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Macroautophagy is an evolutionarily conserved process of the lysosome-dependent degradation of damaged proteins and
organelles and plays an important role in cellular homeostasis. Macroautophagy is upregulated after myocardial infarction (MI)
and seems to be detrimental during reperfusion and protective during left ventricle remodeling. Identifying new regulators of
cardiac autophagy may help to maintain the activity of this process and protect the heart from MI effects. Recently, it was
shown that noncoding RNAs (microRNAs and long noncoding RNAs) are involved in autophagy regulation in different cell
types including cardiac cells. In this review, we summarized the role of macroautophagy in the heart following MI and we
focused on the noncoding RNAs and their targeted genes reported to regulate autophagy in the heart under these pathological
conditions.

1. Introduction

Myocardial infarction (MI) is a cardiovascular event caused
by obstruction of one or more arteries supplying the heart.
This area of the heart is therefore no longer supplied with
oxygen and nutrients leading to the death of cardiomyocytes.
Coronary reperfusion is the only recognized method to
reduce the size of the infarct if it is performed within hours
after MI. Despite its beneficial effect, several deleterious
events such as increased oxidative stress and cell death are
observed during the reperfusion process. If the infarcted zone
is very extensive, there is a decrease in the contractile func-
tion of the heart. In order to compensate for this loss and
maintain normal blood flow, the heart will undergo struc-
tural changes such as thinning of the infarcted zone, fibrosis,
cardiomyocyte hypertrophy, and left ventricle (LV) dilata-
tion [1]. Left ventricle remodeling (LVR) is initially a protec-
tive mechanism but in the long term can lead to heart failure
(HF) [2–4]. Despite current therapy, acute MI and HF
remain the leading causes of death and disability worldwide.
New therapeutic strategies are therefore required to protect

the heart against the detrimental effects of acute ischemia/r-
eperfusion (I/R) injury, in order to prevent cardiomyocyte
death and reduce myocardial infarct size, preserve LV func-
tion, and prevent the onset of HF.

Macroautophagy is an important and nonselective proteo-
lytic mechanism that regulates the homeostasis of long-lived
proteins, macromolecules including lipids and cell organelles,
by surrounding them in a double-membrane vesicle known
as autophagosome in order to deliver them to the lysosome
for degradation [5]. It plays an essential role for maintaining
heart structure and function under baseline conditions [6–8].
Several studies showed that macroautophagy is upregulated
in the heart following MI and suggested that this process
may protect the heart against MI effects [9–11]. Recently, it
was shown that noncoding RNAs (microRNAs (miRNA)
and long noncoding RNAs (lncRNA)) are involved in autoph-
agy regulation in different cell types including cardiac cells
[12–14]. In this review, we summarized the role of macroauto-
phagy in the heart following MI and we focused on the non-
coding RNAs and their targeted genes reported to regulate
autophagy in the heart under pathological conditions.
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2. Macroautophagy Mechanism

Macroautophagy proceeds in several successive steps and
involves different proteins as previously described [5]. In
summary, autophagy induction is mainly regulated by the
ULK (unc-51-like kinase) complex which is composed of
ULK1/2, ATG13 (autophagy-related gene 13), ATG101,
and FIP200 (focal adhesion kinase family interacting protein
with a 200 kDa mass). Activation of the PI3K complex con-
tributes to the vesicle nucleation, the first step of autophago-
some formation. This complex is composed of Beclin-1,
ATG14, VPS34 (phosphatidylinositol 3-kinase vacuolar pro-
tein sorting 34), and VPS15. Finally, two ubiquitin-like pro-
tein conjugation systems are required for the vesicle
elongation, the first to form ATG12-ATG5-ATG16L1 com-
plex and the second to form LC3II (microtubule-associated
protein 1 light chain II), the lipidated form of LC3. For this
latter step, ATG4 cleaves pro-LC3 to LC3I before its conjuga-
tion to phosphatidylethanolamine by ATG7, ATG3, and
ATG12-ATG5-ATG16L1 complex. Several pathways were
shown to regulate autophagy by activation or inactivation
of one of these ATG proteins. For example, mTOR (mamma-
lian target of rapamycin) activation inhibited autophagy by
decreasing ULK1 activity [15] and ATG14/VSP34-35 com-
plex formation [16]. AMPK (adenosine monophosphate-
activated protein kinase) positively regulated autophagy by
increasing Beclin-1 phosphorylation leading to its interaction
with VSP34 [17]. However, Bcl-2 interacts with Beclin-1 for
blocking its interaction with VSP34 [18].

2.1. Macroautophagy during Ischemia/Reperfusion. The regu-
lation of autophagy is different during ischemia and reperfu-
sion [10]. During heart ischemia, nutrient and oxygen
supplies to the cardiac cells decrease, inducing mitochondrial
and cellular dysfunction that lead to cell death. To protect
them, the cardiac cells induce autophagy via the AMPK/m-
TOR pathway in order to degrade/eliminate damaged organ-
elles and proteins and provide the substrates necessary for
their survival. During reperfusion, there is an increase of
reactive oxygen species (ROS) production inducing a strong
expression of Beclin-1 which on the one hand promotes the
formation of autophagosomes and on the other hand inhibits
the expression of genes involved in the fusion of autophago-
somes with lysosomes [19]. In addition, ROS inhibit the
expression of LAMP-2, a protein involved in the fusion of
autophagosomes with lysosomes. Autophagy is then induced
excessively during reperfusion but is inactive. Blocking the
degradation of the contents of autophagosomes promotes
oxidative stress, decreases mitochondrial permeability, and
causes cell death. Partial inhibition of Beclin-1 expression
(heterozygous mice) has been shown to protect against apo-
ptosis induced during reperfusion while its total deletion is
deleterious [10]. These data showed that autophagy is a pro-
tective mechanism during ischemia but its excessive induc-
tion during reperfusion is deleterious.

2.2. Macroautophagy during LVR in Post-MI. The activity of
autophagy and its role in LVR post-MI have been studied in
murine models with permanent ligation of the left coronary

artery. Autophagy is induced in noninfarcted area of the
heart during the subacute (1 week) and chronic (3 weeks)
stages after MI [11]. Inhibition of autophagy by bafilomycin
(a pharmacological agent that blocks the fusion of the autop-
hagosome with the lysosome) promoted LVR and worsens
cardiac dysfunction. In contrast, administration of trehalose
(a nonnaturally reduced disaccharide) in mice after ligation
activated autophagy, reduced LVR, and improved cardiac
function at 4 weeks post-MI [20]. However, this protective
effect of trehalose on the heart was not observed in mice inva-
lidated for the Beclin-1 gene, but an increase in the activity of
mTOR was observed in the noninfarcted area of the heart. It
has been shown that the inhibition of mTOR activity induced
autophagy leading to a decrease of LVR and an improvement
in cardiac function in post-MI [21]. All these data showed a
protective role of autophagy in later stages in post-MI but
its activity remained insufficient to prevent LVR and cardiac
dysfunction.

3. Macroautophagy Regulation by Noncoding
RNAs during and following MI

About 99% of the human genome do not encode proteins but
are transcriptionally highly active and give rise to a broad
spectrum of noncoding RNAs (ncRNAs) with regulatory
and structural functions. Based on the size criteria of 200
nucleotides (nt), ncRNAs are divided into long (>200 nt)
and short ncRNAs (<200 nt).

The ncRNAs are modulated in some cardiovascular dis-
eases including MI [22, 23]. The significant changes in their
expression pattern upon MI highlighted their contribution
in the regulation of pathogenesis of MI. Furthermore, it was
shown that ncRNAs could regulate autophagy in some car-
diac disorders including MI, hypertrophy, and HF [12–14].
In this part, we summarized the noncoding RNAs which
have been reported to regulate cardiac autophagy during
and following MI and highlighted their specific autophagic
targets and their importance as new therapeutic targets to
protect the heart against I/R injury and prevent cardiac
remodeling and dysfunction (Figure 1).

3.1. Macroautophagy Regulation by mRNAs. MiRNAs are
defined as single-stranded noncoding RNAs around 22
nucleotides and are highly conserved between species
[22]. Once synthetized and matured through several steps,
these miRNAs bind to the complementary 3′UTR of their
target mRNA and either degrade or silence them. A near-
perfect match between the seed region of the miRNA (8
nucleotides at its 5′UTR end) and its target leads to com-
plete degradation of mRNA, while a partial complemen-
tary results in the suppression of the gene expression.
MiRNAs may have one or multiple mRNA targets and
are involved in the regulation of numerous biological pro-
cesses in the heart including autophagy.

3.1.1. Antiautophagic miRNAs with Protective Effects. Several
miRNAs were modulated during I/R and seem to have a pro-
tective effect by decreasing excessive autophagy-induced cell
apoptosis by targeting one of the ATG genes. MiR-188-3p
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levels are reduced in cardiomyocytes treated with anoxia/r-
eoxygenation and in MI mice. Overexpression of miR-188-
3p in MI mice attenuated autophagy by targeting autophagy
mediator Atg7 and decreased the infarcted area size [24]. It
was shown that miR-638 suppressed the expression of Atg5
by targeting its 3′UTR region. It is downregulated in human
cardiomyocytes after hypoxia/reoxygenation (H/R), and its
overexpression improves the viability of these cells. However,
enforced expression of Atg5 reversed the effect of miR-638
on autophagy and cell apoptosis suggesting that miR-638
attenuated the effects of H/R treatment by regulating
ATG5-mediated autophagy in human cardiomyocytes [25].
Also, overexpression of miR-129-5p in H9c2 cells treated
by hydrogen peroxide inhibited autophagy by targeting the
Atg14 gene and activating the PI3K/AKT/mTOR pathway
resulting in decreased cell apoptosis [26].

Other miRNAs play their protective effect by regulating
one of the pathways involved in autophagy regulation. The
levels of miR-223 are significantly upregulated in the heart
of post-MI HF rats and in hypoxia-treated neonatal rat cardi-
omyocytes (NRCMs) and H9c2 cells. The increased miR-223
levels protect NRCMs and H9c2 cells from hypoxia-induced
apoptosis whereas decreasing miR-223 expression had con-
trasting effects. This protective effect of miR-223 is explained
by the decrease of its target gene expression PARP-1 (poly(-
ADP-ribose) polymerase 1) resulting in inhibition of exces-
sive autophagy via the Akt/mTOR pathway [27]. However,
miR-204 expression is decreased in the heart of rat upon
I/R injury associated with increased autophagy as observed
by the increased LC3II levels [28]. Also, it was shown that
transfection of miR-204 in H9c2 cells attenuated cell apopto-
sis induced by H/R treatment. The protective effect of miR-

204 is explained by targeting SIRT1-mediated autophagy
[29]. The expression of miR-34a is also decreased during
I/R and overexpression of this miR decreased TNFα expres-
sion resulting in reduced autophagy and apoptosis levels on
NRCMs after H/R [30]. Lower miR-29b-3p levels were found
in HF patients and in hypoxia-stimulated H9c2 cells. The
overexpression of miR-29b-3p inhibited autophagy and apo-
ptosis induced in hypoxic-induced H9c2 cells through target-
ing SPARC and inhibiting TGFβ-1/Smad3 pathway [31].

3.1.2. Antiautophagic miRNAs with Deleterious Effects. Some
miRNAs contribute to ischemic/reperfusion injury by inhi-
biting the autophagy process. miR-497 is dramatically
downregulated in the infarcted heart and in hypoxic cardi-
omyocytes, and its overexpression in murine MI model
increased the infarcted size. It was shown that miR-497
inhibited autophagy by targeting the LC3B gene and
induced cell apoptosis by targeting the Bcl-2 gene suggest-
ing that decreasing miR-497 levels is a protective mecha-
nism of the heart in response to MI [32]. The expression
of miR-30e was also decreased after myocardial I/R. Its
silencing in H9c2 cells increased autophagy and attenuated
oxidative stress and cell apoptosis that are reversed by
treating the cells with 3-methyladenine, an inhibitor of
macroautophagy. These results suggest that decreasing
the miR-30e levels protected the heart against I/R injury
by autophagy induction [33].

3.1.3. Proautophagic miRNAs with Protective Effects. Higashi
et al. [34] showed that 30 min of coronary occlusion followed
by 2 days of reperfusion caused a significant decrease in the
rabbit cardiac tissue expression of miR-145 in the border
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Figure 1: Outline summarizing the noncoding RNAs regulating cardiac autophagy and their targets and function. Green and red arrows
indicate activation and inhibition, respectively.
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and infarcted areas of the myocardium compared to the
remote noninfarcted area. Injection of liposomes containing
miR-145 after the beginning of reperfusion reduced the
infarcted area size and improved the LV function and remod-
eling; these beneficial effects were abolished by chloroquine
treatment. Further study showed that miR-145 promoted
autophagy in cardiomyocyte by directly targeting FRS2
(fibroblast growth factor receptor substrate 2) mRNA result-
ing in the acceleration of the transition of LC3I to LC3II, an
important step of autophagosome maturation [34]. The pro-
tective effect of miR-145 is also observed in H9c2 cells after
H/R. In this study, the authors demonstrated that miR-145
inhibited H/R-induced apoptosis by promoting autophagy
via the Akt3/mTOR signaling pathway [35]. miR-99a was
shown to be downregulated in the infarcted heart and in neo-
natal mice ventricle myocytes exposed to hypoxia.
Lentivirus-mediated overexpression of miR-99a in the
infarcted heart inhibited cardiac remodeling and improved
heart function at 1 and 4 weeks after its administration. It
was shown that miR-99a decreased mTOR protein levels
without any effect on its mRNA levels suggesting that miR-
99a regulated mTOR expression at a posttranscriptional
level. Consequently, the autophagy induced was associated
with a decrease of cell apoptosis. This study demonstrated
that overexpression of miR-99a improved post-MI cardiac
function by upregulating autophagy via targeting mTOR
pathways, inhibiting apoptosis, and attenuating pathological
remodeling [36]. The miR-144 levels were reduced in the
heart of MI mice with permanent left anterior descending
artery (LAD) ligation. The miR-144 k/o mice showed a worse
HF phenotype with ventricular dilatation and impaired con-
tractility after LAD ligation. However, miR-144 administra-
tion decreased myocardial infarcted size and improved
post-MI remodeling. Further study allowed authors to con-
clude that miR-144 increased autophagy and decreased fibro-
sis and apoptosis by targeting mTOR [37].

3.2. Macroautophagy Regulation by lncRNAs. lncRNAs are
noncoding RNAs longer than 200 nucleotides that regulate
both gene expression and protein translation [22]. Nuclear
localized lncRNAs can regulate gene expression at both the
epigenetic and transcriptional levels. Cytosol-based lncRNAs
can modify protein translation by blocking, stabilizing/dest-
abilizing, or sponging miRNAs. The lncRNAs are involved
in the regulation of numerous biological processes including
autophagy in cardiac and noncardiac cells.

3.2.1. Antiautophagic lncRNAwith Protective Effects. Liu et al.
[38] showed that the expression of lncRNA CAIF (cardiac
autophagy inhibitory factor) was significantly decreased in
a mice model of I/R injury and in cardiomyocytes treated
with H2O2. Conversely, overexpression of CAIF inhibited
autophagy inducing cardiomyocyte cell death and cardiac
dysfunction caused by I/R. In this study, the authors demon-
strate that CAIF directly binds to p53 protein and blocks its
interaction with the myocardin promotor. Myocardin, a
smooth muscle and cardiac muscle-specific transcriptional
activator, is upregulated after I/R and H2O2 treatment and
is involved in autophagy regulation in cardiomyocytes by

increasing Beclin-1 expression. These data suggest CAIF-
P53-myocardin pathway as a novel regulator of autophagy
in cardiomyocytes and as a potential therapeutic target in
order to inhibit excessive autophagy and improve cardiac
function after I/R [38].

3.2.2. Proautophagic lncRNA with Protective Effects. On the
other hand, it was shown that the lncRNA H19 expression
was decreased in a mice model of acute MI and that its over-
expression decreased infarcted size and improved cardiac
function associated with autophagy upregulation; however,
the mechanisms by which autophagy is regulated by H19
are still unknown. These results suggest that H19 protects
the heart from MI by increasing cardiac autophagy [39].

3.2.3. Proautophagic lncRNAs with Deleterious Effects. Some
lncRNAs are upregulated after I/H and enhanced autophagy
target gene expression by inhibiting miRNA expression. Yin
et al. [40] showed that lncRNA Galont (GATA1 activated
lncRNA) is upregulated in neonatal mice cardiomyocytes in
response to anoxia/reoxygenation; however, miR-338 expres-
sion is downregulated. Overexpression of miR-338 directly
decreased the formation of autophagic vesicles and induced
cell death after anoxia/reoxygenation treatment without any
effect on control cells. The antiautophagic effect of miR-338
is explained by its direct targeting of the autophagic mediator
Atg5. It was shown that Galont directly bound to miR-338
and decrease its expression. Consequently, Atg5 expression
is increased resulting in excessive cardiac autophagy and cell
death [40]. Also, the lncRNA APF (autophagy-promoting
factor) enhances cardiac autophagy and cell death by inhibit-
ing miR-188-3p expression resulting in the increase of its tar-
get gene expression, Atg7 [24]. Furthermore, lncRNA
AK088388 is upregulated during reoxygenation in mouse
cardiac myocytes associated with the decreased miR-30a
expression. Overexpression of miR-30a decreased the expres-
sion of its target gene Beclin-1 resulting in inhibition of
autophagy induction and decreased cell death. The cooverex-
pression of lncRNA AK088388 inhibited the protective effect
of miR-30a. However, the mutation of the miR30-a binding
site in AK088388 failed to block the effect of this miRNA
on autophagy and cell survival. These results suggest that
lncRNA AK088388 regulates autophagy through miR-
30a/Beclin-1 pathway to affect cardiomyocyte injury [41].
The lncRNA HRIM (hypoxia/reoxygenation injury-related
factor in myocyte) was upregulated after H/R in H9c2 cells.
HRIM silencing prevented death of cells by suppressing the
autophagic activity in H/R-treated cells. However, the target
genes of this lncRNA and the detailed mechanism of its
autophagic effect need to be elucidated [42]. Other lncRNAs
were highly expressed in diabetic murine heart and contrib-
uted to I/R injury by regulating autophagy. It was shown that
Neat-1 (nuclear-enriched abundant transcript 1) and
AK139328 seemed to induce autophagy by upregulating
Foxo1 expression and decreasing miR-204-3p levels, respec-
tively [43, 44].

lncRNA MALAT1 (metastasis-associated lung adenocar-
cinoma transcript 1) is expressed at high levels in patients
with acute MI [45] and is closely associated with the
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pathogenesis of myocardial I/R injury [46, 47]. It was shown,
on the one hand, that MALAT1 contained binding site for
miR-204 [48] and, in the other hand, that miR-204 protected
the cardiomyocytes against I/R injury via inhibiting autoph-
agic cell death [28]. Also, MALAT1 targeted miR-558 to
enhance ULK1-mediated autophagy in isoproterenol-
treated cardiomyocytes [49]. It will be important to know if
lncRNA MALAT increased cardiomyocyte autophagy and
myocardial injury during I/R by negatively regulating miR-
204 or miR-558 expression.

4. Conclusion

Despite current therapies, acute MI and HF which often fol-
lows remain the leading causes of death and disability world-
wide. New therapeutic strategies are therefore required to
protect the heart against the detrimental effects of acute
ischemia/reperfusion injury. Inhibition of macroautophagy
during reperfusion prevented cardiomyocyte death and
reduced myocardial infarct size; however, its induction dur-
ing LVR preserved LV function and prevented the onset of
HF. Most pharmacological agents used up to date for regulat-
ing macroautophagy are not specific and may interfere with
other cellular processes, so it will be necessary to identify
new therapeutic approaches to regulate autophagy. Several
noncoding RNAs were shown to be modulated during I/R
and involved on cardiac autophagy regulation. The tissue-
specific expression of some noncoding RNAs and their easy
manipulation show their potential as novel targets for clinical
developments to treat autophagy-related diseases. Identifica-
tion of specific cardiac noncoding RNAs that regulate
autophagy could be a good opportunity to protect the heart
from MI injury without affecting the autophagy activity in
other organs.
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