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Model-Based Assessment of Alternative Study Designs
in Pediatric Trials. Part II: Bayesian Approaches

G Smania1,2, P Baiardi3, A Ceci1, M Cella1,4* and P Magni2

This study presents a pharmacokinetic-pharmacodynamic based clinical trial simulation framework for evaluating the
performance of a fixed-sample Bayesian design (BD) and two alternative Bayesian sequential designs (BSDs) (i.e., a non-
hierarchical (NON-H) and a semi-hierarchical (SEMI-H) one). Prior information was elicited from adult trials and weighted
based on the expected similarity of response to treatment between the pediatric and adult populations. Study designs were
evaluated in terms of: type I and II errors, sample size per arm (SS), trial duration (TD), and estimate precision. No substantial
differences were observed between NON-H and SEMI-H. BSDs require, on average, smaller SS and TD compared to the BD,
which, on the other hand, guarantees higher estimate precision. When large differences between children and adults are
expected, BSDs can return very large SS. Bayesian approaches appear to outperform their frequentist counterparts in the
design of pediatric trials even when little weight is given to prior information from adults.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 402–410; doi:10.1002/psp4.12092; published online 17 August 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
� Bayesian approaches are appealing in pediatric trials

because the required sample size can be significantly

reduced by taking prior information into account. When

the efficacy of a compound to be investigated in the

pediatric population has already been established in

clinical studies in older populations, evidence available

from such studies can be used as “prior.”
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study presents a PK-PD based clinical trial simulation

framework able to evaluate the performance of three BDs in

pediatric trials using prior information from adults’ data.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� Benefits from the use of BDs are maximized when
children respond similarly to adults, although advantages
compared to standard approaches are still present in
case of differences between the two populations.
HOW THIS MIGHT CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
� PK-PD CTS of Bayesian study designs in children
has never been performed before: this approach allows
investigating the influence of a pediatric study design
on trial success before exposing actual children to the
treatment.

In the sibling paper accompanying this article,1 we intro-

duced the need for alternative study designs in the imple-

mentation of randomized controlled trials (RCTs) for the

evaluation of efficacy and safety of an experimental treat-

ment in the pediatric population and we presented frequent-

ist approaches of alternative designs.
In this second part of the work, we focus on study

designs for pediatric trials based on Bayesian approaches.
Bayes’ theorem allows one to make inference on observed
data by incorporating a priori beliefs (usually defined in
terms of a prior probability distribution) on the phenomenon
being observed. From an RCT perspective, historical infor-
mation on treatment effect (e.g., from previous studies) can
be leveraged to infer the efficacy of the treatment being
studied in the new RCT.2 Consequently, compared to clas-
sical frequentist approaches, the amount of data to be col-
lected in the new study is reduced because these data are
augmented by historical ones. This ultimately allows reduc-
ing the sample size of the study.

Such property of Bayesian designs (BDs) is of tremen-

dous importance for pediatric trials, where the number of

patients that can be recruited is often very limited. In partic-

ular, if the disease being studied in the pediatric population

is similar to the corresponding disease in an older popula-

tion, available RCTs in the latter can be leveraged to elicit

a prior distribution for treatment effect to be used in the

analysis of the pediatric trial (e.g., adult data as prior in

pediatric trials, adolescents data as prior for trials in chil-

dren, children data as prior for trials in infants, etc.). Bayes-

ian techniques are also endorsed by the European

Medicine Agency for the use of the extrapolation approach

in pediatric drug development programs.3

Nonetheless, few examples can be found in the literature

on the application of Bayesian approaches in pediatric

RCTs borrowing prior information from adults’ data.4–6

Among BDs, those of sequential nature are of further

potential interest because of their inherent flexibility, espe-

cially if compared with their frequentist counterparts.7
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Although limited, applications of Bayesian sequential
designs (BSDs) spanned from early phase II anticancer tri-
als,8,9 safety monitoring,10,11 and dose-finding studies,12

whereas applications to pediatric efficacy trials remain
scant.

The scope of the present article is to compare the perfor-

mance of a standard BD with that of two BSDs by means

of pharmacokinetic-pharmacodynamic (PK-PD) based clini-

cal trial simulation (CTS). To the best of our knowledge, no

attempts were made in the evaluation of BSDs through PK-

PD CTS. Designs are evaluated in terms of: type I and
type II errors; sample size per arm (SS); total trial duration

(TD); and precision of treatment effect estimate. Finally,

results of these BDs are cross-compared with those of the

frequentist designs presented in ref. 1.

METHODS

For information on the PK-PD model used to simulate data,

the general features of the study design (treatment groups,

doses, primary endpoints, and trial duration) and the frame-

work for CTS the reader should refer to our companion arti-

cle.1 Only methods differentiating from such an article are
reported thereafter.

In agreement with the Bayesian approach, the null

hypothesis of no treatment difference (H0) was tested

through the posterior probability of the improvement pro-

vided by topiramate (TPM; the drug under study as addi-

tional therapy to the current patient specific antiepileptic

treatment) over placebo (in addition to the current patient
specific antiepileptic treatment) in epileptic children (dP)

after having observed the clinical trial data (i.e.,

p(dP|Data)).

Study designs description
Bayesian design. In a two arm BD, patients are randomized

to two parallel groups to receive either placebo or TPM,

with the number of patients to be randomized in each group

fixed a priori.
The statistical framework for the BD was adapted from

Schoenfeld et al.5 Formally, let dA and dP be the true

improvements of TPM over placebo in the adult and pedi-

atric population, respectively. Their prior distribution is

dA; dP � N l; m2
� �

, where l has a non-informative prior

(l � N 0;r2
l

� �
, r2

l ! 11), while m is given a fixed number

reflecting the supposed difference in improvement of TPM
over placebo between children and adults. The parameter
m plays a pivotal role in the design and analysis of the trial.
Schoenfeld et al.5 suggest eliciting m from clinical judgment
or, if available, from previous pediatric and adult studies

as m5j�dA2�dP j=
ffiffiffi
2
p

, where �dA and �dP represent estimates
of dA and dP obtained from historical data. Because in the
PK-PD model used for CTS13 both pediatric and adult
data were modelled (Supplementary Table S1), we
deduced plausible values of m from parameter estimates of
the final PK-PD models in the two populations. In particu-

lar, Monte Carlo methods were used to obtained �dP from
106 samples, which was set equal to 0.2467 as in our

companion article,1 whereas �dA (set to 0.5016) was

obtained in the same way of �dP but using adult PK-PD
parameters and an average adult TPM dose regimen of
150 mg b.i.d.14,15 This led us to set m 5 0.18 (hereafter
called scenario 1). In order to explore different scenarios
and to take into account the plausible situation of a larger
difference in TPM improvement over placebo between chil-
dren and adults, m was set to 0.4 (hereafter called scenar-
io 2, see Table 1).

Furthermore, let d̂A be the maximum likelihood estimate
of TPM effect over placebo based on an adult trial with mA/
2 patients per arm, and d̂P the same estimate in the new
pediatric trial with mP/2 patients per arm. We focused on
the case of d̂A and d̂P normally distributed, in particular d̂A

� N dA;
s2

A

.
mA

� �
and d̂P � N dP ;

s2
P

.
mP

� �
, with sA 5 2rA

and sP 5 2rP (rA and rP are the SDs of Y in the adult and
pediatric population, respectively). We assumed
rA 5 rP 5 r, with the value of r given by the PK-PD model
and reported in Supplementary Table S1. Quantitatively,

adult prior information was incorporated by setting d̂A to the

model-derived value of �dA and mA to 663, which corre-
sponds to the number of adult patients used to identify the
adult PK-PD model.

According to the statistical framework from Schoenfeld
et al.,5 because dP, d̂P , and d̂A follow a multivariate normal
distribution with mean 0 and covariance matrix:

r2
l1m2 r2

l1m2 r2
l

r2
l1m21s2

P

.
mP

r2
l

r2
l1m21s2

A

.
mA

2
666664

3
777775
;

the posterior distribution of dP is its conditional distribution
given d̂P and d̂A. By letting r2

l ! 11 it turns out that
dP jd̂P ; d̂A � N ldP

;rdP

2
� �

where

ldP
5

mP
S2

P
d̂P1 x

S2
A
d̂A

mP
S2

P
1 x

S2
A

(1)

Table 1 Investigated scenarios for the evaluation of the performance of the

Bayesian design and of the two Bayesian sequential designs.

BSD

BD NON-H SEMI-H

Scenario 1 m 5 0.18 nT 5 16.5 m 5 0.18

nP 5 16.5 x 5 33

ps 5 0.99 ps 5 0.99

pf 5 0.5 pf 5 0.5

Scenario 2 m 5 0.4 nT 5 3.5 m 5 0.4

nP 5 3.5 x 5 7

ps 5 0.99 ps 5 0.99

pf 5 0.75 pf 5 0.75

BD, Bayesian design; BSD, Bayesian sequential design; NON-H, non-

hierarchical; SEMI-H, semi-hierarchical.
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rdP
25

s2
P s2

A

mP s2
A1xs2

P

; (2)

with x5
mAs2

A

s2
A
12m2mA

. ldP
depicts the Bayesian estimator of the

improvement of TPM over placebo in the pediatric

population.
In their work, Schoenfeld et al.5 provide a method to

define a Bayesian analogue of classical frequentist power

given by the following formula:

Bayesian Power d�P
� �

5U
ffiffiffiffiffiffi
mP
p

sP
d�P2

sP
2

mP
z12a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mP

sP
2 1

x
sA

2

r
2

x
sA

2 d̂A

� �	 
� �

(3)

with zx being the x-th quantile of the standard normal distri-

bution, d�P the minimum clinically important difference in

TPM vs. placebo in the pediatric population, and U the nor-

mal cumulative distribution function. If m ! 1 (no data are

borrowed from adults), x!0 and Eq. 3 collapses to the

classical frequentist power.
Similarly to the approach used in the frequentist setting,1

the sample size of the study was identified by exploiting

Eq. 3, fixing Bayesian power to 0.8, a to 0.05, and d�P to
�dP , that is, to 0.2467. According to the calculated total sam-

ple size at each iteration of step 3 of the CTS framework

(see ref. 1) half of the patients were assigned to the place-

bo group and half to the TPM group. Step 4 consisted in

H0 acceptance/rejection based on the posterior probability

of treatment effect: if p dP > 0jd̂P ; d̂A

� �
� 12a H0 is accept-

ed, otherwise it is rejected.

BSDs: non-hierarchical and semi-hierarchical

framework
In a sequential design, statistical analyses are sequentially

performed after the enrollment of groups of patients of pre-

determined size G. This allows early stopping of the trial for

either efficacy or futility. In our companion article,1 we con-

sidered two alternative implementations of frequentist

sequential designs. In the present work, we consider two

Bayesian implementations of sequential designs adapted

from Gsponer et al.16: one in a non-hierarchical (NON-H)

and one in a semi-hierarchical (SEMI-H) framework. The

NON-H is presented in Supplementary Material S1, while

the SEMI-H is detailed hereafter.
The SEMI-H shares the same framework of the BD, but,

because it is a sequential design, inferences from the pos-

terior distribution of dP are sequentially made at each inter-

im analysis. Accordingly, d̂P and sP are computed at each

interim analysis rather than being estimated once at the

end of the trial. The decisional criteria for trial success/

failure (i.e., rejection/acceptance of H0) used for BSDs

were the following:

Success H0 rejectedð Þ : p dP > 0jd̂P ; d̂A

� �
> ps

Failure H0 acceptedð Þ : p dP < dminjd̂P ; d̂A

� �
> pf

8><
>: (4)

where dmin was set to 0.12, which corresponds to a 10%

further decrease in seizure reduction for TPM 7 mg/kg/day

against placebo, considering an average placebo seizure
reduction of 21.5% (obtained from the PK-PD model). The
parameters of the posterior distribution used to evaluate cri-
teria (4) in the SEMI-H correspond to that of BD (Eqs. 1
and 2). Consistently with the BD, NON-H and SEMI-H per-
formance have been investigated under two alternative sce-
narios in terms of m, ps, and pf (Table 1).

BSDs were simulated with G 5 20. In agreement with the
sequential nature of these designs, for each CTS, steps 3
and 4 of the procedure described in ref. 1 were sequentially
performed until trial success/failure was detected according
to criteria (4). In particular, in step 3, G children were ran-
domized to TPM and placebo in a 1:1 ratio and their simu-
lated responses used to compute the posterior probabilities
in (4) based on the NON-H and the SEMI-H, while in
step 4 such probabilities were compared with their corre-
sponding thresholds.

Supplementary Material S1 contains a detailed descrip-
tion of the calculation of the metrics used for design com-
parison for the BD, NON-H, and SEMI-H. The R code for
simulation of BD, NON-H, and SEMI-H under scenario 1
can be found in Supplementary Material S2.

RESULTS

In this section, only the results obtained under scenario 1
are presented, whereas results from scenario 2 are
reported in Supplementary Material S1.

Type I and type II errors
Because of the inherently different philosophy of the Bayes-
ian approach compared to the frequentist one, there is no
control of type I error in the design of Bayesian trials and
its value depends upon the weight of prior information. In
our case, because prior information came from a success-
ful adult trial, type I errors resulted in 22.2% for the BD,
26.3% for the NON-H, and 24.1% for the SEMI-H. As
expected, type II errors for the BD is around its predeter-
mined value of 20% (Table 2). In BSDs, probably due to
the increased type I errors, it is slightly smaller: 15.1% for
the NON-H and 16.0% for the SEMI-H, despite it was not
planned at the design stage.

Sample size per arm
SS for the BD is determined a priori on the basis of Eq. 3
and its relationship with m is shown in Figure 1a. Unlike
BD, SS of BSDs is not known a priori and the histograms
of SS achieved at each simulation in the two scenarios are
depicted in Figure 1b.

For all designs, the average SS required in scenario 1 is
lower than that of scenario 2 because, in the latter, less
weight is given to prior information from adult data. In the
BD, the required SS resulted in 49 children per arm, which
approximately corresponds to the 75th percentile of SS dis-
tributions of both BSDs (Table 2), distributions that do not
significantly differ between each other (Figure 1b).

Average SS for the NON-H and SEMI-H is 37 (Table 2).
Despite mean and median SS of BSDs are lower than the
BD one, sequential recruitment of children may be remark-
ably prolonged if treatment effect signals are captured later
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on during the trial, as shown by the right tail of the histo-
grams in upper panel of Figure 1b. The probability of the
NON-H and SEMI-H requiring a higher SS than the BD is
about 27%.

Total trial duration
TD as a function of enrollment rate is shown in Figure 2.
The NON-H and SEMI-H have the lowest median duration
among the three designs, which reflects the lowest median
SS required (Table 2). Likely due to the lack of significant
difference between SS distributions in NON-H and SEMI-H,
their medians and 95% prediction intervals in TD perfectly
overlap.

Treatment difference estimate (ldP
) precision

Figure 3a shows that the BD leads on average to the
shortest width of the 95% credible intervals thereby
guaranteeing the highest precision in the Bayesian esti-
mate of dP in both evaluated scenarios. When less
weight is given to prior information on adult (right panel
of Figure 3a), the precision appears to increase in all
investigated designs.

No significant differences can be detected between the
precision assured by NON-H and SEMI-H in both
scenarios.

DISCUSSION
Comparison within Bayesian designs
General. PK-PD CTS provides a favorable tool to integrate
prior information on drug disposition and effect to evaluate
the performance of candidate study designs. In this work,
we underpinned CTS with a PK-PD model, which was sep-
arately identified from both pediatric and adult data.13 This
further enabled us to formalize CTS of BDs by using prior
information from adults’ data.

In particular, we were able to quantify the difference in
improvement of TPM over placebo between children and
adults (m) starting from parameter estimates of the PK-PD
model. The decision on the value of m is critical because it
ultimately affects both the required SS and the final esti-
mate of dP and the associated inference. However, the

Table 2 Performance metrics obtained from 1,000 clinical trial simulations of the investigated designs

Design metric

BSD

BD NON-H SEMI-H

Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

â (%) (95% CI) 22.2 (19.6–24.8) 7.3 (5.7–8.9) 26.3 (22.6–29.0) 9.4 (7.6–11.2) 24.1 (21.4–26.8) 7 (5.4–8.6)

b̂ (%) (95% CI) 20.3 (17.8–22.8) 21.1 (18.6–23.6) 15.1 (12.9–17.3) 19.5 (17.0–22.0) 16.0 (13.7–18.3) 19.4 (16.9–21.9)

E(SS) (patients) 49 103 37 67 37 66

SS50 (patients) 49 103 20 50 20 50

SS75 (patients) 49 103 50 90 50 90

SS90 (patients) 49 103 81 150 80 150

SS95 (patients) 49 103 110 190 110 190

Median TD ER 5 4 patients/months 26.5 53.5 12 27 12 27

ER 5 10 patients/months 11.8 22.6 6 12 6 12

â, type I error; b̂, type II error; SS50, median sample size per arm; SS75, SS90, SS95, 75th, 90th, and 95th percentiles of sample size distribution); BD, Bayes-

ian design; BSD, Bayesian sequential design; CI, confidence interval; ER, enrollment rate; NON-H, non-hierarchical; SEMI-H, semi-hierarchical; SS, sample

size; TD, total trial duration.
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Figure 1 (a) Sample size per arm (SS) vs. difference in improve-
ment of topiramate (TPM) over placebo between children (dP)
and adults (dA) expressed in terms of SD of the prior distribution
on dP and dA (m). The red line represents the sample size per
arm of a classical parallel frequentist design, azure lines indicate
the value of m and the corresponding SS of the Bayesian design
(BD) in scenario 1 (solid line) and 2 (dotted line). (b) Histograms
of SSs obtained at each of the 1,000 clinical trial simulation of
the Bayesian sequential design in the non-hierarchical (NON-H;
green histogram) and semi-hierarchical (SEMI-H; pink histogram)
framework for scenario 1 (upper panel) and 2 (lower panel). The
black vertical lines indicate SS of the BD in the two scenarios.
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value of m depends upon the specific problem and is not

universal for all compounds and/or diseases. In our

analysis, for m> 1 the required SS of the BD tends toward

that required by a standard frequentist design

(Figure 1a). On the other hand, the value of m obtained

from PK-PD model parameters (scenario 1) leads to a SS
�60% lower than that required in a frequentist setting,

with clear advantages from a patient’s recruitment

perspective.
Comparing both investigated scenarios, Figure 3b shows

that, for all designs, the estimate of dP (i.e., ldP
, the posteri-

or mean of TPM improvement over placebo in seizures

reduction) shifts toward the pediatric value given by the PK-

PD model if a greater m is considered. Also, Figure 3b sug-

gests that BSDs led to an estimate of dP closer to the adult

value when compared to their fixed-sample counterpart,
partly because of the lower SS required by sequential

designs, which makes ldP
to rely more on prior (adult)

information.
Should the pediatric PK-PD model in the pediatric popu-

lation not be available at the design stage, a model-based

approach still provides considerable benefits in eliciting pri-

or information. If, for example, children are expected to be

twice as sensitive as adults (assumption that can be sup-

ported for instance by historical data from drugs with similar

mechanism of action in children), m can be derived by using
the adult PK-PD model with a doubled drug-effect parame-

ter. Consequently, the impact of such an assumption on

designs performance can be quantitatively evaluated by

means of our framework.

NON-H vs. SEMI-H
Our results show that there are no significant differences

between the NON-H and the SEMI-H in both investigated

scenarios and across all analyzed metrics (Table 2). Such

results were not totally unexpected as the weight of prior

information in NON-H and SEMI-H is given in an equivalent

manner (see Supplementary Material S1). Nonetheless,

because SEMI-H explicitly enables to weight prior informa-

tion on adults on the grounds of clinical and scientific plau-

sibility, it may be preferable to NON-H where the weight of

prior information is to be assigned based on an “equivalent

sample size.”

BSDs vs. BD
BSDs, under comparable type I errors, require, on average,

a lower SS than the BD (Table 2). With respect to mean

SS, the reduction seen under scenario 2 (�35%) is slightly

higher than that observed under scenario 1 (�24%).

Although limited by only two scenarios, this suggests that

the more the adult and pediatric populations are different

the greater is the advantage in terms of mean SS brought

by BSD compared to a fixed-sample BD. On the other

hand, SS distributions of BSDs become more skewed

when passing from scenario 1 to scenario 2 (Figure 1b)

and more caution is needed because there is a higher

probability of ending the trial with non-practical SSs, which

would ultimately jeopardize the conclusions that can be

drawn from the study.
Differences in TD between BD and BSDs can be

explained by the aforementioned differences in SS.
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Figure 2 Total trial duration as a function of enrollment rate for the Bayesian design (black line) and the Bayesian sequential design in
the non-hierarchical (NON-H; light blue lines) and semi-hierarchical (SEMI-H; orange lines) framework for scenario 1 (upper panel) and
2 (lower panel). Solid lines represent the median duration whereas dotted lines depict 95% prediction intervals. Median and 95% pre-
diction intervals of NON-H and SEMI-H are on top of each other in both scenarios.
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Figure 2 shows that for the investigated range of enroll-

ment rates median TD of the NON-H and SEMI-H is lower

than the duration of the BD. Like for SS, upper limit of 95%

prediction interval of TD (upper dotted lines of Figure 2)

clearly suggests that there exists a low probability of the tri-

al lasting more than 100 months, which would thereby com-

promise its feasibility.
Regarding the precision of ldP

, the BD performs better

than the BSDs with a median width of its 95% credible

interval about 20% lower than the corresponding median of

BSDs (Figure 3a). The better precision of the BD is likely

due to the higher number of samples used to compute ldP
.

Moving from scenario 1 (left panel of Figure 3a) to scenar-

io 2 (right panel of Figure 3a), the median of the 95% cred-

ible interval width consistently decreases for all designs,

suggesting that, on average, the increase in precision due
to a higher SS outweighs the decrease caused by a less
informative prior. However, outliers of credible interval
widths in BSDs are higher in scenario 2 than in scenario 1
(results not shown). These less precise estimates are
obtained when H0 is rejected at the first interim analysis
(i.e., when 10 patients per arm have been enrolled), reveal-
ing that for such low SS prior information is not strong
enough to guarantee an acceptable precision of ldP

.
We also performed a sensitivity analysis in order to

investigate the impact of non-negligible model misspecifica-
tion on BD performance. Results and discussion on such
analysis are reported in Supplementary Material S1.

Comparison between Bayesian and frequentist
approaches
In part I of this work, we presented the performance of a
set of alternative frequentist study designs (crossover,
randomized withdrawal, sequential probability ratio test
(SPRT), and triangular test (TT)) for pediatric trials and
compared them with the standard parallel design (PaD).1

The present article deals with the evaluation of BDs,
whose comparison was based on the same metrics used
for frequentist designs except for the percentage of expo-
sure to placebo, TPM, and no-treatment relative to total
trial exposure, as this measure is equal to that of PaD
considering the equal randomization to the two treatment
arms.

One of the pivotal issues addressed by our work is the
simultaneous comparison of a battery of alternative designs
based on a pharmacometric model of the compound and
the related placebo effect. Although interesting, comparing
the goodness of Bayesian and frequentist approaches is
not trivial because of the inherently different philosophy of
these two methodologies and is still an open debate.17 Sce-
nario 1 highlights why BDs are appealing in pediatrics: the
required SS is significantly reduced compared to that of
their frequentist counterparts (BD vs. PaD (fixed-sample
designs) and SEMI-H vs. SPRT/TT (sequential designs)).
In particular, SS of BD (49 patients) is nearly 60% lower
than that of the PaD (115 patients), while the SS distribu-
tion of the SEMI-H is squeezed toward lower SSs com-
pared to that obtained with the SPRT/TT (left panel of
Figure 4). Figure 5a shows that the reduced SS implies a
remarkable lower precision of the BD estimate compared to
that of the PaD (i.e., d̂), whereas for BSDs such difference
is less pronounced because of the low precisions associat-
ed with the SPRT and TT1; moreover, the estimated treat-
ment effect is shifted toward the adult value for both fixed-
sample (mean ldP

of 0.3498) and sequential (mean ldP

equals 0.4330 and 0.4265 for the NON-H and SEMI-H,
respectively) BDs when compared to the corresponding
fixed-sample (mean d̂ of 0.2821) and sequential (mean d̂

equals 0.3717 and 0.3588 for the SPRT and TT, respective-
ly) frequentist designs (Figure 5b).

Different considerations can be made if frequentist
designs are compared with BDs under scenario 2.

In terms of SS, the BD allows to reduce the number of
children to be enrolled by almost 10% when compared to
the PaD while maintaining similar estimates of treatment
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Figure 3 (a) Bar chart plot of the median 95% credible interval
width of treatment difference estimates (ldP

) obtained at each of
the 1,000 clinical trial simulation of the Bayesian design (BD),
the Bayesian sequential design with a non-hierarchical (NON-H)
and a semi-hierarchical (SEMI-H) framework for scenario 1 (left
panel) and 2 (right panel). The upper and lower “hinges”
correspond to the first and third quartiles of 95% confidence
intervals widths. (b) Boxplots of ldP

obtained at each simulation
of the BD, the NON-H and the SEMI-H for scenario 1 (left panel)
and 2 (right panel). The blue and red dotted lines represent
the adult and pediatric treatment effects difference between
topiramate and placebo (obtained from the pharmacokinetic-
pharmacodynamic model), respectively.
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effect and associated precisions (Figure 5), suggesting that
the estimate obtained with a BD (mean ldP

of 0.2905) is
not significantly influenced by the adult prior distribution
under scenario 2.

Similarly to what has been observed when comparing
fixed-sample designs, median SS of the SEMI-H (50
patients) is lower than the corresponding value of the
SPRT (60 patients) and TT (70 patients). Better perfor-
mance provided by BDs with respect to this metric can also
be deduced from Figure 4, where it can be seen that SS
histograms of the SPRT ant TT are shifted toward higher
sample sizes compared to SEMI-H. However, SEMI-H
seems to behave similarly to the SPRT in terms of very
late stopping recruitment (i.e., low probabilities exist that
the trial goes on very long), as indicated by a 95th percen-
tile in SS distribution of 190.

The right panel of Figure 5a reveals that no considerable
differences in precision are seen between BSDs and the
TT (the frequentist sequential approach with the highest
precision), even though Bayesian approaches seem to be
slightly more robust to outliers (results not shown). In addi-
tion, equivalently to fixed-sample designs, the adult prior
distribution does not remarkably influence the estimated
effect in pediatrics in the NON-H (mean ldP

of 0.3964) and
SEMI-H (mean ldP

of 0.3939) compared to the SPRT and
TT (Figure 5b).

In a way, the comparison made under scenario 2 could
be considered fairer because type I errors obtained under
scenario 2 (around 7–9%) are closer to those obtained in
frequentist designs (around 5–7%). On the other hand, the
increased type I error rate of BDs observed under

scenario 1 is inherently due to the inclusion of a positive
adult study and should be accepted as such.

With respect to the extrapolation of adult results to pedi-
atric trials, Hlavin et al.18 proposed a statistical framework
to quantitatively accommodate the uncertainty about the
assumptions on the similarity between the adult and pediat-
ric population by enlarging the significance level of the pedi-
atric trial based on experts skepticism. Although in the
framework by Hlavin et al.,18 Bayesian arguments are
applied to calibrate the increase in the significance level,
their approach is frequentist by nature and it is does not
provide a clear way on how to quantitatively derive the
skepticism factor on the basis of the expected similarities/
differences between the two populations. Nevertheless, the
condition of no skepticism can be translated into the condi-
tion m 5 0 of Schoenfeld et al.5 (children and adults respond
in the same way to the drug under study and no pediatric
efficacy trial would be needed). Similarly, full skepticism
can be converted into m –> 1. Accordingly, for values of m
approaching the standard frequentist method (m �2), the
type I error we obtained corresponds to the adjusted a val-
ue proposed by Hlavin et al.18 in case of full skepticism,
that is, 0.05 (i.e., no adjustment).

Although we did not explicitly consider advantages and
disadvantages of the investigated designs concerning the
evaluation of dose regimens in the pediatric population,
some general properties can still be outlined. Because BSD
and BD are parallel in nature, they differ solely in terms of
SS with respect to the estimation of the PK and/or PK-PD
in children; as a result, on average, BD is expected to pro-
vide more precise PK/PK-PD estimates compared to BSD.
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green histogram).
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Similarly, when significant weight is given to prior informa-
tion on adult treatment effect, BDs would lead to estimates
with poorer precision in contrast with frequentist ones; how-
ever, if also the PK/PK-PD in children is expected to be
similar to that observed in adults, prior information on adult
PK/PK-PD parameters can be leveraged to improve the
precision of the estimates in the pediatric population and to
ultimately provide an optimal dose selection.6

Regulatory endorsements on the use of BDs for pediatric
trials are present: The European Medicines Agency suggests

using Bayesian approaches in pediatric investigation plans,3

whereas the US Food and Drug Administration published a
“Guidance for the Use of Bayesian Statistics in Medical
Device Clinical Trials.”19 Nevertheless, few examples can be
found in the literature. According to G€onen,20 the barriers to
entry are many, but three stand out: prior, software, and
motivation, where motivation seems to be the major one.
We would also add tradition as an additional hurdle, which
is anyway related to motivation. Pediatric trials call for inno-
vation and may therefore offer the opportunity to overcome
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Figure 5 Bar chart plot of the 95% credible (Bayesian) and confidence (frequentist) interval width of treatment difference estimates in
pediatrics (ldP

for Bayesian designs (BDs) and d̂ for frequentist ones) (a) and boxplot of ldP
and d̂ (b) obtained at each of the 1,000

clinical trial simulation of the BD (blue bar), parallel design (PaD; red bar), Bayesian sequential design with a non-hierarchical (NON-H;
yellow bar), and a semi-hierarchical (SEMI-H; white bar) framework, sequential probability ratio test (SPRT; green bar), and triangular
test (TT; gray bar). The upper and lower “hinges” in subfigure (a) correspond to the first and third quartiles of 95% credible/confidence
intervals widths. The dashed horizontal black line represents the pediatric treatment effect difference between topiramate and placebo
obtained from the pharmacokinetic-pharmacodynamic (PK-PD) model (0.2467).
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these motivational issues and increase usage of Bayesian
approaches.

It has to be pointed out that our analysis is based on the

effect of TPM in children with partial onset seizures refrac-
tory to their current antiepileptic treatment, and the extrapo-
lation of our results to different compounds/diseases/

subpopulations should be further explored.
In conclusion, in this work, we provided a pharmacomet-

ric framework able to formalize PK-PD based CTS for BDs
in pediatric trials using prior information from adult data,

thereby allowing the investigation of the influence of a spe-
cific study design on success/failure of a pediatric trial.

With respect to the selection of a particular design, if pri-
or information is available from adult studies but children

are expected to respond substantially different from adults
(scenario 2), the performance of frequentist and Bayesian
approaches can be assumed comparable, with slight

advantages for the latter.
However, when the pediatric population is expected to

respond similarly to adults (scenario 1), BDs would allow
smaller, shorter, more reliable, and more efficient trials in

children. Among BDs, those of sequential nature, irrespec-
tive of their level of hierarchy, seem to require lower SS
compared to the BD if larger treatment effects are

expected, and could therefore represent an appealing
option for trials in very small populations.
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