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Protecting infrastructure 
performance from disinformation 
attacks
Saeed Jamalzadeh1, Kash Barker1*, Andrés D. González1 & Sridhar Radhakrishnan2

Disinformation campaigns are prevalent, affecting vaccination coverage, creating uncertainty in 
election results, and causing supply chain disruptions, among others. Unfortunately, the problems of 
misinformation and disinformation are exacerbated due to the wide availability of online platforms 
and social networks. Naturally, these emerging disinformation networks could lead users to engage 
with critical infrastructure systems in harmful ways, leading to broader adverse impacts. One such 
example involves the spread of false pricing information, which causes drastic and sudden changes in 
user commodity consumption behavior, leading to shortages. Given this, it is critical to address the 
following related questions: (i) How can we monitor the evolution of disinformation dissemination and 
its projected impacts on commodity consumption? (ii) What effects do the mitigation efforts of human 
intermediaries have on the performance of the infrastructure network subject to disinformation 
campaigns? (iii) How can we manage infrastructure network operations and counter disinformation in 
concert to avoid shortages and satisfy user demands? To answer these questions, we develop a hybrid 
approach that integrates an epidemiological model of disinformation spread (based on a susceptible-
infectious-recovered model, or SIR) with an efficient mixed-integer programming optimization 
model for infrastructure network performance. The goal of the optimization model is to determine 
the best protection and response actions against disinformation to minimize the general shortage 
of commodities at different nodes over time. The proposed model is illustrated with a case study 
involving a subset of the western US interconnection grid located in Los Angeles County in California.

Well-publicized disinformation campaigns surrounding recent US Presidential elections and the adoption of 
pandemic-related vaccinations have increased awareness among researchers that historical problems of misinfor-
mation / disinformation are exacerbated due to the wide availability and use of online platforms. Disinformation, 
defined as information that falsely characterizes the state of the system, including rumors, factual errors, and 
attempts at  deception1, is rising on online  platforms2,3.

There is substantial literature on modeling the effects of and protection against false data injections by adver-
saries and connections to the operability and functionality of critical  infrastructures4–6. However, an over-the-
horizon problem may result from an adversary that seeks to attack critical infrastructure indirectly by altering the 
consumption behavior of human intermediaries who are influenced by weaponized disinformation distributed 
by the adversary.

Consider the following plausible scenarios that are extended from collections of actual events. An airline 
passenger could tweet an alert about a suspicious package, which, if shared rapidly and widely, could cause sig-
nificant delays in flights and major traffic jams on many primary, secondary, and tertiary roads (similar to what 
was experienced at London’s Gatwick  airport7). Hackers could compromise a major US pipeline network, but 
the rampant spread of misinformation leads to a dramatic escalation in the aftermath and a physical, real-world 
increase in gas prices (similar to what was experienced when a news network spread a false story about a Russian 
hack of the US power  grid8). Finally, false reports of accidents on social media could lead to dynamic rerouting 
of drivers, causing congestion in particular areas subject to attack (similar events have occurred  globally9–11 and 
could worsen with the emergence of autonomous  vehicles12).

To begin to address some of these scenarios, we develop a model to examine the interactions between infor-
mation/disinformation spread, subsequent commodity consumption behavior, and the resulting infrastructure 
network balance. To do so, we integrate an epidemiological model of information/disinformation spread with 
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a network flow model. We relate the two models through human intermediaries who adopt information/disin-
formation that changes the way that they interact with the infrastructure network.

Contributions of our integrated model include: (i) we account for the evolution of disinformation spread 
over time based on the outcomes of virtual interaction between pair of users in social media, ultimately pro-
jecting user behavior onto commodity consumption, (ii) we introduce an information protection mechanism 
to combat against disinformation spread, and (iii) we develop a mixed-integer programming formulation to 
balance the performance of the critical infrastructure network and plan for targeting (good) information to 
counter disinformation.

This paper is organized as follows. The Background and Literature section provides a methodological back-
ground on the concepts of disinformation spread and critical infrastructure network optimization along with 
the associated literature. The subsequent model section explains the proposed integration of epidemiological and 
mathematical programming models. The Case Study section illustrates the proposed model with a case study 
involving the power distribution network in Los Angeles County, California. Finally, the Conclusion section 
offers concluding remarks and future research opportunities.

Background and literature review
Our proposed work relies on two key areas: (i) spread of information and disinformation, and (ii) network flow 
models for infrastructure. In this section, we offer a review of these two areas, detailing some of the current 
research gaps addressed in this paper.

Models of information and disinformation spread. Within social networks, people exchange infor-
mation to ultimately influence others, where influence is defined as an action “to induce a change in the behavior 
of another that is in accordance with the wishes of the influencer”13,14. Each individual communicates with (or 
influences) many other peers and, similarly, individuals are influenced by numerous other peers. This influence 
can take on negative forms, such as information pollution, fake news, propaganda, misinformation, misinforma-
tion, disinformation, and  hoaxes15–17. Social media users can become a source of online broadcast activity that 
affects personal and social behavior. Users may help speed up the transfer rate of information or disinforma-
tion and manipulate the content to match their points of view, deliberately or inadvertently, which may not be 
necessarily verified or verifiable. In such an online environment, if users do not pay enough attention to verified 
content and reliable sources of information, the information they receive may have varying levels of correctness 
and malicious intent.

The community of users can be classified into different categories based on how they respond to the influence 
of others. An analogy to the spread of influence and different categories of response is the spread of disease and 
different states of infection found in epidemiology  literature18. A basic model for the spread of disease is the 
susceptible-infected-recovered (SIR) model, which uses a series of differential equations to describe the mem-
bership of different states at a point in time: those who are susceptible to the disease, those who are infected by 
it, and those who have recovered from it. An analogy can be made for those users reacting to information and 
disinformation. For example, for a group of power utility users who receive a fake message promoting a discount 
price for power usage during a specific time, those users may potentially share it with others or not, based on 
characteristics (e.g., personal traits) they exhibit. Using the SIR convention, individuals who adopt this disin-
formation and react to it directly by consuming more power can be classified as “Infected.” Alternatively, users 
who are not influenced by this disinformation, for any reason, can be classified as “Removed.” And users who 
have not received notification yet can be classified as “Susceptible.” This classification of categories allows us to 
model, quantify, and predict their power usage during disinformation dissemination. There is a rich literature 
that formulates the phenomenon of transition between categorical labels with SIR models that employ a system 
of differential equations based on mean field theory or agent-based models that allow us to simulate the trans-
mission of disinformation among autonomous agents in a flexible microscale  manner19–21.

Social media users are not limited to categories S, I, and R. For example, some groups of users intend to 
spread accurate information to fight against disinformation, or those who have already received disinforma-
tion but do not reshare it with other users, or those who have received disinformation but temporarily do not 
share  it22–24. There may be communities on social media that spread authenticated information to counteract 
 disinformation22,25. Furthermore, users in each category (that is, S, I, and R) can be classified as aware and una-
ware, where it is assumed that unaware users can become aware users based on contact with aware individuals at 
a given rate. Still, it is assumed that the reverse transition will not occur. We define the terminology “awareness” 
as knowledge and understanding that something is happening or  exists26. In addition to the novel categories 
attached to classic SIR models to represent a community, some methods are developed to avoid bias originating 
from discretizing the solutions of SIR  models27.

Several different derivatives of the SIR class of models have been developed to extend the various categories of 
adoption of influence (e.g., information and disinformation)28. Given the link between networks and the spread 
of  diseases29,30, the SIR modeling enterprise has applications in other network-related applications: the spread 
of  ideas31–34 and the influence of social  networks35–39. A related idea  by40 uses a variation of the SIR model to 
address the stifling of rumors. Still, it does not adequately allow for the competitive nature to describe the spread 
of information versus disinformation. It is because disinformation spreads differently than information, as noted 
 in41, with the former spreading faster and covering a large population on  Twitter2. Social responses to disinfor-
mation will be examined by observing (i) how people evaluate information, (ii) how varying situations affect 
people’s ability to evaluate information effectively, and (iii) how people act on information, including redistribut-
ing disinformation. In our context, S refers to individuals who have not yet been exposed to the disinformation 
content, I represents individuals who have heard the disinformation and changed their consumption behavior 
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as a result, and R represents individuals who have heard the disinformation but ignored them after realizing that 
the information they received was not true or accurate.

Models of infrastructure flow optimization. Complex infrastructure systems such as water, gas, trans-
portation, and electricity are crucial for society’s well-being and for promoting economic productivity. If one 
component of the system is affected by failure, larger spread effects can be experienced in other networks of 
infrastructures and networks of community members that suffer from unmet demand for goods and  services42. 
As such, the resilience of critical infrastructure networks attracted researchers to study the ability of systems to 
mitigate the magnitude and duration of the components of the out-of-service infrastructure  network43,44.

Flow balance models are developed to determine how commodities are delivered from suppliers to custom-
ers, so that performance metrics such as average unsupplied demand and transportation costs are minimized, 
while guaranteeing that key operational constraints are observed. By the term “commodity,” we broadly refer 
to flows of demanded entities (e.g., electric power, water, vehicles, data, goods) transmitted from one node to 
another through links connecting them. Several different flow balance optimization models are proposed in the 
literature that are applicable to infrastructures focused on disruptive  events45.

In the literature, there are numerous representations of network optimization of infrastructure networks. 
Hsu et al.46 presented a generalized network flow model to model the long-term supply and demand of water 
resources. Tahiri et al.47 proposed a network flow optimization model for similar water distribution networks, 
minimizing the total cost of meeting the demand for water. Martin et al.48 optimized a gas network consisting of 
a set of compressors and pipes that connect the valves in order to minimize the total cost of the network subject 
to supply-demand balance. Banda et al.49 similarly proposed a gas pipeline network optimization model that 
accounted for nonlinear isothermal equations. Traffic flow optimization problems have also been  proposed50. 
Darayi et al.51 proposed a multicommodity network flow optimization model to understand the criticality of 
different multimodal transportation nodes and links.

Especially important to the case study addressed subsequently are network optimization problems designed 
for electric power networks. Vasin et al.52 proposed a model to optimize the flow of energy resources through 
a transportation network. Costa et al.53 developed a two-stage linear programming model to reinforce power 
grids against attacks on transmission lines, proposing an exact algorithm to solve the model. Leuthold et al.54 
developed a nonlinear mixed-integer programming model to design an electricity market such that public wel-
fare is maximized, with an application to the European electricity market. Wirtz et al.55 proposed a sustainable 
multicommodity system design model with the power grid attached to the system using mixed integer linear 
programming. Electric power networks are critical sources of energy that enable the function of other infra-
structures, and developing flow balance optimization models for electric power grids has become important 
for  researchers56, as have several network flow optimization representations of interdependent infrastructure 
networks that include electric  power57–60.

In this paper, we address the challenge of how to track and respond to disinformation attacks that disrupt 
infrastructure networks. Embedding the evolution of disinformation diffusion intensity over time attached to 
a flow balance optimization model of infrastructure network has two main benefits: (i) we can monitor and 
analyze the performance of infrastructure network disrupted by disinformation attacks over time, and (ii) act 
in opposition to disinformation propagation to mitigate the effect of disruption on the infrastructure network 
performance. To the best of our knowledge, such a model has not been proposed in the literature yet. To address 
this gap, we propose a network flow balance optimization model integrated with disinformation diffusion model 
that enables us to take opposite actions using social media to handle interruptions in infrastructure networks 
caused by disinformation attack.

Proposed integrated epidemiological + optimization (EPO) model
We propose and integrate two models to examine the interactive relationship between disinformation dissemina-
tion and critical infrastructure network performance: (i) the SIR model and (ii) a network flow balance optimi-
zation model. The network balance optimization model is used to balance critical infrastructure systems with 
respect to disinformation propagating on social networks, as the spread of disinformation on social networks 
affects the consumption behavior of social network users. These two networks are integrated in a multi-to-one 
environment from the social network to the critical infrastructure network, where communities of users are 
assigned to the set of infrastructure nodes.

SIR model. We describe the disinformation propagation process in the type of modeling “compartmental 
models” in which the population of social media users is divided into exclusive compartments. In such a formu-
lation, we assign the rates at which the population within one compartment is transferred to another. In general, 
we can classify users into three exclusive compartments over time: (i) S, the proportion of users who are unaware 
of the disinformation and would have acted on it if known, (ii) I, the proportion of users who consumed the dis-
information and changed (acted on the disinformation) their commodity usage schedule, and (iii) R, the propor-
tion of users who were exposed to the disinformation but either ignored or detected it and are not interested in 
sharing it. Dividing the population of each compartment, we can formulate the dynamics of the compartments 
by replacing the size of the population with the proportion of the population.

The rate of transfer from one state to another is expressed as derivatives of the proportion of population in 
terms of time, and we make some assumptions to express the terms of the model. As such, we have a system of 
differential equations that describe how the proportion of people changes across different states over time by 
frequent communication. For example, given a population size N, for an unaware user randomly communicat-
ing with other users, the probability that the unaware user meets a user who adopted disinformation can be 
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expressed by IN  , and the rate of contact can be described as a coefficient of the total population, βN . Assuming 
that meetings between unaware users, S, and users who adopted disinformation result in the unaware user adopt-
ing disinformation, the population of unaware users decreases by βSI , and the population of users who adopted 
disinformation increases by the same size in time slots. Through this transformation process, users who consume 
disinformation have the opportunity to detect or ignore disinformation at a rate γ , with the associated population 
γ I , and are no longer classified as the group that already consumes disinformation. Thus, the population size that 
adds up to ignorant users is expressed as γ I that are removed from users who consume and adopt disinformation.

We can formulate the SIR compartmental models by introducing more compartments such as hesitants, 
who can be the users who have not yet decided to adopt the disinformation or not. Although the introduc-
tion of new compartments can simulate the real-world information transfer process more accurately, tweaking 
the parameters of the basic SIR model results in different transformation evolution paths at a relatively lower 
computational cost. For this reason, the basic SIR model is sufficient to generate different evolutions of users 
who adopted disinformation at a reasonable computational cost. Estimating the proportion of population who 
adopted disinformation results in estimating the evolution of commodity demand changes over time horizon 
of interest in our proposed model.

The evolution of the proportion of these groups over time is modeled on the basis of the homogeneous SIR 
model, which is mathematically represented by the system of differential equations (a.k.a. mean-field equations) 
(1)–(3) subject to constraint (4).

The index i ∈ V  represents the community surrounding node i, and t ∈ T denotes time. Under the assump-
tion of homogeneity, users are equally likely to interact with other users. Also, we assumed that no users leave 
their interactions (e.g., leave social media) during the time of analysis. Therefore, the sum of proportions of the 
three categories remains constant and equals 1.

The user status can change from one state to another over time. A susceptible (unaware) user encounters 
an infected (disinformed) user that is infected at a rate β , and a user can move from state I to R by detecting 
disinformation at a rate γ . That is, in essence, β governs the rate at which disinformation spreads, and γ governs 
the rate at which disinformed users recover their behavior. Our approach is motivated by interactions on social 
 networks61. However, since the parameters of the model, γ and β , govern the rate at which disinformation spreads, 
other means of social interaction (e.g., TV, radio, web forums) can be taken into account with appropriate rate 
parameter settings.

There are several ways to solve our system of equations such as the Euler and Runge-Kutta (RK) methods and 
their  derivatives62. Each method has advantages and disadvantages in terms of accuracy order and computational 
cost. The SIR model that we have deployed in our analysis is a non-linear model that needs to be solved numeri-
cally by multi-stage algorithms to return the estimates with reasonable accuracy. The forward Euler method is 
a special case of the RK method, so it solves our problem with relatively low accuracy. At the expense of com-
putational cost, we found the RK algorithm suitable for solving our nonlinear system in terms of  accuracy63,64.

Network flow balance optimization model. 
Mathematical programming has proven to be an efficient approach to model and optimize engineered systems 
and  processes65,66. Network flow balance optimization can be formulated into a mathematical programming 
model. There are different ways to formulate network flow optimization problems, however, some formulations 
are more efficient to solve in terms of  complexity67. Mathematical programming problems are classified based 
on the type of decision variables, constraints, and objective functions used in the model. To reduce the computa-
tion costs of highly complex problems, there exist some reformulations, which help optimization algorithms to 
iterate relatively faster or converge to optimal solutions with relatively lower iterations. Among these models, 
linear programming models are polynomially solvable, while integer and mixed-integer programming models 
(e.g., the models with integer decision variables) are mostly computationally more expensive to  solve68. Thus, 
modeling a problem in linear format is much better in terms of computational complexity. If integer variables 
need to be included in the model, there are reformulation techniques to convert or divide the models to smaller 
problems to be solved faster. We formulated the network flow balance optimization problem efficiently and as 
simple as possible to include a relatively low number of integer decision variables. As a result, we could solve 
the model iteratively in a reasonable amount of time to compare the results of the optimization problem with 
respect to different values of model parameters.

We model the infrastructure network as a graph G(V, E), where the set of nodes, V, represents the nodes 
incorporating demand, supply, and transmission nodes. The set of links, E, represents the links that connect 
the nodes. There is a link between the nodes if there is a transmission line to transmit the commodity. With the 

(1)
dSi,t

dt
= −βSi,t Ii,t , ∀i ∈ V , ∀t ∈ T ,

(2)
dIi,t

dt
= βSi,t Ii,t − γ Ii,t , ∀i ∈ V , ∀t ∈ T ,

(3)
dRi,t

dt
= γ Ii,t , ∀i ∈ V , ∀t ∈ T ,

(4)Si,t + Ii,t + Ri,t = 1, ∀i ∈ V , ∀t ∈ T .
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notation found in Table 1, the following is a mixed integer programming (MIP) model to protect the performance 
of the critical infrastructure network against disinformation dissemination.

Equation (5) is the objective function that minimizes the total amount of commodity shortage resulting from 
altered consumption behavior over time. Constraint (6) guarantees the balance of the input, output, produced 
and consumed of the commodity for all nodes. The balance equations are implicitly borrowed from the model 
proposed by Tang et al.69. Constraint (7) limits the capacity of the links. Constraint (8) represents the baseline 
and responsive demand in terms of the number of users targeted for disinformation given the elasticity of the 
commodity demand with respect to exogenous factors (e.g., discount price message). Constraint (9) is used 
to account for the counter- spread of good information as a strategy to control disinformation dissemination. 

(5)min
x,h,e,d,I ,g

∑

i∈V , t∈T

hit

(6)

s.t.
∑

j∈V :(j,i)∈E

xjit −
∑

k∈V :(i,k)∈E

xikt + hit − eit + qit − dit = 0, ∀i ∈ V , ∀t ∈ T ,

(7)xijt ≤ mijt , ∀i ∈ V , ∀j ∈ V , ∀t ∈ T ,

(8)dit = pitd
c
it

{

(1− Iit)+ {Iit [r
p
it(1+ ρit)+ (1− r

p
it)]}

}

, ∀i ∈ V , ∀t ∈ T ,

(9)Ii,t+t̄t = Iit + İi,t+t̄t (1− rit git), ∀i ∈ V \ {| V |},∀t ∈ T ,

(10)
∑

i∈V

git ≤ n
p
t , ∀t ∈ T ,

(11)xijt , hit , eit ∈ R≥0, dit , Iit ∈ R≥0, git ∈ {0, 1}.

Table 1.  Model notation.

Notation Description

Sets

V Set of infrastructure network nodes

E Set of infrastructure network links

T Set of periods

Parameters

t̄t Duration of each period starting from time t to the beginning of its next period

qit The amount of supply in node i ∈ V  at time t ∈ T

mijt Capacity of link from node i to node j at time t ∈ T

pit Community size surrounding the node i at time t ∈ T

dcit Commodity consumption per capita by the community surrounding the node i at time t ∈ T

r
p
it

Proportion of commodity consumption of the community surrounding the node i ∈ V  at time t ∈ T responsive to 
price shift

ρit
Estimated sensitivity of commodity consumption of the community surrounding the node i ∈ V  at time t ∈ T based 
on the price shift

İit
Local derivative (change per unit of time interval t̄t ) of the proportion of community surrounding node i ∈ V  tar-
geted by disinformation at time t ∈ T

rit
The proportion at which İi,t can be changed by spreading counter (good) information for the community surrounding 
the node i ∈ V  at time t ∈ T

n
p
t Total number of target locations informed by counter (good) information at time t ∈ T

Decision variables

xijt The amount of transmitted commodity (flow) from node i ∈ V  to node j ∈ V  at time t ∈ T

hit Shortage (undersupplied) amount of commodity at node i ∈ V  at time t ∈ T

eit Excess (oversupplied) amount of commodity at node i ∈ V  at time t ∈ T

dit Nominal demand of commodity in node i ∈ V  at time t ∈ T

Iit Proportion of community surrounding node i ∈ V  at time t ∈ T adopted disinformation

git
=1 if counter (good) information is released for the surrounding community in node i ∈ V  at time t ∈ T ; =0 other-
wise
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Constraint (10) limits the number of nodes to focus information countering strategies. The last set of constraints 
(11) describes the nature of the decision variables.

Solutions to this optimization problem can guide decisions to mitigate an commodity shortage based on 
disinformation, namely: (i) the amount of commodity flow that should be transmitted through the links, (ii) 
the optimal shortage or excess in each node, and (iii) the optimal number and location of our communities 
(surrounding particular nodes) to spread counter information to prevent the adverse effects of disinformation 
campaigns.

Note that a node cannot experience a shortage and excess simultaneously at the node level. We assume that 
social media users react to disinformation logically. For example, once a false price discount disinformation is 
broadcast, social network users consume more commodity relative to their baseline usage.

Case study: performance of the electric power network under disinformation attack
An electric power system is a network of electrical nodes, such as power plants, transformers, or demand points, 
connected by links that represent transmission lines, cables, or transformers. In such networks, the nodes repre-
sent the equipment of the power system and the links are the pathways for the transmission of electrical energies. 
The electrical energies that are transmitted are called power flows. Electrical power networks are used to satisfy 
the needs of load nodes (demand nodes) anywhere in the network by transferring the electric power produced 
by generators (supply nodes) through the links in the network. Each link can carry the maximum commodity 
through the network, called the flow capacity. Therefore, flow transmissions are limited due to flow capacities in 
the network. Since the flow capacities are finite in power systems, the problem of transferring the flows to satisfy 
the demand nodes is a vital network optimization problem that needs to be studied.

To balance the electric power system, several different models and methods are proposed in the literature, 
such as mathematical optimization and machine  learning70. For example, Nasrolahpour et al.71 developed a 
mixed-integer programming model to alleviate electric power congestion in transmission lines to ultimately 
minimize the electric power shortage and total cost. Clack et al.72 developed a linear programming model for 
electric power balance given its engineering requirements. In the models mentioned above, the common con-
straint of concern for the authors was a system-wide constraint to guarantee the balance between supply and 
demand nodes over the network. Also, to obtain realistic solutions to the model, the capacity of the transmission 
line is specified before optimizing the model. We utilize similar constraints from the literature and include a 
mechanism to counter disinformation dissemination to defend the spread of disinformation.

In recent years, a handful of papers have begun to address the potential for disinformation to affect com-
modity consumption. Nguyen et al.73 developed a vulnerability assessment model to mitigate the adverse effects 
of disinformation on load shedding. Tang et al.69 developed an optimization model to minimize total load 
shedding in a power network under the condition that users react to price disinformation, relating those reac-
tions to user personality traits. Raman et al.6 developed an attacker-defender optimization model to mitigate 
strategic urban power distribution system attacks based on price disinformation (e.g., falsely offering prizes 
for rescheduled power usage) propagated through the community based on the “Believe, Accept, and Follow 
Through” mechanism.

Among all critical infrastructures, the electric power grid has been attractive to scholars for several reasons: 
(1) the electric power grid has been at great risk of attack and threats  tremendously74; (2) electric power grid has 
been relatively more expensive than other  infrastructures75; (3) the electric grid is one of the most vital infra-
structure during disasters (e.g., Hurricane Sandy in New York) since it is an indirect critical source of commodity 
for other vital  sectors56. For these reasons, the analysis of the performance of power grids under dissemination 
of disinformation has attracted the most attention.

Although we offer a general modeling approach that can be manipulated for a variety of critical infrastruc-
tures, our case study is motivated by the electric power grid. Disruptions to power distribution systems can 
result in substantial economic and social  costs76. Due to various social factors (e.g., human mistakes, irration-
ality, intentional gaming, malicious attacks), the electric power grid may become more vulnerable to various 
kinds of cyber and physical activities when social information becomes tightly integrated into its operation. 
For example, a coordinated attack could cause a significant impact, such as that experienced in the Ukrainian 
power grid in  201577.

Electric power utilities are increasingly taking advantage of demand response programs to reduce or shift 
electricity usage during peak periods in response to time-based rates or other forms of financial incentives to 
 customers69,78. Such demand response programs will be important in the future  grid79,80. Demand response 
messaging has been primarily textual, coming from text messages, emails, or other social media  messages6,81. 
Naturally, these messages affect human consumption behavior and are used to run an efficient electrical power 
grid system. Unfortunately, this valuable and effective mechanism could also be used to spread disinformation, 
thus creating a weapon to create a harmful effect - disrupting the power system. Imagine a Tweet being spread by 
a realistic but fake Twitter account. A discount price is offered to those whose power usage exceeds their average 
daily use by 30% during summer afternoons. As more and more customers (even those who are not the creators 
of the disinformation) spread this disinformation and subsequently adopt its message, blackouts will occur more 
likely due to overloads in the system, along with broader spread impacts to public health and safety. If a threshold 
of users in a particular geographical location adopts disinformation, a disruption in the power network will occur.

Determining the parameters of the model. The proportion of social media users who may adopt dis-
information is found in the SIR model as the proportion of users that make up the group S.

To evaluate the relationship between this spread of disinformation and the demand for electricity, we must 
also estimate the change in the demand for electricity driven by users whose consumption changed based on 
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disinformation. The elasticity of the use of electric power measures the responsiveness of the electric power 
demanded to a change in price. Data from the US state level show that the estimated residential price elasticity of 
electric power demand is −0.7, suggesting that residential electricity consumption is inelastic to price  changes82,83. 
A well-known formula, the midpoint method, used to compute the elasticity of electric power demand is found 
in Eq. (12), where pri,t represents the price of the electric power utility at node i ∈ V  at time t ∈ T . As a result, 
the parameter ρi,t estimates the proportional change in electric power usage around node i ∈ V  at time t ∈ T 
based on a false discount price message.

Disinformation messages can take different forms to affect electricity use, such as fake weather conditions, 
fake availability, false prices of alternative sources of electricity (e.g., coal, oil, renewable sources), and false 
announcements that describe the general economic situation. Such factors have been shown to significantly 
influence electric power  consumption84,85 with different effects depending on geography and spatiotemporal 
 aggregation82,83.

The management of loads in electric power systems is highly dependent on the retail price and sales of 
electricity. Broadcasting false price discount signals on social networks results in increased electricity use by a 
large number of consumers at once, which may eventually lead to overload or blackout at the node or system 
level. However, when users who choose to adopt the false pricing message receive it, not all electrical power 
usage changes accordingly. That is, not all electric power usage is responsive to price changes. For example, price 
changes might affect a more variable usage appliance (e.g., air conditioner usage may increase) relative to one 
that is not as variable (e.g., a refrigerator will use the same amount of electricity regardless). Based on the US 
Energy Information Administration, we assume that 92% of electricity use is responsive to price changes and 
the rest is consumed to meet basic needs of  life86. Therefore, we assume that a false discount price message can 
only affect 92% of electricity usage.

Additionally, not everyone has the ability to receive disinformation messages on social networks. The reports 
reveal that 82% of the US population were social media users in  202187. Therefore, we assumed that in each popu-
lation surrounding electric power buses, only 82% people have access to social media directly and are susceptible 
to receiving the disinformation message. Among these communities, not all residents are sensitive to disinforma-
tion about the change in electric price, as not all family members are responsible for household decisions. It is 
shown that the composition of the home is an influential factor in determining electricity  consumption88. Thus, 
we adjust the community pit accordingly to incorporate the effective proportion of the population who may be 
more responsible for household decisions and who may be more at risk of adopting disinformation.

In summary, we assumed that a fake discount price message can affect 82% of users, and among the total 
electricity usage they consume, only 92% of their usage may change based on the disinformation they receive 
(if they adopt the disinformation). As a result, the demand per capita, dci,t , is modified in the model accordingly.

Designers of electric power transmission systems should ensure that the system can operate normally under 
unanticipated loads. The safety factor is used to tolerate the system to meet unexpected loads and avoid waste 
of energy resources. Furthermore, the safety factor of electric power transmission systems is a measure of trans-
mission line reliability that accounts for the possibility of overloaded electric power flow through transmission 
lines. Due to the lack of data, we use a primary Linear Programming (LP) model with no specified capacity to 
estimate the capacity of the transmission lines. Assuming that the power distribution lines operate optimally, 
we take 0.2 ( ±20% ) as a proportion of the allowed volatility of the power flow in the transmission lines. We set 
the estimated values as the capacity of the transmission lines.

The model we proposed to estimate the capacity of transmission lines is as the following LP problem in Eqs. 
(13)–(16), where d̄i,t is the nominal demand of the population assigned to the bus i at time t.

Numerical results. We applied the proposed model to evaluate the effect of disinformation on electric 
power distribution systems. The electric power nodes supply the electricity to its surrounding community. We 
overlay the geospatial population data with the topology of the power network to establish the boundary of the 
model. We use the US Census Application Programming Interface (API) to collect geospatial population data 
surrounding each electrical power  node89. The American Community Survey (ACS) provides population data, 
for use in the model. In addition, we spatially clipped power nodes and links (that is, we generated a shapefile 
based on spreadsheet data provided by the synthetic power grid data  set90) that intersected with Los Angeles 
(LA) County block groups and overlaid it with LA County population data. Approximately 1600 people live in 
each block group in LA County.

(12)ρi,t =
di,t+1 − di,t

pri,t+1 − pri,t
×

pri,t+1 + pri,t

di,t+1 + di,t

(13)min.
x,h,e

∑

i∈V , t∈T

hit

(14)s.t.

(15)
∑

j∈V :(j,i)∈E

xjit −
∑

k∈V :(i,k)∈E

xikt + hit − eit + qit − d̄it = 0, ∀i ∈ V , ∀t ∈ T

(16)xijt , hit , eit ∈ R≥0.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12707  | https://doi.org/10.1038/s41598-022-16832-w

www.nature.com/scientificreports/

For homeland security purposes, the actual topology of the power grid is not publicly available. However, 
the information on topology, demand and supply is estimated using network imitating method based on learn-
ing (NIMBLE)91, resulting in a publicly accessible synthetic power grid data set for the western interconnection 
grid of the United  States90. We limited the boundaries of this larger power distribution system to LA County in 
California. It incorporates more than 500 power buses (nodes) and 600 transmission lines (links), the geospatial 
dispersion of which is shown in Fig. 1.

Although studying the effect of disinformation evolution on critical infrastructures at the micro-level makes 
more sense, highly detailed information is not publicly available. For example, while studying the evolution of 
disinformation integrated with low-voltage electric power systems may be more desired, we may be more able 
to estimate parameters of high-voltage electric power systems across a relatively larger geographical area (e.g., 
the treatment of the impacts of disinformation on a high-voltage network  by92).

A portion of commodity consumers are assumed to be users of social networks. We relate consumer products 
to spatially defined block groups, defined as a statistical division of US Census tracts that consists of clusters 
of blocks that generally contain 600 to 3000 residents of the contiguous  area93, and each group of consumers is 
linked to the nodes explained.

To relate social media users to electric power buses, we performed geospatial operations for these two fea-
tures. First, we defined two sets that incorporate electric power buses and aggregated social media users. Electric 
power buses and social networks are geographically represented by points and polygonal features, respectively. 
Social media users live in census block groups, defined as a statistical division of US Census tracts that consists 
of clusters of blocks that generally contain 600 to 3000 residents of the contiguous  area93. Then we calculated the 
Euclidean distance matrix between the electrical power buses and the centroid of polygons. As a result, block 
groups are assigned to one power bus according to their shortest Euclidean distance, and several block groups 
are mapped to electric power buses and are characterized by estimates of power usage. As such, SIR models are 
deployed for each social media user within each block group.

Electric power demand
(MWh) (in millions)

0 - 54

54 - 168

168 - 314

314 - 1220

1220 - 9769

Popula on
0 - 917

917 - 1226

1226 - 1593

1593 - 2123

2123 - 12100

OpenStreetMap

Figure 1.  Distribution of electric power demand and population, LA County, USA.
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Based on the estimated usage of social networks in  202187, it is assumed that 82% of the population in each 
block group have active access to social networks, so they are potentially susceptible to being targeted by disin-
formation. To run the disinformation propagation model, we considered 1% population being targeted by disin-
formation at the beginning of the analysis time period. As time goes on, the proportion of susceptible, infected 
(targeted) and recovered users changes according to the contact rate, the rate of being targeted by disinformation, 
and the rate of being aware of disinformation.

The topology of the power distribution network and the community layer are integrated as a one-to-many 
setting such that many block groups are assigned to one and only one power bus based on their shortest Euclidean 
distance to the set of power bus candidates. In other words, the population in block groups is clustered such that 
the locations of power buses are set as the mean of population clusters.

We interpret the parameters β and γ as the rate of disinformation degree of interest and the rate of aware-
ness, respectively. A higher value of β results in a higher number of people targeted by disinformation per time 
period. The higher the value of γ , the larger the number of people who become aware of disinformation after 
being targeted per time period. We analyzed the sensitivity of the solutions for different values of β and γ , as 
shown in Fig. 2. In these graphs, the ideal condition for β and γ is in the upper left corner of the figures, where 
the rate of degree of interest takes on the lowest value and the awareness rate is set to its highest value. On the 
other hand, the worst case is where β is relatively higher and γ is relatively lower, which is located in the lower 
right corner of the figures. We ran the model with respect to several different instances of the values β and γ to 
analyze the sensitivity of the total shortage, the total number of communities targeted by counter information, 
the total flow, and the total infected communities. The results are normalized to show the percentage of differ-
ence in the resulting values.

To measure the potential spread of disinformation between social media users, the basic reproduction number 
( R0

i =
β
γ

 ) is used. It reveals the expected number of secondary susceptible users that a targeted user can affect 
with disinformation. For example, given R0

i = 20 , each newly targeted user is expected to affect 20 secondary 
users within the community i, assuming that all other users contacted are susceptible. To eliminate disinforma-
tion or decrease the number of targeted users, the basic reproduction number should satisfy R0

i < 1 , otherwise 

)%(egatrohsegarevA)b()%(seitinummocdetcefniegarevA)a( )%(egatrohsegarevAvv)b()%(seitinummocdetcefeniegarevAvv)a(

)%(stegratnoitamrofniretnuocegarevA)d()%(woflegarevA)c(

Figure 2.  The results of (a) average infected communities, (b) average shortage, (c) average flows, and (d) 
average counter information targets with different combinations of β and γ as percentage of the baseline value.
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disinformation spreads over the network over time ( R0
i > 1 ), or the number of targeted users remains constant 

over time ( R0
i = 1 ). These concepts help to understand the situations in which the numerical results are analyzed.

We use the differential equation  package94 in Julia programming language to solve the SIR model. We used 
the mathematical optimization modeling language  JuMP95 to codify our optimization problem in Julia with the 
optimizer,  CPLEX96, attached to it. Also, we generated the map in Fig. 1 using QGIS Version 3.24.397.

Based on the assumptions discussed previously, we run the model several times to evaluate decisions in dif-
ferent situations of spreading disinformation. The values of the parameters we used to run the model are listed 
in Table 2, and the results with different combinations of β and γ are plotted in Fig. 2. As a validation exercise, we 
optimize the model for different values of disinformation adoption and detection rate based on Raman et al.80, 
who conducted a survey with more than 5000 participants to assess the proportion of people who are expected 
to adopt and spread disinformation about electricity prices through social networks. They evaluated different 
scenarios and mapping functions (i.e., linear, quadratic, cubic) to simulate disinformation spread. For simplicity, 
we adopted the midpoints of the simulated follow-through rates across the mapping functions and performed 
sensitivity analysis to illustrate the response of the metrics to different scenarios of disinformation propagation 
in the range. We sampled some notable instances of β and γ combinations (that is, marked by square, circle, 
diamond, and star shapes) to analyze the evolution of the corresponding metrics over time plotted in Fig. 3.

Figure 2a represents the percentage of infected users in the network with respect to the governing rate of 
degree of interest in disinformation ( β ) and awareness ( γ ). Note that there are some empty spots in this figure 
(and the rest of the figures) as the SIR model is infeasible for some parameter values. The average number of 
infected users decreases as the awareness rate increases, although the degree of interest rate is sufficiently high in 

Table 2.  Parameter values.

Parameters ρi,t r
p
i,t ri,t n

p
t t̄t Horizon

Values −0.7 0.92 0.2 10 24 169

egatrohsegarevA)b(seitinummocdetcefniegarevA)a(

stegratnoitamrofniretnuocegarevA)d(woflegarevA)c(

Figure 3.  Time series of (a) average infected communities, (b) average shortage, (c) average flow, and (d) 
average counter information targets, with different combinations of β and γ . Note the relationship to particular 
points in Fig. 2 denoted by shape.
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most regions. For the lower awareness rate, there is more potential to have infected communities, and it increases 
further for higher degree of disinformation of interest.

Figure 2b shows the average network shortage with respect to the governing rate of degree of interest and 
awareness of disinformation. The average shortage increases as the degree of disinformation interest rate increases 
for a fixed awareness rate. On the other hand, for a higher awareness rate, the average shortage is lower while the 
degree of disinformation of interest level is fixed. This trend makes intuitive sense, as we saw in Fig. 2a that the 
average infected communities decrease with higher levels of awareness, and this means that demand increases 
less caused by disinformation and, therefore, the average shortage is reduced. The effect of the degree of interest 
in disinformation is greater than the awareness rate, as it always causes a shortage through the network.

Figure 2c represents the average flow in the network with respect to the governing rate of degree of interest 
and awareness of disinformation. There is a clear limit in the graph where these two rates are equal ( R0

i = 1 or 
β=γ ). On the lower rectangle of values, where R0

i > 1 , the basic reproduction number is high enough to allow 
disinformation to spread over the network in time, and on the upper rectangle of values, where R0

i < 1 , disinfor-
mation has the potential to be eliminated. For the awareness rate above this bound, the average flow is higher in 
the network, whereas for the region below the bound, we can see much less flow in the network. This is a natural 
result, as we see that, based on Fig. 2b, the average shortage is lower with greater awareness in the community, 
and this means that the network can meet demand effectively. In other words, as the average infected communi-
ties decreases for a higher awareness rate based on Fig. 2a, the network has more potential to satisfy demands 
through actual links by transmitting flows.

Figure 2d represents the average number of targeted nodes for counter (good) information with respect to 
the governing rate of degree of interest and awareness of disinformation. There is a clear limit in the graph where 
these two rates are equal ( R0

i = 1 or β=γ ). For the awareness rate above this bound, the average target counter 
information is low and not more than 20%. This suggests that if users are at least as aware as the disinformation 
attracts them, then we can rely less on identifying individuals with whom to supply counter information. This 
result is in agreement with Fig. 2a and b, as with the higher level of awareness, we have fewer infected communi-
ties and also less shortage, which means that less information is needed as a counter mechanism. Furthermore, 
there are no considerable network shortages that are problematic in this situation. For the lower awareness rate 
and the higher degree of interest in disinformation, where R0

i > 1 , the model tries to engage more users with 
counter information, as shown in Fig. 2d.

We compared the evolution of the metrics discussed over time based on a sample combination of values of 
β and γ . We sampled two instances for R0 > 1 , one for R0 < 1 , and another for R0 = 1 . We use a normalizing 
constant, δ , as the units of demands and flows of electric power to interpret the output time series plots. With the 
time series output plots found in Fig. 3a and b, one would expect similar time series for the average infected com-
munities and the average shortage, because an increase in the number of electric power users results in a more 
substantial power shortage. Figure 3c shows that despite a relatively higher peak of electric power use for R0 > 1 , 
power demands remain unsatisfied as the average flow remains low relative to scenarios R0 < 1 and R0 = 1 . Simi-
larly, the average flow over time remains relatively low for R0 > 1 , which means that the network capacity has 
not been used sufficiently to satisfy the demands in the corresponding scenario of disinformation propagation. 
This interpretation is also clear from Fig. 3a, since the proportion of communities that adopted disinformation is 
relatively higher than in two other cases. We also observe that flows fluctuate relatively more in scenarios where 
R0 ≤ 1 is average, that is, the use of the network capacity contributed to the satisfaction of demand with a lower 
spread of disinformation. As Fig. 3d reveals, with a higher intensity of peak demand, we do not necessarily need 
to target more locations to diffuse counter information. Instead, the duration of disinformation propagation plays 
a crucial role in selecting the number of communities that become aware of disinformation.

Concluding remarks
The proposed model aims to analyze the adverse effect of disinformation on electric power networks by integrat-
ing (i) an epidemiological SIR model to characterize the spread of disinformation in the communities surround-
ing electric power nodes and (ii) an electric power network optimization model focusing on minimization of the 
electric power shortage. In particular, we try to mitigate the effects of disinformation by identifying vulnerable 
power nodes and countering disinformation spread by targeting particular communities with the spread of 
(good) information. To illustrate the proposed model, we solved a large-scale electric power network problem 
associated with Los Angeles County, California.

The evaluation of the results of our proposed model reveals how adversaries can interrupt the performance of 
critical infrastructures to deliver commodities to customers. In addition, we show how the intensity and duration 
of disinformation diffusion can be monitored to manage infrastructure performance and make communities 
counter the disinformation. The proposed model opens up a new space for studying the effect of disinformation 
diffusion in other infrastructures and managing their performance under a disinformation attack. By applying 
our proposed model to the large-scale electric power network, under several different scenarios of disinformation 
diffusion throughout Los Angeles County, we showed how our model can be applied to control the propagation 
of disinformation projected on the performance of infrastructures.

Due to its criticality, the electric power distribution network is used to illustrate the proposed methodology. 
However, the proposed integration of epidemiological and network flow models is generally applicable to a wide 
range of infrastructure networks with appropriate changes to the physical infrastructure flow model (e.g., physi-
cal laws that restrict the flow in gas pipelines, user behavior that affects traffic flow in a transportation network).

A primary limitation of this model is the boundary we need to draw to select an electric power distribu-
tion network to ensure a timely solution to the optimization problem. However, electric power networks are 
not isolated, as they interact with each other to mitigate shortages in different stations. With the evolution of 
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computation technology, this model can be applicable and tested on larger-scale networks. Moreover, the pro-
posed model is useful to study the effects of disinformation in other types of critical infrastructure networks, 
including water and gas, among others, with appropriate physical representations governing the optimization 
model. Future work includes applying the proposed model to other critical infrastructure networks such as 
gas distribution systems, nuclear power plants, water distribution systems, etc. To extend the disinformation 
compartmental model, novel and flexible models (such as agent-based models) can be developed and integrated 
with the proposed optimization model. Moreover, some parameters used in this article are evaluated by sensitiv-
ity analysis or borrowed from previous studies or reports available online. In the future, studies will include a 
broader range of analysis on the fixed parameters applied to our proposed method. For example, since consump-
tion may not vary linearly in different price ranges during disinformation spread, future work can consider the 
responsiveness of consumption behavior.

Data availability
The datasets generated and/or analyzed during the current study are available in the Github repository https:// 
github. com/ jamal zadeh 1400/ OU_ disin forma tion/ tree/ cc6e0 1365e 3159c 7d7e7 b5b1b 65ac1 706e3 7b04f.
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