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ABSTRACT
The treatment of chronic neuropathic pain remains one of the most challenging of all neurological dis-
eases and very much an art. There exists no consensus for the optimal management of this condition at
the moment. Gaining inspiration from recent studies which pointed out the involvement of brain-associ-
ated carbonic anhydrase (CA, EC 4.2.1.1) isoform VII in the pathology of various neurodegenerative dis-
eases, which highlighted the relationship between selective inhibition of this isozyme and relieve of
neuropathic pain, herein we report the synthesis and CA VII inhibitory activity of novel 4-(3-alkyl/benzyl-
guanidino)benzenesulfonamides. Ten benzyl-substituted and five alkyl-substituted 4-guanidinobenzenesul-
fonamide derivatives were obtained, some of which (7c, 7h, 7m and 7o) exhibited satisfactory selectivity
towards CA VII over CA I and II, with KI-s in the subnanomolar range and good selectivity indexes for
inhibiting the target versus the off-target isoforms.
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1. Introduction

As its name suggests, carbonic anhydrases (CAs, EC 4.2.1.1) are
enzymes which catalyse the reversible hydration/dehydration of
carbon dioxide (CO2) to bicarbonate (HCO3

�) and protons (Hþ)1.
These enzymes are constitutively produced in all tissues, organs
and cells and comprise 15 different isoforms (CA I, II, III, VA, VB, VI,
VII, VIII, IX, X, XI, XII, XIII, XIV and XV) in humans, according to their
subcellular localisation2. There is increasing evidence that CAs play
a key role in a variety of diseases, including edoema, epilepsy,
cancer, glaucoma, haemolytic anaemia, obesity, sterility and other
disorders3. Hence, isoform-selective targeting hCAs is an important
approach for discovery and development of selective, effective
and safe novel drugs4.

Primary sulfonamides were discovered as CA inhibitors (CAIs) in
the ‘40s of the last century, and majority of the drugs launched in
the next decades (diuretics, antiepileptics, or antiglaucoma agents)
belonged to this class of compounds or to their isosteres such as
the sulfamates and sulfamides5–9. A major pitfall of the first gener-
ation of CAIs was their lack of isoform selectivity, keeping in mind
that in humans are present at least 12 catalytically active and
three acatalytic isoforms5–13. In last decade a discovery was
made and the new generation of CAIs belonging to coumarins
and sulfocoumarins and their bioisosteres showed significant iso-
form-selective inhibition profiles, as demonstrated in a number of
studies14–32. This is principally due to the fact that these com-
pounds possess a distinct inhibition mechanism compared to the
sulfonamides, which coordinate to the zinc ion from the CA active
site as anions5–13. Recently so-called tail approach also has proven
to give considerable inhibition selectivity among CA isoforms in

case of primary sulfonamides31,32. This approach was chosen also
for this study.

Neuropathic pain is a neurological disorder caused by a lesion
or disease affecting the peripheral or central nervous system33.
Often, patients with chronic neuropathic pain experience severe
and unrelenting pain; thus sometimes opioid analgesics are pre-
scribed to relieve pain34. Anticonvulsant drugs acting at calcium
channels (e.g. pregabalin and gabapentin) and antidepressant
agents (e.g. duloxetine) are the first-line options for management
of this pain35,36. However, their efficacies are not high, and also
associated with several side effects. Therefore, undoubtedly there
is an unmet medical need to discover a new pharmacological
class for the treatment of neuropathic pain.

Although the mechanisms of neuropathic pain for big extend
remain unclear, recent studies have highlighted the involvement
of the brain-associated CA VII isoform in the pathology of this syn-
drome37. Thereby, isoform-selective CAVII inhibitors are recognised
as promising agents for management of neuropathic pain.
Needless to say that primary sulfonamides (R-SO2NH2) are the
main class of CA inhibitors and logically utmost studies on the
inhibition of CA VII are relying on the use of sulfonamide-based
compounds38. Intriguingly, recent works by one of our groups
indicated that the incorporation of guanidine moiety into sulfona-
mide-containing compounds resulting in CA inhibitors with
enhanced efficiency and selectivity (Figure 1)39–41. Keeping these
interesting facts in mind and in connection with our works on the
field of CA inhibitors16,19,27,42, we decided to synthesis a series of
novel 4–(3-alkyl/benzyl-guanidino)benzenesulfonamides and inves-
tigate their inhibitory activity against CA VII (Figure 2).
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2. Experimental section

2.1. Chemistry

Reagents, starting materials and solvents were obtained from
commercial sources and used as received. Thin-layer chromatog-
raphy was performed on silica gel, spots were visualised with UV
light (254 and 365 nm). NMR spectra were recorded on Bruker 300
spectrometer with chemical shifts values (d) in ppm relative to
TMS using the residual DMSO-d6 signal (1H 2.50; 13C 39.52). High-
resolution mass spectra (HRMS) were recorded on a mass spec-
trometer with a Q-TOF micro mass analyser using the
ESI technique.

2.2. Synthesis

2.2.1. 4-Thioureidobenzenesulfonamide (5)

To a solution of 4-aminobenzensulfonamide (30 g, 174.3mmol) in
3.5M HCl (180ml), which was heated at 70 �C and cooled to room
temperature, KSCN (16.94 g, 174.3mmol) was added and the mix-
ture was refluxed for 3 h. After cooling to room temperature, the
reaction mixture was diluted with ice-cold water. Solids were col-
lected by filtration, washed with water and air dried to afford 5
(12.1 g, 31%) as white powder.

1H NMR (300MHz, DMSO-d6) d¼ 7.32 (s, 2H), 7.69 (d, 2H,
J¼ 8.6 Hz), 7.77 (d, 2H, J¼ 8.6 Hz), 10.02 (s, 1H) ppm 13C NMR
(75MHz, DMSO-d6) d¼ 122.8, 127.3, 139.8, 143.9, 182.8 ppm MS
(ESI) [MþH]þ: m/z 232.0.

2.2.2. Methyl (4-sulfamoylphenyl)carbamimidothioate (6)

To a solution of 4-thioureidobenzenesulfonamide (5) (10.0 g,
43.28mmol) in DMF (100ml), MeI (2.69ml, 43.28mmol) at room
temperature was added and the mixture was heated at 40 �C for
2.5 h. After cooling to room temperature water (150ml) was
added and the mixture was extracted with EtOAc (3� 50ml).
Organic layer was washed with aq. sat. NaHCO3 (2� 50ml) and
aq. sat. NH4Cl (50ml), and dried over Na2SO4. Solvent evaporation
in vacuum afforded 6 (7.43 g, 70%) as white powder.

1H NMR (300MHz, DMSO-d6) d¼ 2.37 (s, 3H), 6.63 (s, 2H), 6.94
(s, 2H), 7.22 (s, 2H), 7.71 (d, 2H, J¼ 8.4 Hz) ppm 13C NMR (75MHz,
DMSO-d6) d¼ 14.2, 122.8, 127.7, 138.0, 153.9, 157.0 ppm HRMS
(ESI) [MþH]þ: m/z calcd for (C8H12N3O2S2) 246.0371.
Found 246.0372.

2.2.3. 4-(3-Benzyl-guanidino)benzenesulfonamide (7a)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), benzyl-
amine (1.066ml, 9.76mmol) was added and the reaction mixture
was stirred in sealed tube at 130 �C for 2 h. After cooling to room
temperature water (40ml) was added and the mixture was
extracted with EtOAc (3� 20ml). The organic phase was dried
over Na2SO4 and the solvent was removed under reduced pres-
sure. The residue was dissolved in iPrOH (5ml) under gentle heat-
ing and product was precipitated by addition of hexanes (40ml).
Precipitate was collected by filtration and dried under vacuum to
afford the 7a as white solids (187mg, 50%).

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 4.39 (2H, s), 6.93 (d, 2H,
J¼ 7.8 Hz), 7.29 (s, 1H), 7.37 (s, 4H), 7.65 (d, 2H, J¼ 7.8 Hz) ppm
13C NMR (75MHz, DMSO-d6 þD2O) d¼ 44.4, 123.1, 127.2, 127.3,
127.7, 128.7, 135.1, 140.7, 152.6, 154.9 ppm HRMS (ESI) [MþH]þ:
m/z calcd for (C14H17N4O2S) 305.1072. Found 305.1078.

Figure 1. Selected examples of the guanidine-containing sulfonamide CAIs.

Figure 2. General structure of 4-(3-alkyl/benzyl-guanidino)benzenesulfonamides
discussed in the paper.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 1569



2.2.4. 4-(3-(4-Methoxybenzyl)guanidino)benzenesulfonamide (7b)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), (4-methox-
yphenyl)methanamine (1.275ml, 9.76mmol) was added and the
reaction mixture was stirred in sealed tube at 130 �C for 2 h. After
cooling to room temperature water (40ml) was added and mix-
ture was extracted with EtOAc (3� 20ml). The organic phase was
dried over Na2SO4. Solvent evaporation under reduced pressure
afforded 7b (305mg, 74%) as white powder.

1H NMR (300MHz, DMSO-d6þD2O) d¼ 3.74 (s, 3H), 4.30 (s,
2H), 6.90 (s, 2H), 6.93 (s, 2H), 7.29 (d, 2H, J¼ 8.4 Hz), 7.64 (d, 2H,
J¼ 8.4 Hz) ppm 13C NMR (75MHz, DMSO-d6 þD2O) d¼ 44.7, 56.3,
114.9, 123.8, 128.1, 129.9, 133.5, 135.7, 153.5, 155.9, 159.4 ppm
HRMS (ESI) [MþH]þ: m/z calcd for (C15H19N4O3S) 335.1178.
Found 335.1180.

2.2.5. 4-(3-(4-Fluorobenzyl)guanidino)benzenesulfonamide (7c)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), (4-fluoro-
phenyl)methanamine (1.110ml, 9.76mmol) was added and the
reaction mixture was stirred in sealed tube at 130 �C for 2 h. After
cooling to room temperature water (40ml) was added and mix-
ture was extracted with EtOAc (3� 20ml). The organic phase was
dried over Na2SO4 and the solvent was removed under reduced
pressure. The residue was dissolved in iPrOH (5ml) under gentle
warming and product was precipitated by addition of hexanes
(40ml). Precipitate was collected by filtration and dried in vacuum
to afford 7c (354mg, 90%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 4.36 (s, 2H), 6.92 (d, 2H,
J¼ 8.1 Hz), 7.15–7.43 (m, 4H), 7.64 (d, 2H, J¼ 8.1 Hz) ppm 13C NMR
(75MHz, DMSO-d6 þD2O) d¼ 44.5, 116.2 (d, J¼ 20.9 Hz), 123.8,
128.1, 130.5 (d, J¼ 7.6 Hz), 136.1, 137.7, 153.3, 155.2, 162.4 (d,
J¼ 240.6 Hz) ppm HRMS (ESI) [MþH]þ: m/z calcd for
(C14H16N4O2FS) 323.0978. Found 323.0990.

2.2.6. 4-(3-(3-Fluorobenzyl)guanidino)benzenesulfonamide (7d)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), (3-fluoro-
phenyl)methanamine (1.113ml, 9.76mmol) was added and the
reaction mixture was stirred in sealed tube at 130 �C for 2 h. After
cooling to room temperature water (40ml) was added and mix-
ture was extracted with EtOAc (3� 20ml). The organic phase was
dried over Na2SO4 and the solvent was removed under reduced
pressure. The residue was dissolved in iPrOH (5ml) under gentle
warming and product was precipitated by addition of hexanes
(40ml). Precipitate was collected by filtration and dried in vacuum
to afford 7d (286mg, 72%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 4.42 (s, 2H), 6.93 (d, 2H,
J¼ 6.9 Hz), 7.07–7.41 (m, 4H), 7.65 (d, 2H, J¼ 6.9 Hz) ppm 13C NMR
(75MHz, DMSO-d6 þD2O) d¼ 40.6, 114.6 (d, J¼ 30.7 Hz), 114.9 (d,
J¼ 30.7Hz), 123.8, 124.4, 128.1, 131.4 (d, J¼ 8.1 Hz), 136.2, 144.8

(d, J¼ 6.9 Hz), 153.3, 155.0, 163.5 (d, J¼ 241.5 Hz) ppm HRMS (ESI)
[MþH]þ: m/z calcd for (C14H16N4O2SF) 323.0978. Found 323.0986.

2.2.7. 4-(3-(2-Fluorobenzyl)guanidino)benzenesulfonamide (7e)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), (2-fluoro-
phenyl)methanamine (1.110ml, 9.76mmol) was added and the
reaction mixture was stirred in sealed tube at 130 �C for 2 h. After
cooling to room temperature water (40ml) was added and mix-
ture was extracted with EtOAc (3� 20ml). The organic phase was
dried over Na2SO4 and the solvent was removed under reduced
pressure. The residue was dissolved in iPrOH (5ml) under gentle
warming and product was precipitated by addition of hexanes
(40ml). Precipitate was collected by filtration and dried in vacuum
to afford 7e (193mg, 49%) as white powder.

1H NMR (300MHz, DMS-O-d6 þD2O) d¼ 4.43 (s, 2H), 6.92 (d,
2H, J¼ 8.3 Hz), 7.127.50 (m, 4H), 7.64 (d, 2H, J¼ 8.3 Hz) ppm 13C
NMR (75MHz, DMSO-d6 þD2O) d¼ 39.1, 116.2 (d, J¼ 21.0 Hz),
123.7, 125.5 (d, J¼ 3.2 Hz), 128.0 (d, J¼ 6.6 Hz), 128.2, 129.9 (d,
J¼ 8.19Hz), 130.7 (d, J¼ 4.6 Hz), 136.0, 153.1, 155.2, 160.3 (d,
J¼ 242.4 Hz) ppm HRMS (ESI) [MþH]þ: m/z calcd for
(C14H16N4O2FS) 323.0978. Found 323.0992.

2.2.8. 4-(3-(3-Methylbenzyl)guanidino)benzenesulfonamide (7f)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), m-tolylme-
thanamine (1.224ml, 9.76mmol) was added and the reaction mix-
ture was stirred in sealed tube at 130 �C for 2 h. After cooling to
room temperature water (40ml) was added and mixture was
extracted with EtOAc (3� 20ml). The organic phase was dried
over Na2SO4 and the solvent was removed under reduced pres-
sure. The residue was dissolved in iPrOH (5ml) under gentle
warming and product was precipitated by addition of hexanes
(40ml). Precipitate was collected by filtration and dried under vac-
uum to afford 7f (252mg, 65%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 2.33 (s, 3H), 4.36 (s,
2H), 6.94 (d, 2H, J¼ 7.6 Hz), 7.10–7.26 (m, 4H), 7.65 (d, 2H,
J¼ 7.6 Hz) ppm 13C NMR (75MHz, DMSO-d6 þD2O) d¼ 22.3, 45.2,
123.8, 125.6, 128.0, 128.6, 129.2, 129.4, 136.0, 138.6, 141.3, 153.4,
155.4 ppm HRMS (ESI) [MþH]þ: m/z calcd for (C15H19N4O2S)
319.1229. Found 319.1241.

2.2.9. 4-(3-(2-Methylbenzyl)guanidino)benzenesulfonamide (7g)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), o-tolylme-
thanamine (1.210ml, 9.76mmol) was added and the reaction mix-
ture was stirred in sealed tube at 130 �C for 2 h. After cooling to
room temperature water (40ml) was added and mixture was
extracted with EtOAc (3� 20ml). The organic phase was dried
over Na2SO4 and the solvent was removed under reduced
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pressure. The residue was dissolved in iPrOH (5ml) under gentle
warming and product was precipitated by addition of hexanes
(40ml). Precipitate was collected by filtration and dried in vacuum
to afford 7g (315mg, 81%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 2.32 (s, 3H), 4.36 (s,
2H), 6.94 (d, 2H, J¼ 8.3 Hz), 7.16–7.33 (m, 4 H), 7.65 (d, 2H,
J¼ 8.3 Hz) ppm 13C NMR (75MHz, DMSO-d6 þD2O) d¼ 19.8, 43.5,
123.9, 127.1, 128.1, 128.1, 128.8, 131.3, 136.1, 137.0, 139.0, 153.5,
155.3 ppm HRMS (ESI) [MþH]þ: m/z calcd for (C15H19N4O2S)
319.1229. Found 319.1237.

2.2.10. 4-(3-(1-Phenylethyl)guanidino)benzenesulfonamide (7h)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), 1-phenyle-
thanamine (1.258ml, 9.76mmol) was added and the reaction mix-
ture was stirred in sealed tube at 130 �C for 2 h. After cooling to
room temperature water (40ml) was added and mixture was
extracted with EtOAc (3� 20ml). The organic phase was dried
over Na2SO4 and the solvent was removed under reduced pres-
sure. The residue was dissolved in iPrOH (5ml) under gentle
warming and product was precipitated by addition of hexanes
(40ml). The precipitate was collected by filtration and dried in
vacuum to afford 7h (232mg, 59%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 1.41 (d, 3H, J¼ 5.9 Hz),
4.97 (q, 1H, J¼ 5.9 Hz), 6.85 (d, 2H, J¼ 7.6 Hz), 7.25 (s, 1H), 7.38
(app s, 4H), 7.62 (d, 2H, J¼ 7.6 Hz) ppm 13C NMR (75MHz, DMSO-
d6 þD2O) d¼ 24.5, 50.6, 123.8, 127.2, 127.8, 128.1, 129.6, 135.9,
146.8, 152.7, 155.5 ppm HRMS (ESI) [MþH]þ: m/z calcd for
(C15H19N4O2S) 319.1229. Found 319.1225.

2.2.11. 4-(3-Methyl-3-(3-methylbenzyl)guanidino)benzenesulfona-
mide (7i)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), N-methyl-
1-(m-tolyl)methanamine (1.466ml, 9.76mmol) was added and the
reaction mixture was stirred in sealed tube at 130 �C for 2 h. After
cooling to room temperature water (40ml) was added and mix-
ture was extracted with EtOAc (3� 20ml). The organic phase was
dried over Na2SO4 and the solvent was removed under reduced
pressure. The residual solid was washed with iPrOH (20ml) and
dried in vacuum to afford 7i (292mg, 72%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 2.33 (s, 3H), 2.88 (s,
3H), 4.59 (s, 2H), 6.90 (d, 2H, J¼ 8.4 Hz), 7.09-7.29 (m, 4H), 7.67 (d,
2H, J¼ 8.4 Hz) ppm 13C NMR (75MHz, DMSO-d6 þD2O) d¼ 22.4,
36.2, 53.2, 123.7, 125.6, 128.2, 128.8, 129.1, 129.6, 135.5, 138.8,
139.9, 154.5, 156.4 ppm HRMS (ESI) [MþH]þ: m/z calcd for
(C16H21N4O2S) 333.1385. Found 333.1395.

2.2.12. 4-(3,3-Dibenzyl-guanidino)benzenesulfonamide (7j)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), dibenzyl-
amine (1.876ml, 9.76mmol) was added and the reaction mixture
was stirred in sealed tube at 130 �C for 2 h. After cooling to room
temperature water (40ml) was added and mixture was extracted
with EtOAc (3� 20ml). The organic phase was dried over Na2SO4

and the solvent was removed under reduced pressure. The resi-
due was dissolved in iPrOH (5ml) under gentle warming and
product was precipitated by addition of hexanes (40ml). The pre-
cipitate was collected by filtration and dried in vacuum to afford
7j (279mg, 58%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 4.58 (s, 4H), 6.91 (dd,
2H, J¼ 6.8, 1.6 Hz), 7.29–7.40 (m, 10H), 7.66 (dd, 2H, J¼ 6.8, 1.6 Hz)
ppm 13C NMR (75MHz, DMSO-d6 þD2O) d¼ 50.7, 123.7, 128.2,
128.4, 129.7, 135.7, 139.7, 154.17, 156.06 ppm HRMS (ESI) [MþH]þ:
m/z calcd for (C21H23N4O2S) 395.1542. Found 395.1553.

2.2.13. 4-(3-(2-Phenoxyethyl)guanidino)benzenesulfonamide (7k)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), 2-phenox-
yethanamine (1.277ml, 9.76mmol) was added and the reaction
mixture was stirred in sealed tube at 130 �C for 6 h. After cooling
to room temperature water (40ml) was added and mixture was
extracted with EtOAc (3� 20ml). The organic phase was dried
over Na2SO4 and the solvent was removed under reduced pres-
sure. The residue was dissolved in iPrOH (5ml) under gentle
warming and product was precipitated by addition of hexanes
(40ml). The precipitate was collected by filtration and dried under
vacuum to afford 7k (118mg, 29%) as orange powder.

1H NMR (300MHz, DMSO-d6þD2O) d¼ 3.48–3.56 (m, 2H), 4.04-
4.11 (m, 2H), 6.85–7.01 (m, 5H), 7.31 (q, 2H, J¼ 7.4 Hz), 7.65 (d, 2H,
J¼ 8.4 Hz) ppm 13C NMR (75MHz, DMSO-d6þD2O) d¼ 41.2, 67.7,
115.6, 115.7, 121.9, 123.9, 128.1, 130.8, 136.2, 153.5, 159.7 ppm
HRMS (ESI) [MþH]þ: m/z calcd for (C15H19N4O3S) 335.1178.
Found 335.1193.

2.2.14. Synthesis of 4-(3-octylguanidino)benzenesulfonamide (7l)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), octan-1-
amine (1.613ml, 9.76mmol) was added and the reaction mixture
was stirred in sealed tube at 130 �C for 2 h. After cooling to room
temperature water (40ml) was added and mixture was extracted
with EtOAc (3� 20ml). The organic phase was dried over Na2SO4

and the solvent was removed under reduced pressure. The resi-
due was dissolved in iPrOH (5ml) under gentle warming and
product was precipitated by addition of hexanes (40ml). The pre-
cipitate was collected by filtration and dried in vacuum to afford
7l (338mg, 85%) as white powder.
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1H NMR (300MHz, DMSO-d6þD2O) d¼ 0.82–0.90 (m, 3H), 1.28
(br. s 10H), 1.42–1.50 (m, 2H), 3.11 (t, 2H, J¼ 6.7 Hz), 6.88 (d, 2H,
J¼ 8.4 Hz), 7.61 (d, 2H, J¼ 8.4 Hz) ppm 13C NMR (75MHz, DMSO-
d6 þD2O) d¼ 15.3, 23.5, 27.8, 30.0, 30.1, 30.5, 32.6, 41.7, 124.0,
128.1, 135.7, 153.8, 156.1 ppm HRMS (ESI) [MþH]þ: m/z calcd for
(C15H27N4O2S) 327.1855. Found 327.1867.

2.2.15. 4–(3-Dodecylguanidino)benzenesulfonamide (7m)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), dodecan-1-
amine (1.809 g, 9.76mmol) was added and the reaction mixture
was stirred in sealed tube at 130 �C for 2 h. After cooling to room
temperature water (40ml) was added and mixture was extracted
with EtOAc (3� 20ml). The organic phase was dried over Na2SO4

and the solvent was removed under reduced pressure. The resi-
due was dissolved in iPrOH (5ml) under gentle warming and
product was precipitated by addition of hexanes (40ml). The pre-
cipitate formed was collected by filtration and dried in vacuum to
afford 7m (196mg, 42%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 0.88 (t, 3H, J¼ 6.3 Hz),
1.15–127 (m, 18H), 1.47 (s, 2H), 3.14 (t, 2H, J¼ 6.3 Hz), 6.88 (d, 2H,
J¼ 8.1 Hz), 7.61 (d, 2H, J¼ 8.1 Hz) ppm 13C NMR (75MHz, DMSO-
d6 þD2O) d¼ 15.1, 23.3, 27.7, 29.9, 30.0, 30.2 (br), 30.4, 32.5, 41.5,
123.7, 127.9, 135.5, 153.4, 156.1 ppm HRMS (ESI) [MþH]þ: m/z
calcd for (C19H35N4O2S) 383.2481. Found 383.2490.

2.2.16. Synthesis of 4-(3-hexadecylguanidino)benzenesulfona-
mide (7n)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), hexade-
can-1-amine (2.356 g, 9.76mmol) was added and the reaction mix-
ture was stirred in sealed tube at 130 �C for 2 h. After cooling to
room temperature, it was filtered through the sintered glass cru-
cible. Water (40ml) was added to the filtrate and the mixture was
extracted with EtOAc (3� 20ml). The organic phase was dried
over Na2SO4 and the solvent was removed under reduced pres-
sure. The residue was washed with CHCl3 (50ml) and dried under
vacuum to afford 7n (221mg, 41%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 0.84 (br. s, 3H), 1.23 (br.
s, 28H), 3.09 (br. s, 2H), 6.88 (br. s, 2H), 7.61 (br. s, 2H) ppm 13C
NMR (75MHz, DMSO-d6þ D2O) d¼ 15.2, 23.6, 28.0, 30.6 (br), 32.8,
41.9, 124.0, 128.2, 135.9, 153.8, 155.9 ppm HRMS (ESI) [MþH]þ: m/
z calcd for (C23H43N4O2S) 439.3107. Found 439.3114.

2.2.17. 4-Benzyl-N-(4-sulfamoylphenyl)piperazine-1-carboximida-
mide (7o)

To a solution of 6 (300mg, 1.22mmol) in DMSO (8ml), 1-benzylpi-
perazine (1.696ml, 9.76mmol) was added and the reaction mix-
ture was stirred in sealed tube at 130 �C for 6 h. After cooling to
room temperature water (40ml) was added and the mixture was
extracted with EtOAc (3� 20ml). The organic phase was dried
over Na2SO4 and the solvent was removed under reduced pres-
sure. The residual oily solid was washed with Et2O (20ml) and
dried under vacuum to afford 7o (402mg, 88%) as white powder.

1H NMR (300MHz, DMSO-d6 þD2O) d¼ 2.41 (s, 4H), 3.38 (s,
4H), 3.52 (s, 2H), 6.86 (d, 2H, J¼ 8.3 Hz), 7.28-7.39 (m, 5H), 7.65 (d,
2H, J¼ 8.3 Hz) ppm 13C NMR (75MHz, DMSO-d6 þD2O) d¼ 45.9,
53.5, 63.3, 123.7, 128.1, 128.2, 129.4, 130.2, 135.9, 139.0, 154.2,
156.1 ppm HRMS (ESI) [MþH]þ: m/z calcd for (C18H24N5O2S)
374.1651. Found 374.1649.

2.3. CA inhibitory assay

An applied photophysics stopped-flow instrument has been used
for assaying the CA-catalysed CO2 hydration activity43. Phenol red
(at a concentration of 0.2mM) was used as indicator, working at
the absorbance maximum of 557 nm, with 20mM Hepes (pH 7.5)
as buffer and 20mM Na2SO4 (for maintaining constant the ionic
strength), following the initial rates of the CA-catalysed CO2 hydra-
tion reaction for a period of 10� 100 s. The CO2 concentrations
ranged from 1.7 to 17mM for the determination of the kinetic
parameters and inhibition constants. For each inhibitor, at least six
traces of the initial 5� 10% of the reaction have been used for
determining the initial velocity. The uncatalysed rates were deter-
mined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitor (0.1mM) were pre-
pared in distilled-deionised water, and dilutions up to 0.01 nM

Scheme 1. Reagents and conditions: (i) KSCN, aq. 3.5M HCl, reflux, 3 h, 31%; (ii) MeI, DMF, 40 �C, 2.5 h, 70%; (iii) HNR1R2 (8 equiv.), DMSO, 130 �C, 2–6 h.

1572 M. ABDOLI ET AL.



were done thereafter with the assay buffer. Inhibitor and enzyme
solutions were preincubated together for 6 h at room temperature
prior to assay in order to allow for the formation of the E-I com-
plex. The inhibition constants were obtained by nonlinear least-
squares methods using PRISM 3 and the Cheng-Prusoff equation,
as reported earlier44–53, and represent the mean from at least
three different determinations. All CA isoforms were recombinant
ones obtained in-house as reported earlier54–57.

3. Results and discussion

3.1. Chemistry

Desired 4–(3-alkyl/benzyl-guanidino)benzenesulfonamides 7a–o
were obtained in three step synthesis (Scheme 1). In the first step
4-aminobenzenesulfonamide (4) was reacted with KSCN under
acidic conditions, thus obtaining intermediate-4-thioureidobenze-
nesulfonamide (5). In the intermediate 5 the reactive thiourea
functionality was selectively converted into methyl carbamimido-
thioate 6 through the treatment with methyl iodide in DMF in the
absence of base or catalyst. In the subsequent reaction methyl
carbamimidothioate 6 was reacted various primary and secondary
aliphatic and benzylic amines in DMF at elevated temperature,
affording the desired 4-(3-alkyl/benzyl-guanidino)benzenesulfona-
mides 7 in satisfying to high yields ranging from 29% to 90%.

3.2. Carbonic anhydrase inhibition

The obtained series of 4–(3-alkyl/benzyl-guanidino)benzenesulfo-
namides 7a–o were investigated for their CA inhibitory properties
by using a stopped-flow CO2 hydrase assay43 and three human
CA isoforms (hCA I, II and VII) known to be drug targets for neuro-
logical conditions37,58–62 (Table 1).

As seen from data of Table 1, benzenesulfonamides 7a–o did
not significantly inhibit the cytosolic isoforms hCA I, which is con-
sidered as being an off-target isoform in our study. The ubiquitous
hCA II was significantly inhibited by many benzenesulfonamides 7
studied here. Compounds 7a–e, 7h and 7k had KIs ranging from
1.6 to 59.1 nM, in most cased being lower or comparable to those
of the non-selective CA inhibitor acetazolamide (AAZ), which has
a KI of 12 nM. The rest of the derivatives 7 strongly inhibited CA II,
with KI values in the low nanomolar or subnanomolar range.
Neuropathic pain associated CA VII was also effectively inhibited
by most of the sulfonamides 7, even in subnanomolar range for
compounds 7f, 7g, 7i and 7m–o. However, compounds 7c, 7h,
7m and 7o (nanomolar and subnanomolar inhibitors) also exhib-
ited remarkable selectivity towards CA VII compared to the off-tar-
get isoforms CA I and CA II.

The selectivity indexes for the inhibition of hCA VII over hCA I
and II for the new compounds reported here are shown in
Table 2.

It may be seen that all new compounds 7a–7o were highly
selective for the inhibition of CA VII over CA I, with selectivity
indexes in the range of 12.8� 61300. On the other hand, only
compounds 7c, 7h, 7m and 7o showed selectivity for inhibiting
CA VII over CA II, with selectivity indexes of 1.66� 8.72. Many of
these new sulfonamides (e.g. 7d, 7e, 7g, 7i and 7j) were in fact
highly hCA II selective inhibitors.

4. Conclusion

A series of novel 4-(3-alkyl/benzyl-guanidino)benzenesulfonamide
derivatives with various long alkyl chains and functional groups

on benzyl moieties through the direct catalyst-free desulfidative
amination of easily accessible methyl (4-sulfamoylphenyl)carbami-
midothioate with respective primary and secondary amines were
obtained. The new derivatives were assayed as inhibitors of the
zinc metalloenzyme CA. Three pharmacologically relevant human
(h) isoforms (CA I, CA II and CA VII) were investigated. No signifi-
cant inhibition of hCA I was observed, whereas some of the new
derivatives were effective, low nanomolar or even subnanomolar

Table 1. Inhibition data of human CA isoforms I, II and VII using AAZ as stand-
ard drug.

Compound R1 R2

Ki (nM)
a

CA I CA II CA VII

7a R1 H 746.5 7.7 10.1

7b H 698.7 17.7 25.1

7c H 989.1 59.1 15.0

7d H 781.7 1.6 60.7

7e H 2988.8 3.2 44.9

7f H 2932.2 0.3 0.9

7g H 3163.0 0.07 0.4

7h H 1319.0 9.6 1.1

7i CH3 1137.7 0.08 0.7

7j 5845.5 0.6 3.2

7k H 4183.3 6.9 8.7

7l H 729.8 0.9 2.2

7m H 930.3 0.4 0.2

7n H 2154.0 0.06 0.08

7o 3676.8 0.1 0.06

AAZ – – 250.0 12.0 2.5
aMean from three different assays, by a stopped-flow technique (errors were in
the range of ±5–10% of the reported values).
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hCA II and CA VII inhibitors. Four novel sulfonamide derivatives
7c, 7h, 7m and 7o having low nanomolar or subnanomolar KI val-
ues and significant selectivity towards neuropathic pain related CA
VII have a potential for further investigation as potential neuro-
pathic pain attenuation agents.
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