
2248  |     Cancer Science. 2020;111:2248–2258.wileyonlinelibrary.com/journal/cas

1  | INTRODUC TION

In tumor-bearing hosts, several types of immunosuppres-
sive cells, including regulatory T (Treg) cells and myeloid-de-
rived suppressor cells (MDSCs), inhibit antitumor immune 
responses.1 MDSCs are immature myeloid cells that are classi-
fied as either Gr-1lowLy6Chigh monocytic MDSCs (M-MDSCs) or 
Gr-1highLy6Clow granulocytic MDSCs (G-MDSCs).2 MDSCs sup-
press antitumor immune responses via mechanisms involving 

arginase-1, inducible nitric oxide synthase, and indoleamine 
2,3-dioxygenase.2,3 l-Arginine and l-tryptophan are required for 
T-cell proliferation/activation. Arginase-I and inducible nitric 
oxide synthase metabolize l-arginine. Indoleamine 2,3-dioxy-
genase degrades l-tryptophan, resulting in the accumulation of 
kynurenine, an immunosuppressive metabolite, and leading to 
T-cell dysfunction.2,4 In addition, degradation of l-arginine by 
MDSCs leads to reduced expression of the CD3ζ chain, resulting 
in impaired T-cell responsiveness.5,6
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Abstract
Myeloid-derived suppressor cells (MDSCs) play a crucial role in immunosuppression 
in tumor-bearing hosts. MDSCs express arginase-I and indoleamine 2,3-dioxygenase; 
they suppress T-cell function by reducing the levels of l-arginine and l-tryptophan, 
respectively. We examined the anticancer effects of supplementation of these amino 
acids in CT26 colon carcinoma-bearing mice. Oral supplementation of l-arginine or 
l-tryptophan (30 mg/mouse) did not affect tumor growth, whereas oral supplemen-
tation of d-arginine was lethal. Supplementation of l-arginine showed a tendency 
to augment the efficacy of cyclophosphamide (CP). CP reduced the proportions of 
granulocytic MDSCs and increased the proportions of monocytic MDSCs in the 
spleen and tumor tissues of CT26-bearing mice. l-Arginine supplementation alone 
did not affect the MDSC subsets. CP treatment tended to reduce the plasma lev-
els of l-arginine in CT26-bearing mice and significantly increased the number of 
tumor-infiltrating CD8+ T cells. In addition, l-arginine supplementation significantly 
increased the proportions of tumor peptide-specific CD8+ T cells in draining lymph 
nodes. Importantly, additional supplementation of l-arginine significantly increased 
the number of cured mice that were treated with CP and anti-PD-1 antibody. Totally, 
l-arginine supplementation shows promise for boosting the therapeutic efficacy of 
chemoimmunotherapy.

K E Y W O R D S

arginase-I, chemoimmunotherapy, l-arginine, MDSC, T cells

www.wileyonlinelibrary.com/journal/cas
mailto:﻿
https://orcid.org/0000-0002-9737-0360
http://creativecommons.org/licenses/by-nc/4.0/
mailto:haramamo@med.shimane-u.ac.jp


     |  2249SATOH eT Al.



2250  |     SATOH eT Al.

Immune-checkpoint blockade therapy shows promise for various 
types of cancers. To improve therapeutic efficacy, combinations of 
immune-checkpoint blockade with other anticancer therapies have 
been employed.7-10 However, chemotherapeutic drugs can exert both 
positive and negative effects on antitumor immunity. For example, 
some chemotherapeutics mitigate Treg- or MDSC-mediated immuno-
suppression11,12 and trigger immunogenic death of cancer cells.13 In 
contrast, high doses of chemotherapeutics induce immunosuppres-
sion. In addition, the proportion of MDSCs reportedly increases after 
administration of chemotherapeutic drugs, such as cyclophosphamide 
(CP) and docetaxel.14,15 In addition, we reported that CP increases 
the proportion of M-MDSCs in the spleen of tumor-bearing mice.16 
Therefore, it is possible that the increase in the proportion of MDSCs 
after chemotherapy attenuates the anticancer T-cell responses by re-
ducing levels of l-arginine and l-tryptophan in tumor-bearing hosts.

In this study, we examined the effect of supplementation of 
l-arginine or l-tryptophan on antitumor immunity using a CT26 
carcinoma mouse model. Although supplementation of l-arginine 
or l-tryptophan alone did not affect the in vivo growth of CT26 tu-
mors, l-arginine supplementation showed a tendency to augment 
the antitumor effect of CP. CP with anti-PD-1 therapy tended to re-
duce the plasma levels of l-arginine in CT26-bearing mice, whereas 
l-arginine supplementation restored them. In addition, l-arginine 
supplementation significantly increased the proportions of tumor 
peptide-specific CD8+ T cells in tumor-draining lymph nodes and 
the number of cured mice treated with CP and anti-PD-1 antibody.

2  | MATERIAL S AND METHODS

2.1 | Mice and tumor cell lines

BALB/c female mice (6-7 wk old) were purchased from CLEA Japan. 
The mice were maintained under specific pathogen-free conditions. 
All experiments involving animals were performed in accordance 
with the ethical guidelines for animal experiments of the Shimane 
University Faculty of Medicine (IZ30-88). CT26 is a colon carci-
noma cell line from a BALB/c mouse. This cell line was maintained 
in RPMI 1640 medium (Sigma-Aldrich) that was supplemented with 
10% fetal bovine serum and 20 µg/mL gentamycin (Sigma-Aldrich).

2.2 | Treatment protocol

BALB/c mice were injected subcutaneously (sc) in the right flank 
with 5 × 105 tumor cells. Amino acids (l-arginine, d-arginine, and 

l-tryptophan; Nacalai Tesque) (30 mg/mouse; 200 µL) were admin-
istered orally. CP (Shionogi Co., Ltd.) (100 mg/kg) or 5-fluorouracil 
(5-FU; Nacalai Tesque) (100 mg/kg) was injected intraperitoneally 
(ip) in a 200-µL volume on day 12 after tumor inoculation. An anti-
PD-1 monoclonal antibody (mAb) (100 µg/mouse) (clone RMP 1-14, 
Bio X Cell Inc) was injected ip at 200 µL on the indicated days. 
The same volume of rat IgG (100 µg/mouse) (Sigma-Aldrich) was 
injected ip as the vehicle control. Tumor size (mm2) was measured 
on the indicated days.

2.3 | Assay of cytotoxicity

At 2 mo after complete regression of CT26 tumors, spleen cells 
were harvested and cultured in vitro with an AH1 peptide (10 µg/
mL), an H-2Ld-binding CT26-associated tumor-derived pep-
tide (SPSYVYHQF),17 in the presence of IL-2 (20 U/mL) for 4 d. 
Thereafter, their cytotoxicities were evaluated by 5 h 51Cr-release 
assay.

2.4 | Flow cytometry

To examine MDSCs in the spleen and tumor sites, suspended 
cells were stained with an allophycocyanin (APC)-conjugated 
anti-CD45 mAb (BioLegend), phycoerythrin (PE)-conjugated 
anti-CD11b mAb (BioLegend), fluorescein isothiocyanate (FITC)-
conjugated anti-Gr-1 mAb (R&D Systems), and PE/Cy7-conjugated 
anti-Ly6C mAb (BioLegend). To examine T cells in tumor tis-
sues, suspensions of cells from tumor tissues were stained with 
an APC-conjugated anti-CD45 mAb, PE-conjugated anti-CD4 
mAb (BioLegend), and FITC-conjugated anti-CD8 mAb (Southern 
Biotech). To assess the proportions of tumor peptide-specific 
CD8+ T cells in draining lymph nodes (LNs), axially draining and 
inguinal LN cells were stained with a PE-conjugated tetramer of an 
H-2Ld-binding AH1 peptide and FITC-conjugated anti-CD8 mAb. 
Stained cells were analyzed using a FACSCalibur flow cytometer 
(Becton-Dickinson).

2.5 | Measurement of plasma levels of amino acids

Plasma from naïve or CT26-bearing mice with or without treatment 
was prepared individually and stored at −30°C. Plasma l-arginine and 
l-tryptophan levels were assayed by liquid chromatography-mass 
spectrometry (LC-MS) (LC-MS8050, Shimadzu).

F I G U R E  1   Effects of l-arginine supplementation and/or CP treatment in CT26-bearing mice. A, BALB/c mice (n = 6) were injected sc with 
CT26 cells (5 × 105). Amino acids (30 mg/mouse) were orally administered daily from day 1. Dotted line indicates the control (dH2O); red cross 
represents death of a mouse. B, l-Arginine (30 mg/mouse) was orally administered daily, beginning on the indicated days. Dotted line indicates 
the control (dH2O). C, On day 12 after inoculation of CT26 cells (5 × 105), mice received ip injection of CP (100 mg/kg). l-Arginine (30 mg/
mouse) was orally administered daily from day 12. Numbers in parentheses are cured mice/total mice. Dotted line indicates the untreated 
control. D, Tumor size on day 33. *P < .05, **P < .01, n.s., not significant. (ANOVA) E, Spleen cells from 2 cured mice and one naïve mouse were 
separately cultured with AH1 peptide and IL-2 (20 U/mL) for 4 d. Their cytotoxicity to CT26 cells was examined by 5 h 51Cr-release assay.
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2.6 | Cell proliferation assay

Erythrocyte-free spleen cells from BALB/c female mice (6-7 wk 
old) were cultured in flat 96-well plates pre-coated with anti-CD3 
mAb (3 µg/mL, clone 145-2C11, BioLegend), in the presence of 
soluble anti-mouse CD28 mAb (1 µg/mL, clone 37.51, BioLegend) 
in RPMI 1640 medium containing 0-1150 µmol/L l-arginine. Cell 
viability was evaluated by 2-(2-methoxy-4-nitrophenyl)-3-(4-
nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium 
salt (WST-8) assay (Nacalai Tesque). Spleen cells were cultured on 
flat-bottomed 96-well plates. At 3 d later, 10 μL of WST-8 solu-
tion were added to each well and the plates were incubated for 
2 h. The absorbance at 450 nm was read using a microplate reader 
(Beckman Coulter).

2.7 | Assay of protective immunity

At 1 mo after complete regression of sc inoculated CT26 after ther-
apy, CT26 cells (2.5 × 105) were injected sc into the flank of mice. 
In some mice, either anti-CD4 antibody (clone GK1.5, BioLegend), 
anti-CD8 antibody (clone 53-6.7, BioLegend), or control rat IgG was 
injected ip twice, 3 and 1 d before CT26 inoculation, at a dose of 
150 µg. Thereafter, tumor size (mm2) was measured.

2.8 | Statistical analysis

Data were analyzed by unpaired two-tailed Student t test (2 groups), 
ANOVA with Tukey’s post hoc test (2 or more groups), or Fisher 

F I G U R E  2   Effects of CP treatment 
on the proportions of MDSC subsets in 
spleens of CT26-bearing mice. A, On 
day 12 after CT26 inoculation, mice 
received ip injection of CP (100 mg/kg). 
Simultaneously, oral supplementation of 
l-arginine (30 mg/mouse) was initiated. 
On day 18, spleens were harvested 
and cells were enumerated (n = 4). B, 
Staining strategy for MDSC subsets. C, 
Proportions of CD11b+ cells. On day 
18, the spleens were harvested and 
stained with the indicated antibodies. 
D, A representative result is shown. 
Proportions (E) and numbers (F) of 
MDSCs in spleen. (n = 4). Data are 
means ± standard deviations. **P < .01, 
*P < .05, n.s., not significant (ANOVA)
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exact test. A P-value of <.05 was considered indicative of statistical 
significance.

3  | RESULTS

3.1 | Supplementation of l-arginine tended to 
augment in vivo antitumor effects of CP

First, we examined the effect of supplementation with l-arginine, d-
arginine, or l-tryptophan on the in vivo growth of CT26 carcinoma 
cells (Figure 1A). Daily oral supplementation (30 mg/mouse) was ini-
tiated from day 1 after tumor inoculation. This dose was determined 
based on findings by other researchers.18,19 Supplementation of l-
arginine or l-tryptophan did not affect tumor growth. Because 4 of 6 
mice were unexpectedly killed by supplementation of d-arginine, the 
control for l-arginine, supplementation of d-arginine was aborted. 
Next, l-arginine supplementation was initiated on days 1, 7, or 12 
after tumor inoculation (Figure 1B). However, no growth suppres-
sion was observed. Given that anticancer therapy targets estab-
lished tumor, supplementation of l-arginine was initiated on day 12 
after tumor inoculation in subsequent experiments.

We next determined whether l-arginine supplementation could 
augment the CP-induced antitumor effect. CP (100 mg/kg) was in-
jected ip on day 12 after tumor inoculation. CP treatment alone sig-
nificantly inhibited tumor growth. Although statistical significance 
was not observed, complete cure was observed in 2 mice treated 
with both CP and l-arginine, and their mean tumor size was almost 
half compared with mice treated with CP alone (Figure 1C,D). Similar 
antitumor effects on the tumor size were observed in another ex-
periment (Figure S1). At 2 mo later, cytotoxicity against CT26 cells 
was examined using spleen cells from cured mice. The spleen cells of 
cured mice exerted a greater cytotoxic effect, compared with spleen 
cells of naïve mice (Figure 1E).

3.2 | Effects of CP and/or l-arginine on MDSCs 
in the spleen and tumor sites of CT26-bearing mice

We next examined the effects of either or both CP treatment and l-
arginine supplementation on MDSCs in the spleen of CT26-bearing 
mice. CP treatment showed a tendency to reduce the number of 
spleen cells, but l-arginine supplementation showed no such ef-
fect (Figure 2A). Figure 2B shows the MDSC staining strategy. 
M-MDSCs and G-MDSCs were identified as CD11b+Gr-1lowLy6Chigh 
and CD11b+Gr-1highLy6Clow cells, respectively. CP treatment and/
or l-arginine supplementation did not affect the proportion of 
CD11b+ cells in the spleen (Figure 2C). CP treatment significantly 
increased the proportion of M-MDSCs, but reduced the proportion 
of G-MDSCs (Figure 2D,E). l-Arginine supplementation did not alter 
these changes. The number of M-MDSCs showed a tendency to in-
crease in untreated CT26-bearing mice compared with naïve mice, 
whereas CP treatment and/or l-arginine supplementation did not 

affect the number of M-MDSCs (Figure 2F). In contrast, CP treat-
ment significantly reduced the number of G-MDSCs, irrespective of 
l-arginine supplementation. Therefore, CP treatment reduced the 
proportion of G-MDSCs and increased the proportion of M-MDSCs 
in the spleens of CT26-bearing mice; l-arginine supplementation did 
not alter these changes. In contrast, l-arginine supplementation did 
not affect the proportions of CD11b+ cells in tumor sites (Figure S2A). 
CP showed a tendency to reduce the proportion of G-MDSCs com-
pared with the other groups (Figure S2B), as observed in the spleen 
(Figure 2E), whereas significant difference was observed between 
the CP and l-arginine groups. However, no reduction in the propor-
tion of G-MDSCs was induced by the combination of CP treatment 
and l-arginine supplementation.

3.3 | CP reduces the plasma levels of l-arginine in 
CT26-bearing mice

We next used LC-MS to measure the plasma levels of l-arginine and 
l-tryptophan in naïve and CT26-bearing mice (Figure 3). Naïve or 
CT26-bearing mice were injected ip with CP (100 mg/kg) on day 
12; supplementation of l-arginine (30 mg/mouse) was initiated on 
the same day. Plasma was collected on day 26 after tumor inocu-
lation. The plasma level of l-arginine was slightly, but non-signifi-
cantly, reduced in untreated CT26-bearing mice. Supplementation 
of l-arginine significantly increased the plasma level of l-arginine 
in CT26-bearing mice. The plasma level of l-arginine in CP-treated 

F I G U R E  3   CP treatment reduces the plasma levels of l-arginine 
in CT26-bearing mice. BALB/c mice were injected sc with CT26 
cells (5 × 105). CP (100 mg/kg) was injected ip on day 12. l-Arginine 
(30 mg/mouse) was orally administered daily from day 12. On day 
26 after tumor inoculation, the plasma levels of l-arginine and 
l-tryptophan were measured by LC-MS. Data are means ± standard 
deviations of 7 mice. *P < .05, **P < .01, n.s., not significant 
(ANOVA)
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CT26-bearing mice showed a tendency to decrease compared with 
that of untreated CD26-bearing mice and l-arginine supplementa-
tion restored the plasma level of l-arginine, whereas this recovery 
was not significant. In contrast, the plasma level of l-tryptophan 
was significantly elevated in untreated CT26-bearing mice com-
pared with that of naïve mice, and the combination therapy de-
creased it.

Because MDSCs increase after several types of chemothera-
peutic drugs other than CP,15,20 the plasma levels of these amino 
acids after 5-FU treatment were also examined (Figure S3). 
Administration of 5-FU showed a tendency to reduce the plasma 
level of l-arginine, but l-arginine supplementation significantly in-
creased the level of l-arginine in 5-FU-treated CT26-bearing mice. 
In contrast, the plasma levels of l-tryptophan were significantly ele-
vated in untreated CT26-bearing mice, whereas 5-FU alone or 5-FU 
plus l-arginine supplementation decreased them in CT26-bearing 
mice.

We also examined the effect of l-arginine supplementation on 
T-cell proliferation in vitro (Figure S4). Spleen cells from naïve mice 
were cultured with anti-CD3 and anti-mouse CD28 antibodies in the 
presence of various doses of l-arginine. Conventional RPMI 1640 

medium contains 1150 µmol/L l-arginine. However, cell viability 
starts to reduce from a dose of 57.5 µmol/L l-arginine.

3.4 | Effect of l-arginine supplementation on T cells 
in tumor sites and draining LNs

We next examined the effect of l-arginine supplementation on T-cell 
infiltration into tumor sites. CP treatment did not significantly pro-
mote the infiltration of CD45+ cells in tumor sites, irrespective of 
l-arginine supplementation (Figure 4A). However, the proportions 
of CD8+ T cells among CD45+ cells were significantly increased by 
CP treatment, irrespective of l-arginine supplementation, whereas 
the proportions of CD4+ T cells among CD45+ cells were unchanged 
(Figure 4B). Representative results are shown in Figure 4C. We also 
measured the cell number of these cells. Although the number of 
CD8+ T cells was increased by CP or CP/l-arginine treatment, this 
increase was not statistically significant (Figure 4D). The number of 
CD4+ T cells was unchanged.

We next analyzed CT26-draining LNs. Tumor-specific T cells 
were evaluated by staining with the AH1 peptide/tetramer. The 

F I G U R E  4   CP treatment increases 
the proportions of CD8+ T cells in tumor 
sites. BALB/c mice were injected sc with 
CT26 cells (5 × 105). CP (100 mg/kg) was 
injected ip on day 12. l-Arginine (30 mg/
mouse) was orally administered daily from 
day 12. Tumor tissues were harvested 
on day 18 after tumor inoculation. A, 
Proportions of CD45+ immune cells in 
tumor tissues. B, Proportions of CD4+ and 
CD8+ T cells among CD45+ cells. Data are 
means ± standard deviations of 4 mice. C, 
A representative result is shown. Numbers 
indicate the proportions of the subsets. D, 
The cell numbers were counted. Data are 
means ± standard deviations of 4 mice. 
**P < .01, n.s., not significant (ANOVA)
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CT26-bearing state increased the proportions of AH1 tetramer+ 
CD8+ T cells among whole cells (Figure 5A) and among CD8+ T cells 
(Figure 5B) of draining LNs. Neither l-arginine supplementation alone 
nor CP treatment alone increased these proportions, but their com-
bination significantly increased the proportions of AH1 tetramer+ 
CD8+ T cells among whole cells and CD8+ T cells of draining LNs. 
Representative results are shown in Figure 5C. We also measured 
the number of these cells. Although the number of AH1 tetramer+ 
CD8+ T cells showed a tendency to increase after CP or CP/l-arginine 
treatment, this increase was not statistically significant (Figure 5D).

We also examined the effects of CP treatment or l-arginine 
supplementation on the phenotype of CD8+ T cells in draining LNs. 
The CT26-bearing state significantly increased the proportions of 
CD44+CD62L+ (central memory) cells, but reduced the proportions 
of CD44−CD62L+ (naïve) cells among whole cells and CD8+ T cells in 
draining LNs (Figure S5A). However, no such changes were observed 
in CT26-bearing mice that received either or both CP treatment and 
l-arginine supplementation. Representative results are shown in 
Figure S5B.

3.5 | Efficacy of the combination of CP, anti-PD-1 
antibody, and l-arginine supplementation

We previously reported that combination treatment with CP and 
anti-PD-1 antibody significantly suppressed the growth of CT26 
carcinoma in vivo, but did not exert a curative effect.16 Here, we 
investigated whether supplementation of l-arginine could augment 
the antitumor effect. In agreement with the findings of our previ-
ous report,16 combination treatment with CP and anti-PD-1 antibody 
significantly suppressed tumor growth, but did not exert a curative 
effect (Figure 6A,B). However, the addition of l-arginine supplemen-
tation boosted the therapeutic effect of combination with CP and 
anti-PD-1 antibody, leading to complete regression in 4 of 6 mice. In 
another experiment, 2 of 7 mice were cured by therapy with CP and 
anti-PD-1 antibody, whereas 6 of 8 mice were cured by additional 
supplementation with l-arginine (Figure S6). Taken together, addi-
tional l-arginine supplementation significantly increased the num-
ber of cured mice that were treated with CP and anti-PD-1 antibody 
(Table 1).

F I G U R E  5   The combination of 
l-arginine supplementation and CP 
treatment increases the proportion of 
AH1-specific CD8+ T cells in draining 
lymph nodes. A, BALB/c mice were 
injected sc with CT26 cells (5 × 105). CP 
(100 mg/kg) was injected ip on day 12. 
l-Arginine (30 mg/mouse) was orally 
administered daily from day 12. Draining 
lymph nodes were harvested on day 18 
after tumor inoculation. Proportions 
of AH1+CD8+ T cells among all cells (A) 
and CD8+ T cells in the lymph nodes (B). 
Data are means ± standard deviations 
of 4 mice. C, A representative result is 
shown. Numbers indicate the proportions 
of the subsets. D, The cell numbers were 
counted. Data are means ± standard 
deviations of 4 mice. *P < .05, **P < .01, 
n.s., not significant (ANOVA)
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We next tried to determine cells that were responsible for 
protective immunity against re-challenged CT26. Unexpectedly, 
re-challenged CT26 was rejected in all 4 mice that were pre-injected 

with anti-CD8 antibody, and CT26 slowly grew in one of 4 mice that 
were pre-injected with anti-CD4 antibody (Figure 6C). These re-
sults suggest that either CD8+ T cells or CD4+ T cells are enough to 
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reject re-challenged CT26 in cured mice that were treated with CP/
anti-PD-1 antibody and l-arginine. In addition, marked cytotoxicity 
against CT26 cells was induced from the spleen cells of mice that 
rejected re-challenge with CT26 cells (Figure S7).

We finally examined the immune cells in tumor sites and the lev-
els of l-arginine and l-tryptophan in mice that were treated with either 
or both of CP/anti-PD-1 antibody and l-arginine. The cell numbers of 
tumor tissues were significantly decreased by either or both of these 
therapies (Figure 6D). Either treatment decreased the numbers of 
CD4+ T cells in tumor sites, whereas therapy with CP/anti-PD-1 anti-
body with or without l-arginine significantly increased the proportions 
of CD8+ T cells in tumor sites. In terms of MDSCs, therapy with CP/
anti-PD-1 antibody with or without l-arginine significantly decreased 
the cell numbers of G-MDSCs in tumor tissues. The proportions of 
G-MDSCs in tumor tissues were significantly decreased in tumor tis-
sues of mice treated with CP/anti-PD-1 antibody and l-arginine. In ad-
dition, l-arginine supplementation significantly restored the levels of 
l-arginine in mice treated with CP/anti-PD-1 antibody (Figure 6E). This 
type of change was not observed regarding the levels of l-tryptophan.

4  | DISCUSSION

l-Arginine is a conditionally essential amino acid,21 which is neces-
sary in the presence of inflammation and during wound healing.1 
Given that a tumor-bearing state is associated with inflammation and 
chronic fatigue, we examined the effect of l-arginine supplementa-
tion on antitumor immunity in tumor-bearing hosts.

Cao et al reported that l-arginine and docetaxel exerted a syner-
gistic antitumor effect against 4T1 mouse mammary carcinoma and 

that l-arginine supplementation alone suppressed tumor growth and 
reduced the proportion of MDSCs in tumor sites.18 He et al showed 
that l-arginine supplementation was effective against osteosarcoma 
when combined with an anti-PD-L1 antibody.19 Geiger et al revealed 
that in vitro pretreatment with l-arginine augmented the therapeu-
tic efficacy of antitumor T cells after transfer into tumor-bearing 
mice, using ovalbumin as a model tumor antigen.22 To the best of our 
knowledge, the present study is the first to show that the addition 
of l-arginine supplementation to chemoimmunotherapy, such as CP 
and an anti-PD-1 antibody, enhances antitumor efficacy.

We evaluated the effect of d-arginine as a control. d-arginine 
supplementation was lethal to tumor-bearing mice (Figure 1A), 
this was likely to be because d-arginine competed with l-arginine. 
Although l-arginine and l-tryptophan did not affect tumor growth, 
we used l-arginine in subsequent experiments because kynurenine, 
a metabolite of l-tryptophan, is immunosuppressive2,4 and because 
tryptophan metabolites promote Treg differentiation and suppress 
Th1 cells.23 Moreover, l-arginine is a health-promoting supplement. 
The maximum oral dose is approximately 3 g/kg/d in animals24 and 
20 g/d in humans.25 The dose administered to mice in this study 
(1.5 g/kg) may be excessive for humans. Therefore, l-arginine should 
be administered to cancer patients based on the plasma level. 
Alternatively, administration of a derivative of l-arginine or simul-
taneous supplementation of l-citrulline, a metabolite of l-arginine, 
may be feasible.26

LC-MS revealed that, although the plasma level of l-arginine was 
not reduced in untreated CT26-bearing mice, it showed a tendency 
to decrease in CT26-bearing mice that had received CP treatment. 
Moreover, it was not reduced in naïve mice that had received CP 
treatment (Figure 3). In addition, administration of 5-FU showed a 
tendency to decrease the levels of l-arginine but the decrease was 
not significant (Figure S3). It is of interest that chemotherapeutic or 
radiation treatment induces trafficking of immature myeloid cells, in-
cluding MDSCs, from bone marrow in a CCL2-dependent manner.20 
In the present study, CP treatment selectively depleted G-MDSCs, 
resulting in an increase in the proportion of M-MDSCs (Figure 2). 
These increased M-MDSCs might consume l-arginine. Alternatively, 
CP-induced leukopenia in the periphery may result in rapid recovery 
of immune cells and vigorous (ie, homeostatic) proliferation of lym-
phocytes. This proliferation would increase consumption of l-argi-
nine, therefore supplementation of l-arginine rescued their growth. 
Conversely, a dose of l-arginine that started to affect in vitro T-cell 
proliferation was lower than the plasma level of l-arginine. Although 

F I G U R E  6   Combination treatment with CP, anti-PD-1 antibody, and l-arginine increases the number of cured mice. A, BALB/c mice were 
injected sc with CT26 cells (5 × 105). On day 12 after tumor inoculation, mice received ip injection of CP (100 mg/kg) followed by ip injection 
of anti-PD-1 mAb (100 μg/mouse) on days 13 and 15. As a control, rat IgG was injected ip l-arginine (30 mg/mouse) was orally administered 
daily from day 12. Dotted line indicates the untreated control. Numbers in parentheses are cured mice/total mice. B, Tumor size on day 33. 
C, At 1 mo after complete regression of sc inoculated CT26, CT26 cells (2.5 × 105) were injected sc into the flank of mice. In some mice, 
either anti-CD4 antibody, anti-CD8 antibody, or control rat IgG was injected ip twice, 3 and 1 d before CT26 inoculation, at a dose of 150 µg. 
Similarly, naïve mice were inoculated sc with CT26 cells. Numbers in parentheses are rejected mice/total mice. D, The cell numbers of tumor 
tissues, the cell numbers and proportions of CD4+ T cells, CD8+ T cells and MDSCs were measured and counted. Data are means ± standard 
deviations of 4 mice. E, On day 26 after tumor inoculation, the plasma levels of l-arginine and l-tryptophan were measured by LC-MS. Data 
are means ± standard deviations of 7 mice. *P < .05, **P < .01, n.s., not significant (ANOVA)

TA B L E  1   Additional treatment with l-arginine supplementation 
increases the number of cured mice that were treated with CP and 
anti-PD-1 antibody

Mice were treated with

Number of mice

P-valueNot cured Cured

CP + αPD-1 11 2 <.01

CP + αPD-1 + l-arginine 4 10

Note: The numbers of cured and non-cured mice are shown. The 
result is sum total from 2 independent experiments. The statistical 
significance was evaluated by Fisher exact test.
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we have no idea to explain this discrepancy, T cells in tumor-bearing 
hosts might be more vulnerable to a decrease in l-arginine compared 
with the in vitro condition. Further analysis is needed to elucidate 
the underlying mechanisms.

To elucidate how supplementation of l-arginine augmented anti-
tumor efficacy, we investigated the spleen, tumor sites, and draining 
LNs. Although CP treatment mitigates Treg-mediated immunosup-
pression in tumor-bearing hosts,27,28 chemotherapy-induced cell 
death triggers accumulation of immature myeloid cells from bone 
marrow.14,15,20 In the present study, CP treatment reduced the 
proportion of G-MDSCs in the spleen of tumor-bearing mice, but 
increased the proportion of M-MDSCs (Figure 2). l-Arginine supple-
mentation may restore the level of l-arginine, which was consumed 
by increased M-MDSCs or proliferating lymphocytes, as discussed 
above. Alternatively, l-arginine might promote the induction and 
trafficking of tumor-specific CD8+ T cells. CP treatment alone pro-
moted the infiltration of CD8+ T cells into tumor sites (Figure 4B). 
Supplementation of l-arginine to the CP treatment increased the 
proportions of AH1 tetramer+CD8+ T cells in the draining LNs 
(Figure 5). In addition, an increase in the intracellular l-arginine level 
reportedly shifted activated T-cell metabolism from glycolysis to ox-
idative phosphorylation and promoted the survival of central mem-
ory-like cells.21 Therefore, we examined the effects of l-arginine 
supplementation on naïve, central memory, and effector/effector 
memory CD8+ T cells in draining LNs (Figure S5). The tumor-bearing 
state increased the proportions of CD44+CD62L+CD8+ T cells and 
reduced the proportions of CD44−CD62L+CD8+ naïve T cells. Either 
or both CP treatment and l-arginine supplementation mitigated 
these changes and returned the cells to the naïve state. Although 
CD44+CD62L+CD8+ cells are considered central memory T cells,29 
we presume that, in this tumor model, these cells did not represent a 
central memory population but just failed to downregulate their ex-
pression of CD62L. Although a reduction in the expression of CD62L 
causes primed CD8+ T cells to leave draining LNs,30,31 CD62L is sug-
gested not to be a deterministic marker of central memory T-cell 
differentiation.32 We presume that supplementation of l-arginine in 
CT26-bearing and CP-treated mice boosted the recruitment of naïve 
T cells into the draining LNs, the priming of tumor-specific CD8+ T 
cells, and their departure to tumor sites.

In conclusion, l-arginine supplementation boosts the antitumor 
effect of combination treatment with CP and anti-PD-1 antibody. 
Given that the frequency of combined therapy with immune-check-
point blockade and chemotherapeutics is increasing, supplementa-
tion of l-arginine may show promise for boosting the therapeutic 
efficacy of anticancer chemoimmunotherapy.
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