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The stability of blood vessels is essential for maintaining the normal arterial function, and

loss of stability may result in blood vessel tortuosity. The previous theoretical models of

artery buckling were developed for circular vessel models, but arteries often demonstrate

geometric variations such as elliptic and eccentric cross-sections. The objective of this

study was to establish the theoretical foundation for noncircular blood vessel bent

(i.e., lateral) buckling and simulate the buckling behavior of arteries with elliptic and

eccentric cross-sections using finite element analysis. A generalized buckling equation for

noncircular vessels was derived and finite element analysis was conducted to simulate

the artery buckling behavior under lumen pressure and axial tension. The arterial wall

was modeled as a thick-walled cylinder with hyper-elastic anisotropic and homogeneous

material. The results demonstrated that oval or eccentric cross-section increases the

critical buckling pressure of arteries and having both ovalness and eccentricity would

further enhance the effect. We conclude that variations of the cross-sectional shape

affect the critical pressure of arteries. These results improve the understanding of the

mechanical stability of arteries.

Keywords: mechanical instability, artery buckling, tortuosity, buckling equation, critical buckling pressure, finite

element analysis

INTRODUCTION

Mechanical stability of arteries is essential for normal arterial functioning. However, tortuosity or
kinking often occurs in blood vessels like coronary, carotid, or iliac arteries and veins due to high
blood pressure, aging, atherosclerosis, diabetes, and other pathological changes in the arteries (Han,
2012). Previous research demonstrated that long cylindrical vessels buckle into tortuous shape
when the lumen pressure exceeds its critical value (Han, 2007, 2008, 2009a,b; Goriely et al., 2008;
Rachev, 2009; Lee and Han, 2010; Martinez et al., 2010; Lee et al., 2012; Dehghani et al., 2019).
Artery buckling generates additional local wall stress and may impede blood flow which might
result in ischemic attack to the distal organ and other vascular deficiencies (Han, 2012).

Many arteries are not ideal circular cylinders, but instead are noncircular with oval or eccentric
or irregular cross-sections (Han and Fung, 1991, 1996; Aoki and Ku, 1993; MacLean and Roach,
1998; Zeina et al., 2007; Kamenskiy et al., 2012). While there is a fair understanding of how these
variations affect the wall stress under lumen pressure, little is known about how they will affect
the stability of arteries. Previous computational analyses showed some effects of irregular geometry
such as aneurysm, stenosis, oval, or eccentric cross-section (Datir et al., 2011; Lee et al., 2014; Sanyal
and Han, 2015). However, it is not clear whether the buckling equations for circular cylindrical
vessels can be applied to vessels with noncircular cross-sections. Further work is needed to better
understand the buckling behavior of arteries with noncircular cross-sections.
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Accordingly, the objective of this study was to establish the
theoretical foundation for noncircular artery buckling and to
investigate the effect of concentric and eccentric oval-shaped
cross-sections on the buckling behavior of arteries using finite
element analysis.

MATERIALS AND METHODS

The Theoretical Foundation for Noncircular
Vessel Buckling
Deformation Under Lumen Pressure
Arteries were modeled as cylindrical tubes of homogenous
orthotropic material with a Fung-type strain energy function
(Fung, 1993). To take into account the residual stress in the
arteries (Chuong and Fung, 1986; Han and Fung, 1996), we
considered an artery with an opening angle of (2π − 220)
(Figure 1). Using cylindrical polar coordinates, a material point
is denoted as (R, 2, Z) in the stress-free state (open sector) and
as (r, θ , z) in the deformed state (Figure 1). Since the vessel
cross-sections are noncircular, the lumen and outer radii change
as functions of polar angle 2. The initial lumen radius, outer
radius, and length of the artery are designated as Ri(2), Re(2),
and L, respectively, at the zero-stress state (an open sector).
Similarly, deformed inner radius, outer radius, and length at
the pressure-loaded state are designated as ri(θ), re(θ), and l,
respectively, when it is under internal pressure p and axial tension
N. The corresponding axial elongation is designated by the axial
stretch ratio λ0z . Furthermore, the deformed polar coordinates
(r, θ) depend on both R and 2 in the initial configuration.

r = r(R, 2, p)

θ = θ(R, 2, p)

z = λ0zZ (1)

The deformation gradient matrix F is:
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FIGURE 1 | Schematics showing an artery in the zero-stress, and loaded

states as well as the definitions of the coordinates. The opening angle of the

artery is designated as (2π − 220).

Deformation in Buckled Noncircular Arteries
When a blood vessel buckles, the central axis of the vessel deflects
laterally (Figure 2). Designate the direction of lateral deflection as
the x-axis and the deflection of the central axis as uc(z), where z
is the axial coordinate of the central axis. Accordingly, the radial,
circumferential, and axial displacement due to deflection uc(z)
are (Han, 2008):

u = uc . cosφ

v = −uc . sinφ

w = −
∂uc

∂z
(r. cosφ) (4a)

A point (r, φ, z) on the arterial wall deforms into a new
position (ρ, θ , ζ ). The deformed radial, circumferential, and
axial coordinates are (Han, 2009b; Lee et al., 2012):

ρ = r
(

R, 2, p
)

+ uc . cosφ

θ = φ
(

R, 2, p
)

−
uc

r
sinφ

ζ = z −
∂uc

∂z
r cosφ = λ0zZ −

∂uc

∂z
r cosφ (4b)

Where (R, 2, Z) are the initial polar coordinates of the point
in the unloaded configuration and λ0z is the axial stretch ratio.
Accordingly, the deformation gradient F after neglecting the
higher-order terms of uc is:

F =









∂r
∂R − (uc sinφ) ∂φ

∂R
1
R

∂r
∂2

− (uc sinφ) 1R
∂φ
∂2

( ∂uc
∂z cosφ) ∂z

∂Z

r ∂φ
∂R + uc

r sinφ ∂r
∂R

r
R

∂φ
∂2

+ uc
rR sinφ ∂r

∂2
−( ∂uc

∂z sinφ) ∂z
∂Z

∂uc
∂z (r sinφ

∂φ
∂R − cosφ ∂r

∂R )
∂uc
∂z

1
R (r sinφ

∂φ
∂2

− cosφ ∂r
∂2

) (1− ∂2uc
∂z2

r cosφ) ∂z
∂Z









(5)

Therefore, the Green strain tensor after neglecting the higher-
order terms of uc is:
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FIGURE 2 | Schematic illustration of the relationship between wall displacement and central axis deflection (left), a deformed segment of a buckled artery in lateral

view (middle), and cross-sectional view (right). α represents the rotation angle of a cross-section.

Comparing this equation with Equation (3) yields that the only
nonzero incremental strain component is:

△Ez = −

(

∂z

∂Z

)2
∂2uc

∂z2
r cosφ = −(λ0z)

2 ∂2uc

∂z2
r cosφ (7)

which is the axial component of the Green strain tensor. This
expression for noncircular vessels is the same as for circular
vessels (Lee et al., 2012).

The Lateral Load in Buckled Noncircular Arteries
When the vessel buckles, the deflection generates uneven lumen
surface areas at the concave and convex sides of the vessel
(Figure 2). Consequently, the lumen pressure p generated a
laterally distributed load (Han, 2007, 2009a,b). The force dF is
generated by the pressure on small element dζds along its surface
normal n (cos n, sin n):

dF = pdζds (8)

where,

dζ = dz −

(

∂2uc

∂z2
.r cosφ

)

dz =

(

1−
∂2uc

∂z2
x

)

dz (9)

Its components in the x (buckling) direction and y (perpendicular
to buckling) direction are:

dFx = pdζds cos n = pdζdy

dFy = pdζds sin n = pdζ(−dx) (10)

By integrating along the circumference (inner wall) and dividing
the central line length dz, the distributed load per unit vessel
length generated by the lumen pressure is:

qx =

∮

p
dζ

dz
dy,

qy = −

∮

p
dζ

dz
dx (11)

Taking Equations (9) into (11) yields that:

qx = p

∮ (

1−
∂2uc

∂z2
x

)

dy = −pAlumen
∂2uc

∂z2
; qy = 0 (12)

where Alumen is the lumen cross-sectional area. Therefore, the
laterally distributed load q generated by the internal pressure is in
the x (buckling) direction. For circular cross-sections, Alumen =

πr2i (ri is the lumen radius), the equation becomes the same as
previously reported (Han, 2007, 2009a,b).

Buckling Equation
With qx (z) given in Equation (12), the buckling equation can be
derived similarly as previously reported for vessels with a circular
cross-section (Han, 2009a,b). Specifically, the general differential
buckling equation becomes:

EI
∂4uc

∂z4
+

(

pAlumen − N
) ∂2uc

∂z2
= 0 (13)

where EI represents the cross-sectional modulus and N is the
axial tension (Han, 2009a,b). The critical pressure for pinned
(Le = L) or fixed (Le =

L
2 ) end support is:

pcr =
N + ( nπLe )

2EI

Alumen
(14)

Where n represents buckling mode (Han, 2008, 2009a,b). This is
the generalized lateral bent buckling equation for arteries with
noncircular cross sections.

Numerical Simulation of Noncircular Artery
Buckling
Parametric studies of different levels of ovalness, eccentricity,
and their combinations were performed using finite element
simulations to illustrate their effects on the buckling behavior
of arteries.
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FIGURE 3 | Changes of the minor and major diameters of the lumen and

outer wall in an artery with an elliptic cross-section [initial AR = 0.80] under

axial stretch (time steps 0–1.0 representing axial stretch ratio 1.0 to 1.3) and

lumen pressure (time steps 1.0–2.0 representing lumen pressure 0–50 kPa).

The vessel buckled at a lumen pressure of 12.74 kPa (at time step 1.25).

Model Geometries
Arteries were modeled as thick-walled cylindrical tubes with
circular and elliptical lumens and outer walls. Various concentric
and eccentric cross-sections were studied.

Concentric oval shape cross-sections with the major outer
diameter, major lumen diameter, wall thickness, and vessel length
of 6.99, 3.27, 1.86, and 52mm (Lee et al., 2014), but of different
minor diameters, were simulated and compared. A lumen aspect
ratio (AR), defined as the ratio of the diameter in the direction
of deflection (initial minor diameter) over the diameter in the
direction perpendicular to the direction of deflection (initial
major diameter), was used to describe the ovalness level of the
lumen. Lumen AR in the range of 0.60–1.00 (with corresponding
outer wall AR of 0.81–1.00) were analyzed. Since the opening
angle has little effect on the critical pressure (Lee et al., 2012),
we did not consider it in current simulations.

The eccentric oval-shaped cross-section models were built
using the same lumen and outer wall dimensions as the
concentric cross-section models. In this case, lumen AR of
0.80 and 1.00 with the eccentricity (e = ratio of the distance
between the centers of the lumen and outer wall to the lumen
major radius) equal to 20 and 40% of lumen major radius
were considered. Lumen was moved alongside the direction of
deflection, opposite, and vertical to the direction of deflection
to create eccentricity in different directions to examine the
directional effect.

Material Model
The arterial wall was assumed to be a homogeneous, anisotropic,
incompressible material with Fung strain energy function
(Chuong and Fung, 1986; Fung, 1993) in the form of:

w =
C

2
eQ (15)

FIGURE 4 | Change of (A) lumen AR and (B) outer wall AR of the middle

cross-section of the vessel under axial stretch (time steps 0–1.0 representing

axial stretch ratio 1.0 to 1.3) and lumen pressure (time steps 1.0–2.0

representing lumen pressure 0–50 kPa). The vessel buckles in the direction of

the minor diameter. Buckling occurred at time step 1.25.

with

Q = b1E
2
θ + b2E

2
z + b3E

2
r + 2b4EθEz + 2b5EzEr

+2b6EθEr (16)

where Er , Eθ , and Ez are components of Green strain in
the radial, circumferential, and axial direction, respectively,
that are determined by the general equations for cylindrical
coordinates (Fung, 1993; Humphrey, 2002). b1, b2, b3, b4, b5, b6,
and C(kPa) are material constants obtained from experimental
measurements and are equal to 0.679, 0.751, 0.228, 0.0519, 0.033,
0.051, and 20.42, respectively (Lee et al., 2014). In this study,
we neglected the shear components in the Fung strain energy
expression (Equation 16) based on the strain description given
in Equation (6), which suggested that the shear components Erz
= Eθ z = 0 and only Erθ is nonzero. There is no data of b7
for Erθ of porcine carotid artery available in the literature. Yu
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et al. (1993) reported that the shear modulus for Erθ was very
small for rat aorta segments subjected to bending. Therefore, we
expect that the effect of the shear deformation would be small
and negligible.

Finite Element Analysis of Bent Buckling
The lateral bent buckling behavior of arteries were simulated
using the Static General Analysis in Commercial FEA package
ABAQUS R©. Arteries with elliptic cross-sections of different ARs
described above were created using SolidWorks R© and meshed
using an 8-node linear hybrid hexahedral element with constant
pressure (C3D8H). A mesh size of 0.2mm was used after the
pilot convergence study. A 1-degree initial curvature along
the longitudinal axis was included in the models to facilitate
buckling. Arteries were first stretched axially to the length of
67.6mm (1.3 times of initial length) to mimic the in vivo axial
stretch in the arteries (Lee et al., 2014). Then, a uniform static
pressure (up to 50 kPa) was gradually applied to the vessel lumen.
Both ends of the artery were restrained from rotations or axial
move but allowed for radial displacement.

The eight intersection points of the minor andmajor diameter
with the lumen and outer wall of the middle cross-section along
the central axis of the vessel (at half of vessel length) where the
deflection is maximum were selected as key points. The positions
and displacements of these eight key points were monitored and
used to determine the changes in AR, diameter, and deflection of
the central axis. The onset of buckling is the time when the slope
of the central axis deflection with respect to the pressure increases
to 0.5 mm/kPa (at which the slope increase also speeds up).

RESULTS

Deformation and Buckling of Arteries With
Elliptic Cross Section
Change of Lumen Shape Under Axial Stretch and

Lumen Pressure
The vessel diameters changed under axial stretch and lumen
pressure (Figure 3). It is seen that the minor lumen diameter

increased with increasing axial stretch while the major diameter
was nearly unchanged. Both of them increased with increasing
lumen pressure. The outer wall minor and major diameters
decreased with axial stretch (indicating wall thinning) but
increased with increasing lumen pressure, even post-buckling.
The corresponding changes in the aspect ratios of the lumen
and outer wall of the middle cross section of arteries were
observed under the applied axial stretch and pressurized inflation
(Figure 4). The cross-sectional shape of the elliptic arteries tends
to deform toward a circular shape under increasing lumen
pressure, and then the lumen of the vessel becomes elliptic and
collapses after buckling.

Buckling mainly affects the axial stress distribution and has
little effect on the radial and circumferential stress distributions.
The axial stress was elevated in the convex side of the vessel and
reduced on the concave side (Figure 5).

The initial curvature was applied in different directions
(along the minor or major diameters) to trigger buckling in
that direction for oval-shaped arteries. The critical pressure
for buckling in the direction of minor diameter was less than
the critical pressure for buckling in the direction of major
diameter. Therefore, buckling for the oval arteries will occur in
the direction of its minor axis of the lumen.

The Relation Between AR and the Critical Pressure
All arteries buckled when the lumen pressure reached a critical
pressure. For arteries with an initial lumen AR in the range of
0.60–1, the critical pressure increases linearly with decreasing AR
(Figure 6). The critical pressure increased by 20.4% when the
initial lumen AR changes from 1 to 0.60.

Deformation and Buckling of Arteries With
Eccentric Cross Section
Change of Lumen and Outer Wall Shape Under Axial

Stretch and Lumen Pressure
In arteries with circular lumen and outer wall at a given initial
eccentricity of 20 and 40%, the ARs of the lumen becomes oval
shape under axial stretch, changed toward circular shapes with

FIGURE 5 | Comparison of post-buckling axial stress distributions in arteries with concentric circular and oval lumen shape and eccentric circular lumen shape (all

under an axial stretch ratio of 1.3 and a lumen pressure of 15 kPa). Values of the color bar are in MPa.
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increasing lumen pressure and become oval shape post-buckling
(Figure 7). The AR of the arteries with eccentricity becomes
higher than the artery with concentric cross-section throughout
the loading process (axial stretching and pressurization). The
AR of the outer wall changes more dramatically with lumen
pressure and the effect is elevated as the initial eccentricity of the
artery increases.

Effect of Eccentricity on the Critical Pressure
The effect of eccentricity on the critical pressure of arteries is
illustrated in Figure 8. The critical pressure increases when the
lumen is eccentric. The higher level of eccentricity (40%) has
a larger effect than the low eccentricity (20%). The effect of
eccentricity varies when the eccentric direction (from the center
of the outer wall to the center of the lumen) changes relative
to the buckling direction. The largest effect is seen when the
eccentric direction is alongside the buckling direction, while the
smallest effect is when the eccentric direction is opposite to
the buckling direction. Therefore, eccentric arteries buckle in the
direction opposite to its eccentric direction.

Combined Effects of Ovalness and
Eccentricity
In oval arteries at a given initial AR = 0.80 and eccentricity
of 20 and 40% opposite to the direction of deflection, the ARs
of the lumen of the middle cross-section of eccentric arteries
changed toward circular shapes with increasing lumen pressure
and become oval post-buckling (Figure 9). The AR of these
arteries becomes higher than the artery with concentric cross-
section throughout the loading process (axial stretching and
pressurization). When the lumen is eccentric alongside, opposite,
or vertical (sideways) to the direction of deflection, the critical
pressure becomes slightly higher than the concentric arteries
(Figure 10). The vessel eccentric to the direction opposite to the
direction of deflection has the lowest critical pressure among
the three. These results indicate that the artery will buckle
in the direction opposite to the direction of eccentricity. In
addition, increasing the level of eccentricity enhances these
effects. It is seen that decreasing AR and increasing eccentricity
simultaneously affect the critical pressure of the artery more than
each factor alone.

DISCUSSION

In this study, we developed the theoretical buckling equation
for arteries with noncircular cross-sections and illustrated the
effects of oval and eccentric cross-sections on the critical
buckling pressure of arteries. The results demonstrated that
arteries with concentric elliptical cross-section buckle in the
direction of the minor diameter. The elliptic lumen and outer
wall deform toward circular shapes with increasing lumen
pressure and then deform back to be more elliptic post-buckling.
The critical pressure of the elliptic vessel increases with the
reduction of the initial lumen AR. Similarly, eccentricity also
increases the critical pressure of arteries, and more increase
is seen in vessels with a higher level of eccentricity and even
more, the increase is seen in vessels with combined ovalness

FIGURE 6 | Buckling of arteries with concentric elliptical cross sections. (A)

Deflections plotted as functions of lumen pressure. The critical buckling points

are marked by “+”. (B) Critical buckling pressure plotted as a function of

lumen aspect ratio in the range of 0.60–1.00.

and eccentricity. The theoretical equations proved that artery
buckling theory could be expanded to noncircular vessels and
the numerical simulations illustrated the effects of ovalness
and eccentricity. These two approaches are complementary to
each other.

The ranges of the ovalness and eccentricity used in the
simulation cover the range we have seen in mammalian arteries.
Estimations using previously reported data (Han and Fung, 1991,
1996) showed that the lumen AR and eccentricity of porcine
aorta varied 0.5–1.0 and 0–14%, respectively. Similarly, oval
cross-section and eccentricity have been seen in the human
aorta, coronary, and carotid arteries. For example, AR in the
range of 0.55–1 and 0.65–1 have been reported for human
coronary and carotid arteries, respectively (Zeina et al., 2007;
Kamenskiy et al., 2012). An elliptic cross-section is often seen
in the aneurysmal abdominal aorta as well (Kyriakou et al.,
2020), and atherosclerotic plaque often leads to local eccentricity
in stenotic arteries in which the eccentricity can reach up to
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FIGURE 7 | Effect of eccentricity on the AR of the (A) lumen and (B) the outer

wall of circular arteries (initial AR = 1) during the axial stretch and lumen

pressure loading process. Initial eccentricity (e) of 0% (concentric), 20 and

40% in the direction opposite to the direction of deflection is compared. The

AR is calculated as the ratio of diameter in the buckling direction vs. the

diameter in the direction vertical to the buckling direction. Time step is the

same as in Figure 3.

200% of the lumen radius (Aoki and Ku, 1993; Ohara et al.,
2008).

The critical pressure of the artery with circular cross-section
obtained from FEA in this study matched well with previous
experimental results (Lee et al., 2012) and theoretical model
simulation (12 kPa vs. 10 kPa and 10.5 kPa, respectively). It
provides validation for the simulation methods. Due to the use
of initial curvature as imperfection to trigger buckling, arteries
may gradually reach a deflection of 0.5 mm under lumen pressure
before buckling. Therefore, we used rate of deflection increase
which reflects the loss of stability to determine the critical
pressure in this study. This is different from previous studies (that
used 0.5 mm deflection) and could be a possible reason for the
difference in the FEA results of oval and eccentric arteries (Datir
et al., 2011).

FIGURE 8 | Comparison of the critical buckling pressures of arteries with

eccentric cross-section. The effect of lumen eccentric alongside (same),

opposite, and vertical to the direction of deflection are compared.

Circular arteries may buckle laterally toward arbitrary
directions. Oval arteries, however, due to the difference in the
bending rigidity EI, tends to buckle in the short axis (minor
diameter) direction. This is because that EI is lower in the
minor diameter direction. While the cross-section is very close
to circular under lumen pressure, the stress could be slightly
higher when bending along the major diameter. Due to material
nonlinearity, the corresponding EI could be higher and thus the
critical buckling pressure in the direction. Similarly, for both oval
and eccentric vessels, the increase in EI could be the reason for
increased critical buckling pressure.

Limitations
There are a few limitations to this study. First, the arterial
wall was assumed to be composed of homogenous material and
the variation along the three layers of the arterial wall was
ignored (Mottahedi and Han, 2016). Second, the arterial wall
was assumed to be uniform along its axial length and possible
variations such as tapering were ignored (Datir et al., 2011; Lee
et al., 2014). Third, static pressure was used and the possible
dynamic buckling effects were not considered (Rachev, 2009; Liu
and Han, 2012). These factors need to be considered in future
studies. Despite these limitations, the current study increases the
understanding of the stability of arteries with a concentric and
eccentric elliptical cross-section.

Besides bent buckling, twist buckling and helical bucklingmay
occur in arteries and veins (Selvaggi et al., 2006; Wong et al.,
2007; Garcia et al., 2013, 2017; Rodriguez and Merodio, 2016;
Sharzehee et al., 2019). Barrel shape bulging buckling and cross-
sectional collapse and “beads” -like or “aneurysmal” buckling
may also occur as shown in recent reports (Alhayani et al., 2013;
Emery and Fu, 2021; Font et al., 2021; Fu et al., 2021). It could be
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FIGURE 9 | Effect of eccentricity on the AR of the (A) lumen and (B) the outer

wall of elliptic arteries with initial lumen AR = 0.8 during the axial stretch and

lumen pressure loading process. Initial eccentricity (e) of 0% (concentric), 20

and 40% in the direction opposite to the direction of deflection. The AR is

calculated as the ratio of diameter in the buckling direction vs. the diameter in

the direction vertical to the buckling direction. Time step is the same as in

Figure 3.

interesting to explore how ovalness and eccentricity affect artery
twist, collapse, and helical buckling in future studies.

Significance and Clinical Relevance
Arteries in vivo may become twisted or tortuous (Han, 2012;
Garcia et al., 2013). It has been shown recently that artery
buckling may occur due to reduced axial tension, excessive
blood pressure, or elastin degradation (Jackson et al., 2005; Lee
et al., 2012; Zhang et al., 2014). Buckled arteries could become
tortuous or kinked, which disturb or disrupt the normal blood
flow and alter the wall stress distribution and lead to wall
remodeling (Xiao et al., 2014; Zhang et al., 2014; Wang et al.,
2015; Weiss et al., 2020). The current results demonstrated that
geometric variations such as oval and eccentric cross-section,
which occurs in many blood vessels, may increase the critical

FIGURE 10 | Comparison of the critical buckling pressures of arteries with an

eccentric elliptical cross-section with initial lumen AR = 0.80. The critical

pressure of arteries with lumen eccentric alongside (same), opposite, and

vertical to the direction of deflection are also compared.

pressure and, hence, make arteries more stable than circular
cylindrical arteries.

Understanding the underlying biomechanics of artery
tortuosity can be useful in vascular physiology, pathology,
and surgery. The current results broaden the understanding
of vascular biomechanics and shed light on the stability and
tortuosity of blood vessels.
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