazole performs well

and posaconazole fails: the slow replicating / cycling strain potency assay, the trypomastigote

assay, and the extended duration washout assay. These important differences offer a likely

explanation for the poor performance of the CYP51 inhibitors E1224 and posaconazole in clin-

ical trials [45–47, 75].

We have incorporated these findings into our in vitro screening cascade for Chagas’ disease

to improve translation. Hits are now selected from our 72 h single point intracellular assay and

progressed to a cidal potency assay, these are then assessed for CYP51 mode of action. We

now move representatives of non-CYP51 inhibitor series to a 5 day T. cruzi strain panel assay

and the washout assay (>60 days). We also run compounds in our trypomastigote assay to

determine efficacy against non-replicating stage parasites but, as is it not yet clear if trypomas-

tigote killing is required for in vivo efficacy, this assay is not on the critical path of our in vitro
screening cascade (Fig 5). While the inclusion of the T. cruzi strain panel allows us to assess a

substantial level of genetic diversity by including one representative from each DTU, it is

impossible to cover all T. cruzi variability, including intra-lineage variability.

Ultimately drugs will not only have to kill all disease-causing developmental forms, but also

have the right properties to reach all the parasite reservoirs. This may be very challenging for a

single non-reactive compound and combination therapy to address these issues may be the

most likely route to success. As the current Chagas’ pipeline is very sparse there is a clear need

for new anti-trypanosomal compounds with diverse modes of action.

Supporting information

S1 Fig. Triple assay genotyping profiles for T. cruzi strains. Silvio X10/7 (TcI), CLBrener

(TcVI) & Tula (TcVI) Lanes 2, 3 and 4 respectively identified by PCR product size polymor-

phism of the 24S rRNA locus (A); PCR-RFLP based on SNP’s in GPI locus (B) and HSP60
locus (C). DNA ladders (Bioline) Lane 1 Hyperladder V (A), Lane 1 Hyperladder IV (B & C).

(TIFF)

S2 Fig. Representative growth curves for all T. cruzi panel strains over 5 days. 32 technical

replicates (average ±SD), 1 biological replicate.

(TIFF)

S3 Fig. Raw dose-response data for a panel of T. cruzi strains after 5 days treatment with

nifurtimox (A) benznidazole (B) and posaconazole (C). (3 biological replicates, dashed line

curves for Tula and PAH179 refer to vertical axis on right). Silvio X10/7 and PAH179 plots are

reproduced from Fig 2.

(TIF)

S4 Fig. Detection of cells in S phase growth by EdU labelling of L. donovani LV9 mid-log

promastigotes and Silvio X10/7 trypomastigotes. Cells labelled with EdU AlexFluor 488,

Hoechst and anti-PFR1 antibody detected with goat anti-rabbit IgG AlexaFluor 647 (A & C

respectively). Cells also stained with Hoechst and goat anti-rabbit IgG AlexaFluor 647 second-

ary antibody only as labelling controls (B & D). Bar 10 μm.

(TIFF)
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S5 Fig. EdU labelling of intracellular Silvio X10/7. Infected Vero treated for 5 days with

DMSO (A) 5 μM nifurtimox (B) 50 μM benznidazole (C) and 1 μM posaconazole (D) labelled

with EdU AlexaFluor 488 and Hoechst. Parasites remaining after treatment are highlighted by

white arrows. Bar 20 μm.

(TIFF)

S6 Fig. EdU labelling of intracellular PAH179. Infected Vero treated for 5 days with DMSO

(A) 5 μM nifurtimox (B) 50 μM benznidazole (C) and 1 μM posaconazole (D) labelled with

EdU AlexaFluor 488 and Hoechst. Parasites remaining after treatment are highlighted by

white arrows. Bar 20 μm.

(TIFF)

S7 Fig. Control for EdU labelling of intracellular Silvio X10/7. Infected Vero treated for 5

days with DMSO (A) 5 μM nifurtimox (B) 50 μM benznidazole (C) and 1 μM posaconazole

(D) labelled with Hoechst only. Parasites remaining after treatment are highlighted by white

arrows. Bar 20 μm.

(TIFF)

S8 Fig. Control for EdU labelling of intracellular PAH179. Infected Vero treated for 5 days

with DMSO (A) 5 μM nifurtimox (B) 50 μM benznidazole (C) and 1 μM posaconazole (D)

labelled with Hoechst only. Parasites remaining after treatment are highlighted by white

arrows. Bar 20 μm.

(TIFF)

S9 Fig. Average percent EdU positive Vero cells (±SD) after 5 days treatment with DMSO,

5 μM nifurtimox, 50 μM benznidazole and 1 μM posaconazole.

(TIFF)

S1 Table. Key discrete typing unit (DTU) discriminating SNP’s in T. cruzi TcSC5D gene

adapted from [64].

(DOCX)

S2 Table. Summary of T. cruzi genotype profiles using a single locus assay discriminating

key SNP’s in T. cruzi TcSC5D gene and a triple loci assay (24S PCR and PCR-RFLP GPI &

HSP60).

(DOCX)

S3 Table. Drug potency & efficacy against T. cruzi panel strains at 72 h. pEC50 = –Log (EC50

[M]), average of at least three biological replicates ± SD. � 2/3 replicates pEC50 <4.3.

(DOCX)

S4 Table. Drug potency & efficacy against T. cruzi panel strains at 96 h. pEC50 = –Log (EC50

[M]), average of at least three biological replicates ± SD.

(DOCX)

S5 Table. Efficacy of nifurtimox, benznidazole and posaconazole against T. cruzi Silvio

X10/7 and Tulahuen βgal strain trypomastigotes at 24 & 48 h. pEC50 = –Log (EC50 [M]),

average of at least three biological replicates ± SD. � 2/3 replicates pEC50 <4.3.

(DOCX)
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