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Abstract

Purpose: We devised a new computer-aided diagnosis method to segregate dementia using one estimated index (Total Z
score) derived from the Brodmann area (BA) sensitivity map on the stereotaxic brain atlas. The purpose of this study is to
investigate its accuracy to differentiate patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI) from
normal adults (NL).

Methods: We studied 101 adults (NL: 40, AD: 37, MCI: 24) who underwent 18FDG positron emission tomography (PET)
measurement. We divided NL and AD groups into two categories: a training group with (Category A) and a test group
without (Category B) clinical information. In Category A, we estimated sensitivity by comparing the standard uptake value
per BA (SUVR) between NL and AD groups. Then, we calculated a summated index (Total Z score) by utilizing the sensitivity-
distribution maps and each BA z-score to segregate AD patterns. To confirm the validity of this method, we examined the
accuracy in Category B. Finally, we applied this method to MCI patients.

Results: In Category A, we found that the sensitivity and specificity of differentiation between NL and AD were all 100%. In
Category B, those were 100% and 95%, respectively. Furthermore, we found this method attained 88% to differentiate AD-
converters from non-converters in MCI group.

Conclusions: The present automated computer-aided evaluation method based on a single estimated index provided good
accuracy for differential diagnosis of AD and MCI. This good differentiation power suggests its usefulness not only for
dementia diagnosis but also in a longitudinal study.
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Introduction

The number of patients with dementia in the world is increasing

every year [1]. Specifically, Alzheimer’s disease (AD) and mild

cognitive impairment (MCI) are worth noticing because AD

accounts for 60% of the dementia population and the probability

of MCI progression to AD is considered 11 to 33% in two years

[2]. On the bright side, a number of promising therapeutic

measures against dementia are under way [3–6], which then

brings the idea that early detection and accurate differentiation are

of great importance. Examination procedures to promote early

detection and facilitate an accurate differential diagnosis include

diagnostic imaging procedures, such as positron emission com-

puted tomography (PET), single photon emission computed

tomography (SPECT), and magnetic resonance imaging (MRI).

In particular, 18FDG PET is useful in patients under a tentative

diagnosis of degenerative brain disease and in early detection of

dementia [7,8]. Although imaging technical advances such as in

vivo visualization of a pathological substance amyloid protein are

now available in AD detection, the usefulness of 18FDG PET,
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which facilitates early diagnosis based on the pattern of altered

brain metabolism, is still emphasized [9–19].

There are many computer-aided diagnosis (CAD) tools for

detection of dementia. Among them, 3D-SSP (NEUROSTAT) is a

widely-used imaging tool in the clinical setting [20] in contrast to

statistical parametric mapping (SPM) as rather a research tool [21]

for evaluating the rate of reduction in comparison with normal

group. In particular, 3D-SSP excels in visual assessment of

metabolic changes in the brain. However, when investigating serial

changes in the same patient or therapeutic intervention-related

changes, a more objective analytical method is preferable and

elimination of subjective diagnostic factors such as visual searching

or manipulation of region selection is necessary.

Thus, we aimed to differentiate AD patients from normal

subjects or MCI patients using a new CAD method automatically.

To this end, we first determined 34 BA regions on projected

images of the brain surface in reference to the BA map [22], and

generated sensitivity-distribution maps to compare the standard

uptake value ratio (SUVR) in each brain region among the NL

and AD groups. Finally, we verified the segregation power of this

method by applying it to the MCI group.

Materials and Methods

Subjects
The current study was approved by the Ethics Committee of

Hamamatsu Medical Center, and written informed consent was

obtained from each participant after detail explanation of this

study. We performed PET measurements with 18FDG for all

participants (n = 101) and used their 18FDG images for the current

purpose. They consisted of 40 normal volunteers (NL) (18 males,

22 females, mean age: 55.8617.1 years) with normal MR findings

and normal cognition by mini-mental state examination (MMSE)

[23], 37 patients with AD (13 males, 24 females, mean age:

59.466.6 years) diagnosed on the basis of the NINDS-ADRDA

[24] and DSM-IV [25] criteria, and 24 patients with MCI (9

males, 15 females, mean age: 69.269.9 years), who met Peterson’s

criteria for amnestic MCI [26]. All MCI patients were annually

evaluated clinically for 3 years, and 10 amnestic MCI patients (3

males, 7 females) were converted as AD (called as an AD-

converter) and other 14 patients (6 males, 8 females) remained

amnestic MCI (called as a non-converter).

Using the SPSS (Version 17.0) Random Number Generator

Tool, the two groups (NL and AD) were arbitrarily divided into

two categories (Table 1). We confirmed that there were no

significant differences in the age, sex, or MMSE scores between

the two categories (p.0.1). One was a training group for

generation of a sensitivity distribution index (Category A), and

the other was a test group (Category B) for verification of the index

obtained from Category A.

18FDG PET scanning
We used an SHR-12000 Brain PET camera (Hamamatsu

Photonics K.K.) with intrinsic resolution, 2.962.963.4 mm full-

width half-maximum (FWHM), 47 slices obtained simultaneously,

and 163 mm axial field of view [27]. After transmission scan for

attenuation correction was performed for 10 minutes, 1.5 MBq/

kg of 18FDG was injected through the cubital vein. After each

subject rested in a dimly-lit room for 45 minutes, emission was

measured in 2D mode for 15 minutes. The filtered back projection

(FBP) method was employed for image reconstruction. The matrix

and pixel size of the reconstructed image were 1926192647 and

1.361.363.4 mm, respectively.

Demarcation of the Brodmann area
On the brain surface projection atlas (MRI template) from the

3D-SSP tools [20], 34 regions were determined as Brodmann

areas (BAs) [22] by 1 neurologist and 2 radiological technicians

(Fig. 1A). In demarcation of BAs, by referring to the Talairach

Atlas [28] which describes BAs along with the names of gyri, we

reconstructed the BA fields in the axial direction and were able to

allocate BAs on the surface of lateral and medial view of the

spatially normalized brain. In definition, BAs consist of Areas 1 to

52, which are categorized on the basis of neuronal structure in the

cerebral cortex stained in the postmortem brain. In the present

study, we unified BAs 1–3, 29–30, 35–36, and 41–42 as each single

area due to the small pixel count. We had to exclude BA 12, 13,

14, 15, 16, 26, 27, 33, 43, 48, 49, 50, 51, and 52 because of no

visualization on the brain lateral projection surface. By adding the

cerebellum, a total of 34 regions were determined in this study.

Because the characteristic pattern of 18FDG accumulation in

dementia on 3D-SSP map is highlighted in the lateral views [9–

14], we excluded the anterior/posterior/superior/inferior views.

As the right-left difference in 18FDG accumulation is not a critical

matter in the AD diagnosis, the bilateral values were treated as a

mean single value in the present study.

Image analysis
Using a 3D-SSP anatomical standardization tool, 18FDG PET

images were normalized to Talairach’s standard brain images

[28]. Subsequently, peripheral noises outside the brain were

removed using standard brain mask images, and the mean whole-

brain pixel count in the standard brain (standard uptake value

(SUV)) was calculated. Based on the mean SUV for the standard

brain in the NL group in Category A, each pixel was corrected as

the SUV ratio (SUVR) by dividing all pixels by SUV of the whole

brain. Some researchers assume the pons as an area of the

reference for SUV normalization in 3D-SSP. However, the global

mean is considered as a better index for the normalization than the

pons due to the less occurrence of misregistration of ROI on the

small area pons. The accuracy of our method was dependent on

the value in the NL group, in which the smaller variation of mean

value was more important. Therefore, the whole brain was chosen

as the region for correction of the count normalization.

On projected images of the brain surface, we determined the

mean SUVR for each BA, and then calculated the mean SUVR

and standard deviation per BA in the NL group in Category A.

Using these values and equation (1), the SUVR was converted to

the Z-score per BA (ZNL_n, n = Area number); here, Z-score per

area (not Z-score per pixel) was calculated.

ZNL n~
SUVRn{MeanNL n

SDNL n

ðEq:1Þ

SUVRn indicates the SUVR for Area n in a subject. The

MeanNL_n and SDNL_n were the mean SUVR and standard

deviation in the NL group of Category A, respectively.

Sensitivity
In Category A, the ZNL_n values for each BA were compared

between NL and AD subjects. We calculated sensitivity using a cut-

off value determined from SUVRs for the NL group of Category A

by measuring the amount of SUVR values lower than the cut-off in

the AD group. The cut-off value was determined as ZNL_n = 21.0,

because the proportion of ZNL_n values of -1.0 or more in all values

was 0.8413 in the standard normal distribution table; the specificity

of NL assessment may be fixed at approximately 80%. The
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value -1.0 as a cut-off level was determined through preliminary

experiments, in which changes in cut-off value caused to affect the

final accuracy. The value 21.0 was found good enough to

guarantee above 80% specificity considering the Z-score distribu-

tion. The sensitivity per BA, which reflects the diagnostic capacity

for AD, was calculated (WNL-AD_1 to WNL-AD_34).

Total Z-score method
In practice, no radiologist would diagnose diseases only by

looking at an abnormality of a single domain of the brain. Instead,

they dedicate themselves to visual searching for every part of the

brain and make a judgment through the comprehensive

inspection. To eliminate this laborious work, in this study, we

devised the Total Z-score method, which allows physicians to

make a diagnosis based on the comprehensive assessment of all

areas without focusing on each BA.

First, we estimated the weighted sensitivity per area. By

inserting this value and each subject’s Z-score into the following

equation (2), all areas may be comprehensively evaluated based on

a single value. As SumNL-AD is multiplied by the sensitivity value

per BA, the site of disease-specific reduction may be emphasized,

improving the diagnostic capacity:

SumNL{AD~
X34

n~0

ZNL n
:WNL{AD n ðEq:2Þ

ZNL_n indicates the Z-score for Area n in a subject. It is based on

data from the NL group in Category A. WNL-AD_n refers to the

sensitivity to differentiate AD from NL in Area n. In all subjects,

values were inserted into the equation (2), and SumNL-AD was

calculated in each subject.

Table 1. Subject characteristics.

Group NL AD MCI

Category A B A B AD-converters Non-converters

Number 20 20 18 19 10 14

Male/Female 9/11 9/11 6/12 7/12 3/7 6/8

Age (years) 56.0615.4 55.7619.1 59.467.5 59.365.7 64.569.5 72.669.0

MMSE* (score) 29.061.1 29.161.1 16.765.4 16.565.1 23.763.4 26.661.4

*MMSE = mini-mental state examination.
doi:10.1371/journal.pone.0025033.t001

Figure 1. BA on 3D-SSP images. BA on 3D-SSP MRI template images (A) and sensitivity-distribution maps of BA on 3D-SSP images among NL and
AD in Category A (B). The color bar denotes the levels of sensitivity to differentiate NL and AD in Category A.
doi:10.1371/journal.pone.0025033.g001
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Using equation (3), SumNL-AD was converted to the Z-score

(ZNL-AD) based on the mean/standard deviation in the NL group

of Category A. The MeanNL-AD and SDNL-AD were a mean value

of ZNL-AD and its standard deviation in the NL group of Category

A, respectively.

ZNL{AD~
SumNL AD{MeanNL{AD

SDNL AD

ðEq:3Þ

Thus, the Total Z-score, which reflects the comprehensive

evaluation of the SUVRs or 34 BAs on brain surface projections,

ZNL-AD was calculated in each subject. A high ZNL-AD value

suggests an NL condition, whereas a low value suggests AD.

The value SumNL-AD was generated by adding 34 products

of multiplication of ZNL_n by WNL-AD_n, where the sensitivity

WNL-AD_n was used as a weighted index. For instance, in a brain

region that clearly differs NL from AD, ZNL_n in NL subjects is

high while ZNL_n in AD patients is low, resulting in the sensitivity

WNL-AD_n being high. Thus, the index WNL-AD_n makes the

difference of SumNL-AD between NL and AD more remarkable by

weighting the value ZNL_n. In contrast, in an area with negligible

difference between NL and AD, there is no significant gap in

ZNL_n of NL and AD, resulting in the sensitivity WNL-AD_n being

low. This makes the product (ZNL_n 6WNL-AD_n) much smaller.

Then, the product SumNL-AD is converted to ZNL-AD using Eq. 3.

In this way, an initial determinant (a cut-off value) can differentiate

groups by weighting values in each brain area.

NL-AD differentiation
Using the Total Z-score (ZNL-AD), differential analysis of NL

and AD was conducted to evaluate the accuracy. Before this

differentiation was performed, we determined a cut-off value with

which NL-AD pair was compared using the SPSS software

(Version 17.0). We estimated a receiver operating characteristic

curve (ROC) and the area under the curve (AUC) based on the

ZNL-AD values for the NL and AD groups in Category A. The most

appropriate cut-off value (CNL-AD) was determined by the Youden

index [29–31]. Based on CNL-AD, Categories A and B were

classified into NL or AD, respectively, to evaluate the accuracy.

Application to MCI
We applied this method using ZNL-AD and CNL-AD to 18FDG

PET images of amnestic 24 MCI patients scanned at entry to

verify the usefulness of this program in differentiation of AD from

MCI.

Results

3D-SSP Z-score images
In the NL group in Category A, the mean SUV for the standard

brain was 5.75. Employing these subjects as a reference database,

all subjects’ 3D-SSP Z-scores were calculated by pixel and average

3D-SSP Z-score images were prepared in 20 NL (Fig. 2A) and 18

AD (Fig. 2B) subjects in Category A, as well as in 20 NL (Fig. 2C)

and 19 AD (Fig. 2D) subjects in Category B, respectively. As

shown Figure 2, in the NL and AD groups, there was no marked

difference between Categories A and B. In the NL group, there

was no marked reduction in either group. In the AD group, there

were marked decreases in the lateral parietal, lateral temporal and

cingulate gyrus area. Additionally, average images were prepared

in all 24 MCI (Fig. 2E), 10 AD-converter (Fig. 2F) and 14 non-

converter (Fig. 2G), respectively. In the MCI patients, there were

greater decreases of glucose metabolism in the lateral parietal,

lateral temporal and medial parietal areas in AD-converters than

non-converters

BA-based analysis
The quantitative SUVRs in the NL and AD groups in Category

A are shown in Table 2. There were significant differences in the

SUVRs for BAs 7, 19, 21, 22, 23, 31, 37, 39, 40, and 41 (42)

between the NL and AD groups (p,0.001). In the AD group, the

mean SUVRs of each BA region were 20, 13, 15, 8, 23, 22, 16, 17,

17, and 10% lower than those in the NL group, respectively.

As shown in Table 2 (sensitivity), the WNL-AD value for BA 31

was the highest (100%), followed by 94.4% for BAs 7/40, 88.9%

for BAs 19/23, and 83.3% for BAs 21/39/40(41). As illustrated in

the Figure 2, the maps show the distribution of the sensitivity to

differentiate NL from AD. Figure 1B shows the sensitivity of each

BA with a gray scale, in which the black indicates higher

sensitivity.

Comparison between NL and AD groups
To perform the 2-group differential analysis of NL and AD, we

estimated the cut-off value (CNL-AD) based on the ZNL-AD values.

First, we made the dot plots (Fig. 3A) of ZNL-AD in the NL and AD

groups in Category A, and the AUC was calculated to be 1.00. As

a result, the most appropriate cut-off value (CNL-AD) was

determined to be 21.9 by the Youden index. Furthermore, we

evaluated the differentiation power by CNL-AD, and the sensitivity

and specificity in Category A were found to be all 100%.

Using equations (1) to (3) and the sensitivity-distribution maps

(Fig. 1B) based on SUVRs of NL and AD groups in Category A,

ZNL-AD of each subject in Category B were calculated (Fig. 3B). In

Category B, the sensitivity and specificity were found to be 100%

and 95%, respectively.

Detection of AD in the MCI group
We made the dot plots of ZNL-AD in 24 MCI patients who had

been classified into two groups; AD-converters and non-converters

diagnosed clinically during the 3-year follow-up period. Using the

cut-off value determined in the Category A (CNL-AD), our program

judged 9 patients as AD (38%) and 15 patients as NL (62%).

During the 3-year follow-up, 10 patients were converted from

MCI to AD (AD-converters) and the residual 14 MCI patients

were still under the MCI condition. As shown in Figure 3C, 8 out

of 10 AD-converters were determined as AD by our program

(80%), and 2 out of 10 AD-converters as NL (20%). In contrast, 13

out of 14 non-converters were determined as NL by our program

(93%), and 1 out of 14 as AD (7%). This yielded the sensitivity and

specificity for differentiating AD-converters from non-converters

in MCI patients by our CAD program to be 80% and 93%,

respectively, with an accuracy of 88%.

Discussion

In this study, we developed a new CAD analytic tool using BA

compartmentalization on 3D-SSP atlas, and calculated the Total

Z-score through the complex observation of all areas based on the

sensitivity (weighted value) per area to investigate the differential

accuracy of images. When employing this method, the sensitivity

and specificity for differentiating AD from NL were all 100%, in

the training group, with an accuracy of 100%. In the test group,

they were found to be 100 and 95%, respectively, with an accuracy

of 98%. Furthermore, the sensitivity and specificity for differen-

tiating AD-converters from non-converters in patients with MCI

were 80% and 93%, respectively, with an accuracy of 88%. As

shown in Fig. 1 and Table 2, the sensitivity (WNL-AD_n) map

New Computer-Aided Diagnosis of Dementia
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showed characteristic patterns similar to the FDG patterns seen in

AD in the previous literature [8–14]; hypometabolism in the

parietal (BAs 7, 19, 39, and 40), temporal (BAs 21, 22, 37, and 41

(42)), and cingulate (BAs 7, 23, and 31) areas in patients with AD.

A CAD method is never new now, but the level of its accuracy is

still a target of improvement. Previous CAD methods using both

statistical mapping technique and ROI analysis reported about

high accuracy for differentiating AD from NL [32,33]. These

methods used specific ROIs or combination of multiple ROIs to

discriminate one group from another. In contrast, our method

used all ROIs (BAs) to estimate one unified value as a Total Z-

score that was the product of the sensitivity of each ROI. This

method consisting of more objective and CAD-oriented algorism

can eliminate any subjective errors and bias and enables more

accurate and objective diagnosis than those other methods.

Indeed, the present method generated 98% in accuracy for

discriminating AD from NL.

This program affording a high segregation power was also

shown to be effective to extract AD-like images from the group of

MCI, resulting in good accuracy (88%) for differentiating AD-

converters from non-converters. Previous CAD methods were

reported to exhibit up to 90% in accuracy for differentiating AD-

converters from non-converters [34–36] among MCI patients.

However, ROI assessment embedded in their programs seemed

less objective than our method. As shown in Figure 2, 3D-SSP

provided visual presentations characteristic to AD-converters

(Fig. 2F) and non-converters (Fig. 2G), where there were greater

decreases of glucose metabolism in the lateral parietal (BAs 7, 39,

and 40), lateral temporal (BAs 21 and 37), and medial (BAs 7 and

31) areas in AD-converters than non-converters. Our method

enabling objective assessment using a Total Z-score value without

visual inspection showed the BAs distribution similar to the high

sensitivity areas in the sensitivity-distribution maps (Fig. 1B). It is

worth noting that an MCI patient with a high chance of AD

conversion would show such a hypometabolic pattern seen in

those BAs. Although the conversion rate from MCI to AD was

reported to be 11–33% [2], the rate (42%) in our study was shown

to be higher possibly because the observation period for disease

conversion was one year longer in our study. Because we did know

who were converted as AD during the 3-year follow-up, we were

able to calculate the sensitivity and accuracy of this method in

differentiation of AD from MCI by comparing the number of

program-based AD patients with that of clinically diagnosed AD-

converters.

Figure 2. 3D-SSP images. Employing 20 NL subjects in Category A as a reference database, all subjects’ 3D-SSP Z-score images were prepared.
Average Z-score images of 20 NL (A) and 18 AD (B) in Category A. Average Z-score images of 20 NL (C) and 19 AD (D) in Category B. Average Z-score
images of a total of 24 MCI (E), 10 AD-converters (F) and 14 non-converters (G). The color bar denotes the levels of Z-score based on 20 NL subjects in
Category A.
doi:10.1371/journal.pone.0025033.g002
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Several CAD methods were reported in the past. In the literature,

they used a channelized Hotelling observer (CHO) method or a

principal component analysis (PCA) after setting volume of interests

(VOIs) for diagnosing AD or MCI. The merit of using CHO [37] is

to differentiate patterns of frequency after Fourier transformation of

levels of pixels measured by SPECT between groups. Using voxel

data [37,38] sounds more objective, but a high chance of noise

generation may degrade the image quality. In contrast, the use of

VOI that contains multiple pixels would improve the reliability of

segregation. Some researchers used PCA for fixed ROIs determined

a priori [39–41], where relatively lower sensitivity and specificity

were reported than those of our study. One reason of our high

accuracy may be the fact that all our ROI data were converted to

the sensitivity values irrespective of regions of specificity, although

PCA needs to select the region specific to the disease beforehand.

Indeed, our preliminary data using PCA for our ROI data

generated 5,10% reduction in accuracy (data not shown). In

addition, our CAD advantage is the flexibility in applying this

method to any disease segregation because a priori ROI

determination is unnecessary.

There were methodological issues to be noted in our CAD

method. Our program takes advantage of the patterns of regional

sensitivity to differentiate AD from NL, and the generated sensitivity-

distribution map (Fig. 1B) is a core of our method. Any core map

Figure 3. The dot plots of Total Z-score. The dot plots of ZNL-AD in Category A (A), ZNL-AD in Category B (B), and AD-converters (MCI+) and non-
converters (MCI-) (C).
doi:10.1371/journal.pone.0025033.g003

Table 2. SUVR and sensitivity of Brodmann area.

No.
Brodmann
area SUVR*

Sensitivity
(%) No. Brodmann area SUVR Sensitivity (%)

NL AD WNL-AD_n NL AD WNL_AD_n

1 1, 2, 3 6.8160.30 7.2560.51 11.1 18 25 6.8860.28 7.4960.64 0

2 4 6.9960.25 7.6460.48 0 19 28 3.4460.29 3.9360.29 0

3 5 7.0360.48 7.3860.61 5.6 20 29, 30 6.6460.50 6.3160.44 44.4

4 6 7.3260.24 7.4860.49 5.6 21 31 8.7660.42 7.2060.65 100

5 7 7.4960.32 6.2660.60 94.4 22 32 6.7660.31 6.9560.55 16.7

6 8 7.3660.33 7.3760.37 5.6 23 34 4.1460.39 4.3860.30 5.6

7 9 7.1260.27 7.1060.37 16.7 24 35, 36 4.6360.29 4.8460.39 5.6

8 10 7.0260.26 7.1360.47 22.2 25 37 7.2060.24 6.2160.73 72.2

9 11 6.6060.27 7.0260.53 5.6 26 38 5.7660.20 5.8060.31 16.7

10 17 8.0360.60 8.0160.65 22.2 27 39 7.3160.27 6.2460.67 83.3

11 18 7.5960.38 7.4060.60 33.3 28 40 7.0460.23 6.0160.48 94.4

12 19 8.7560.36 7.7560.61 88.9 29 41, 42 7.2060.28 6.5560.45 83.3

13 20 5.8460.19 5.6460.41 38.9 30 44 7.1560.27 7.1260.40 33.3

14 21 7.0660.26 6.1460.60 83.3 31 45 7.0760.23 7.2360.44 22.2

15 22 7.2160.27 6.7060.32 77.8 32 46 7.0160.26 7.1060.43 22.2

16 23 7.6360.46 6.1960.73 88.9 33 47 6.6460.26 6.8760.46 16.7

17 24 5.8960.39 5.6060.54 44.4 34 CBL** 5.9960.33 6.7460.48 0

*SUVR: standard uptake value ratio (mean 6 SD).
**CBL: cerebellum.
doi:10.1371/journal.pone.0025033.t002
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cannot be complete, and a small variation of computer-generated

sensitivity would lead to misdiagnosis. This kind of error may reflect

intrinsic limitations of any automated imaging analyses including

CAD technique because a pixel-value within a ROI has to be

determined by a threshold. Therefore, although our method is useful

and helpful in differential diagnosis of amnesic diseases, any CAD-

induced outcomes should be accompanied with detailed clinical

assessment to minimize misdiagnosis in the clinical setting. A good

point of another issue is its versatility. In this study, our program is not

designated as a tool for discriminating MCI from NL. If this

segregation is a target, the Total Z-score ZNL-MCI from the sensitivity-

distribution maps among the NL and MCI groups may be

appropriate. To evaluate the differentiation power of the Total Z-

score ZNL-MCI, we made sensitivity-distribution maps (Fig. 4A)

between NL in Category A and MCI group. Using these maps and

Equation (1) to (3) by changing AD data into MCI data, we calculated

the Total Z-score ZNL-MCI (Fig. 4B). Employing the Youden index,

cut-off values showing the most accurate differential diagnostic

capacity was calculated: CNL-MCI = 21.3. In addition, the area under

the curve (AUC) value was 0.87 (Fig. 4C). In any case, this BA-based

procedure has a potential to be applied for the differential diagnosis of

many other brain diseases such as FTD and DLB with a specific

pattern of neuronal degeneration.

In conclusion, our newly developed CAD method has a good

power to discriminate AD from NL with an accuracy of 98%. This

program also showed a good performance in detecting AD-

converters among amnestic MCI patients with an accuracy of

88%. These results suggest the usefulness of this procedure for the

differential diagnosis of AD/MCI as a diagnosis-assisting method

free of any human judgment. Because the calculated Total Z-score

is an objective value, our method with this index enables the semi-

quantitative assessment of metabolic reduction and follow-up in

dementia. This BA-based procedure can be also applied for the

differential diagnosis of many other brain diseases such as FTD

and DLB with a specific pattern of neuronal degeneration.
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