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THE BIGGER PICTURE This article is about artificial intelligence (AI) used to inform high-stakes decisions,
such as those arising in legal, healthcare, or military contexts. Users must have an understanding of the ca-
pabilities and limitations of an AI systemwhenmaking high-stakes decisions. Usually this requires the user to
interact with the system and learn over time how it behaves in different circumstances.We propose that long-
term interaction would not be necessary for an AI system with the properties of interpretability and uncer-
tainty awareness. Interpretability makes clear what the system ‘‘knows’’ while uncertainty awareness reveals
what the system does not ‘‘know.’’ This allows the user to rapidly calibrate their trust in the system’s outputs,
spotting flaws in its reasoning or seeing when it is unsure. We illustrate these concepts in the context of a
military coalition operation, where decision makers may be using AI systems with which they are unfamiliar
and which are operating in rapidly changing environments. We review current research in these areas,
considering both technical and human factors challenges, and propose a framework for future work based
on Lasswell’s communication model.

Concept: Basic principles of a new
data science output observed and reported
Artificial intelligence (AI) systems hold great promise as decision-support tools, but we must be able to iden-
tify and understand their inevitable mistakes if they are to fulfill this potential. This is particularly true in do-
mains where the decisions are high-stakes, such as law, medicine, and the military. In this Perspective, we
describe the particular challenges for AI decision support posed in military coalition operations. These
include having to deal with limited, low-quality data, which inevitably compromises AI performance. We sug-
gest that these problems can be mitigated by taking steps that allow rapid trust calibration so that decision
makers understand the AI system’s limitations and likely failures and can calibrate their trust in its outputs
appropriately. We propose that AI services can achieve this by being both interpretable and uncertainty-
aware. Creating such AI systems poses various technical and human factors challenges. We review these
challenges and recommend directions for future research.
Introduction
The promise of artificial intelligence (AI) systems to analyze and

rapidly extract insights from large amounts of data have stimu-

lated interest in applying AI to problems in complex domains

involving high-stakes decision making.1–3 In such domains, hu-

man experts are relied upon to form a final decision supported

by the outputs of the AI, forming a human-AI team. Several

studies have shown that the performance of such teams can

be greater than the performance of the human or the AI alone,4,5
This is an open access article und
suggesting that each member of the team is able to compensate

for the other’s weaknesses. For this to happen, the human must

build an adequate mental model of the AI and its capabilities.

Failing to build a suitable mental model will result in the human

miscalibrating their level of trust in the AI, and the human-AI

team will perform poorly.

In this Perspective, we argue that AI systems can help human

team-mates build suitable mental models by giving explanations

of how their outputs were arrived at (providing interpretability)
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Table 1. Glossary of Terms, Defined in Relation to Human-AI Teams

AI artificial intelligence: the property of a computer or machine to display ‘‘intelligent’’ behavior more usually associated

with humans or non-human animals, and the methods and technologies used to achieve this. In this article we focus

largely on AI using machine learning to support human decision making

AI service a stand-alone piece of software implementing a single AI functionality, e.g., IBM Watson Visual Recognition

(https://cloud.ibm.com/catalog/services/visual-recognition, accessed April 28, 2020)

AI system a system composed of one or more AI services. Each service in the system may be owned or operated by a different

organization or coalition partner. Where unambiguous, we refer simply to ‘‘an AI’’ to mean an AI system

Trust level the extent to which the human believes the AI’s outputs are correct/useful for achieving their current goals in the

current situation. While trust is a very broad and nuanced topic,12–14 we restrict ourselves to this narrower definition

to help focus our discussion

Trustworthiness the degree to which the AI warrants trust from the human

Trust calibration the process through which the human sets their trust level appropriately to the AI’s trustworthiness

Interpretable a property of the AI system that allows a human to understand the reasons for the system’s output

Explanation information provided by the AI system to the human that provides reasoning around why the system produced a

specific output

Aleatoric uncertainty uncertainty caused by inherent unpredictability in the system (e.g., the outcome of a coin toss or dice roll)

Epistemic uncertainty uncertainty caused by a lack of knowledge, reducible by observing more data

Adapted from H€ullermeier and Waegeman,15 Lee and See,16 Nilsson,17 and Tomsett et al.18
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and estimates of the uncertainty in their outputs. These two fac-

tors help the human to understand both what the AI ‘‘knows’’ and

what the AI does not ‘‘know.’’ These requirements are motivated

by the scenario of AI-supported decisionmaking in futuremilitary

coalition operations.6 Here, we describe the coalition setting and

how AI systems may be deployed in this setting to support hu-

man decision making. We use this to motivate our proposed re-

quirements of interpretability and uncertainty awareness for

robust AI-supported decision making. We discuss the technical

challenges and human factors challenges posed by these re-

quirements, and highlight promising recent work toward solving

these problems.
AI in Coalition Operations
The context of our AI research is the Distributed Analytics and

Information Science International Technology Alliance (DAIS-

ITA) (https://dais-ita.org/), which takes future military coalition

operations as the motivating setting. Coalitions may be

formed quickly to respond to rapidly changing threats, and

operations will be conducted jointly across five domains

(land, sea, air, space, and cyber),7 presenting a complex

and highly dynamic environment for military decision makers

to understand. To help make sense of the ongoing situation

in a coalition operation, militaries will increasingly rely on AI

technologies to obtain insights that can assist human decision

makers.8–10

The envisaged scenario poses several challenges for current

AI techniques.11

1. Although large amounts of data may be collected during

rapidly evolving operations, there will not be enough time

or resources to clean and label all of these data for (re)

training models.

2. During the course of an operation the situation may

change dramatically, meaning that data will not be gener-

ated from a static distribution but will drift over time.
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3. Adversaries may attempt to manipulate data to confuse

the coalition’s AI systems and, thereby, the decision

makers.

4. Due to the operational environment the network support-

ing the coalition may be slow and unreliable, meaning

that access to large, central computing power is not guar-

anteed. AI services will therefore be distributed over low-

power devices at the edge of the network, communicating

peer-to-peer. The set of services available to an analyst at

any given time will change based on their physical loca-

tion, the network state, and dynamic prioritization of tasks

across the network.

The first three points are about the nature of the data: only

small amounts of data will be available for retraining during the

course of the operation, and these data may be unreliable. The

AI services will therefore be operating on out-of-distribution

data, where guarantees cannot be made about their perfor-

mance. The final point means that human analysts will be inter-

acting with a variety of AI services with which they may be unfa-

miliar. The rapid formation and dynamic nature of the coalition

operation may not allow humans to build up experience of the

specific AI services through training prior to, or repeated use dur-

ing, the operation. These four factors will adversely affect the

overall performance of the human-AI team without mitigations

to improve trust calibration.

In the next sectionwe describe the concept of trust calibration,

how this affects human-AI team performance, and how it could

be improved by developing interpretable and uncertainty-aware

AI systems. We provide definitions of these and related terms

(including our usage of ‘‘AI’’) in Table 1.

Results
Rapid Trust Calibration for Robust Human-AI Team

Decision Making

To obtain the greatest benefit from using decision-support AI,

the human must have an appropriately calibrated level of trust

https://dais-ita.org/
https://cloud.ibm.com/catalog/services/visual-recognition
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in the system.16,19 Trust is well calibrated when the human sets

their trust level appropriately to the AI’s capabilities, accepting

the output of a competent systembut employing other resources

or their own expertise to compensate for AI errors; conversely,

poorly calibrated trust reduces team performance because the

human trusts erroneous AI outputs or does not accept correct

ones.16,20 Bansal et al.21 formalize this by measuring how well

humans learn and respond to the AI’s error boundary (the bound-

ary separating inputs that are correctly classified versus those

that cause the AI to make mistakes). However, AI systems

dealing with high-dimensional data and/or many classes will

have error boundaries that are hardly self-explanatory. In the

coalition setting, the human may not have the opportunity to

learn the error boundary: the AI services they use may differ

from those they have been trained to use (e.g., if they belong

to other coalition partners), and operate on data that differs

from the training data, resulting in unpredictable error bound-

aries. When every decision is high-stakes, the human must be

able to calibrate their trust in the AI quickly and adjust their trust

level on a case-by-case basis. We refer to this process as rapid

trust calibration.

Rapid trust calibration can be posed as a problem of commu-

nication: the AI system must quickly communicate its abilities

and limitations to the user. We therefore follow van der Bles

et al.22 in suggesting turning to Lasswell’s23 model of communi-

cation to inform what facets of AI to human communication may

affect trust calibration, and therefore where to focus research ef-

forts. Lasswell’s model asks us to identify the following: who

says what in what form to whom with what effect. Braddock24

proposed also considering the circumstances and the purpose

of the communication. We include circumstances, as these will

vary greatly even within the coalition context, and purpose, as

it helps make explicit the goals of the communication. In the

context of AI-supported decision making, the ‘‘who’’ in question

is the AI system, the ‘‘to whom’’ is the human decision maker,

and the ‘‘purpose’’ of the communication is to improve the hu-

man’s decisions. The ‘‘effect’’ of the communication will depend

on what is communicated, in what form, and under what circum-

stances, as well as the characteristics of the decision maker to

whom it was transmitted. Structuring future research using this

model will help both in narrowing down research questions

and in identifying the research’s applicability to different settings.

We propose that for rapid trust calibration, what is communi-

cated should include explanations for the AI’s outputs (providing

interpretability) and the AI’s level of uncertainty. This suggestion

is informed by the decision-making literature, which suggests

that trust calibration requires understanding a system’s capabil-

ities (provided through interpretability), and the reliability of the

system’s outputs (provided through uncertainty estimates).19 In

the next sections we further justify this view, and provide a con-

crete example of how these two facets could enable rapid trust

calibration in a coalition operation. We turn to the associated

technical challenges in the Discussion section, aswell as consid-

ering the effects of the form and circumstances of the communi-

cation and the characteristics of whom is being communi-

cated with.

Why Interpretability? Doshi-Velez and Kim25 argue that inter-

pretability is necessary when the AI and human agents havemis-

matched objectives. This is likely in practice, especially in com-
plex decision scenarios: AI systems are trained to optimize a

narrow set of objectives that can be conveyed mathematically,

but their outputs are then used by the human to inform a decision

that was never expressed in these objectives. Consider a vision

model that has been trained to recognize different kinds of vehi-

cles in images. This model may be used by an analyst to assess

the threat level of an enemy force. The downstream decision

informed by the model really needs to consider the capabilities

of, and threats posed by, these vehicles; the specific category

of the vehicles themselves is not directly relevant. However,

the AI has no concept of vehicle capabilities: it has been trained

to recognize them based only on image data. Vehicles with

different capabilities may have similar visual features in the

training data and thus be more frequently confused by the

model. In this situation, appropriate explanations could help

reveal this problem to the human by highlighting the relevant vi-

sual features, revealing the mismatch between the AI’s interpre-

tation of the image and the human’s and allowing them to update

their mental model of the AI’s capabilities.26

The training data itself, in addition to themechanics of training,

also contribute to the objective mismatch problem. We generally

assume the training data to be adequately representative of the

distribution we are trying to learn. For many problems and many

kinds of data, this assumption does not hold. In the coalition

setting, models may be trained on data gathered during previous

operations, which are not adequately representative of the new

scenario to which they are being applied. The data may be

flawed in any number of unknown ways,27 leading to unquanti-

fied biases in the models that are difficult to identify prior to

deployment. Suitable explanations that identified these biases

during operation would improve the human’s mental model of

the AI’s abilities.

Why Uncertainty? Interpretability gives the human access to

what the AI system has learned, and how it uses that knowledge

in producing outputs. Understanding what the AI does not know

is also extremely important for creating a suitable mental model

of the AI’s capabilities.21,28,29 To do this, the AI system must be

able to estimate the uncertainty in its outputs. Uncertainty is

often described as a single concept, although several authors

have made attempts to categorize different kinds of uncer-

tainty.30,31 Weisberg32 divides uncertainty into components of

doubt and ambiguity; doubt may be quantified as a probability

while ambiguity results from a lack of knowledge. Doubt and am-

biguity roughly correspond to a distinction commonly made in

the machine learning and statistics literature between aleatoric

and epistemic uncertainty. Aleatoric uncertainty (doubt) repre-

sents uncertainty inherent in the system being modeled (e.g.,

through stochastic behavior) while epistemic uncertainty (ambi-

guity) is the uncertainty due to limited data or knowledge.15,33,34

For example, an uncertainty-aware image classifier should

exhibit high aleatoric uncertainty for images that are similar to

those it was trained on, but that do not contain adequate distin-

guishing features for choosing between classes; it should esti-

mate high epistemic uncertainty for images that look different

from those in the training set (e.g., a noisy image, or an image

of an unknown class of object). Aleatoric uncertainty is irreduc-

ible while epistemic uncertainty can be reduced by observing

more data. Humans seem to think and talk about these

kinds of uncertainty differently—using words like ‘‘sure’’ and
PATTER 1, July 10, 2020 3
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Figure 1. Example Scenario
(A and B) A coalition-operated AI service (an image
classifier) has been trained to distinguish between
different kinds of enemy vehicle. The plot on the left
shows a 2D projection of the latent feature space of
the classifier, with inputs from two different classes
of vehicle depicted as magenta triangles (class 1)
and black circles (class 2). Example inputs for these
two classes are shown on the right of the figure (A
and B). The human (ground truth) decision bound-
ary is the dotted black line, and the classifier’s
learned decision boundary is the solid black line:
regions where the classifier will make errors are
shaded (gray for class 1 inputs mistaken for class 2,
magenta for class 2 inputs mistaken for class 1). A
and B are far away from the decision boundary but
well within the learned data distribution, so should
be classified with low epistemic uncertainty.
(C) An input that confuses the classifier, because it
has learned to rely on camouflage as a feature to
distinguish between vehicle types.
(D) An input that is far from the learned distribution,
because vehicleswith this camouflage pattern were
not in the training data: it should be classified with
high epistemic uncertainty.
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‘‘confident’’ to refer to epistemic, and ‘‘chance’’ or ‘‘probability’’

to refer to aleatoric uncertainty35—even if only subcon-

sciously and despite their frequent conflation in mathematical

modeling.22,36

It is particularly important to understand epistemic uncertainty

in the coalition scenario.37 At the start of an operation, coalition

partners will deploy AI systems trained on historical data. This is

unlikely to adequately capture the data distributions present in a

new setting because of differences in the environment and

changes in adversaries’ behaviors. Much of the actual input

data to the AI during the coalition operation will therefore be

out of distribution (not part of the distribution the AI was trained

on), which will cause errors nomatter howmany data the system

was trained on previously.38 As an operation continues, models

may be retrained on more relevant data, but the amount of data

available will be limited (and possibly conflicting and of low qual-

ity). As the AI’s knowledge will always be constrained by these

factors, communicating its epistemic uncertainty is crucial for

ensuring that the human is able to build a mental model of

what the AI does not know.

Example Scenario

The following scenario, illustrated in Figure 1, demonstrates how

both interpretability and uncertainty communication could

improve human-AI team performance. Consider an analyst as-

sessing the level of enemy activity over the area of operations

who has access to various autonomous sensors and AI services

deployed by the coalition in forward positions, including a cam-

era feeding a neural network model that can identify different

kinds of enemy vehicle. During their surveillance task, a vehicle

is spotted and classified by the model. On examining the expla-

nation for the classification, the analyst sees that the model has

focused on the vehicle’s camouflage pattern. As the analyst

knows that the enemy uses several camouflage patterns and

that these are not vehicle dependent (this might not have been

known when the model was originally trained), they infer that

the model may be mistaken in this case (see Figure 1C). They

have therefore been able to calibrate their trust appropriately

and have updated their mental model of the AI’s capabilities.
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During the same surveillance operation, another vehicle is

classified by the model with high epistemic uncertainty

(Figure 1D). Unknown to the analyst, the enemy has developed

a new camouflage pattern and has started deploying these vehi-

cles in the area of operations. As this pattern has not appeared in

the model’s training data, it reports high epistemic uncertainty,

thus alerting the analyst that they should not trust its classifica-

tion output. In this case, providing only an explanation could

bemisleading: the input image is out of distribution, so the region

of latent space it is mapped to is not meaningful, potentially re-

sulting in confusing or meaningless explanations.

Although this example is somewhat contrived and overly

simplified, it helps illustrate how interpretability and uncertainty

awareness contribute toward rapid trust calibration. We can

also transfer this simplified scenario more easily to other do-

mains. In medical imaging diagnostics, for example, appropriate

interpretability would allow a radiologist to assess how well the

AI system has aligned with their own expert knowledge, enabling

them to identify themodel’s biases for each new case. Epistemic

uncertainty would allow them to quickly identify gaps in the AI’s

training—inevitable when models are deployed at different loca-

tions with diverse patient populations.

Discussion
Technical Challenges: Who Communicates What

Before interpretability and uncertainty estimates can be used to

improve human-AI decision making, we need reliable methods

for creating both. This poses difficult technical challenges that

have yet to be fully solved.

Interpretability. One solution is to use models that are intrinsi-

cally interpretable so that accurate explanations can be pro-

duced naturally from the model structure. Some authors have

suggested that this approach is the only acceptable solution

for high-stakes decision making due to both technical and con-

ceptual limitations in trying to create explanations for uninter-

pretable models.39 Indeed, much current research into produc-

ing ‘‘post hoc’’ explanations40 of (uninterpretable) neural

network outputs has resulted in techniques that are difficult to



Figure 2. Human-Agent Knowledge Fusion
for ImprovedConfidence andPerformance in
Support of Better Decision Making
Adapted from Preece et al.11
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validate,41 with some failing basic sanity checks.42 This would

preclude the use of neural network models for high-stakes deci-

sion support.

However, their ability to automatically learn features from low-

level data means that neural networks perform well on domains

for which features are difficult to engineer by hand, e.g., learning

from images, audio, video, sensor streams, and natural language.

These are exactly the kinds of data sources we are interested in

using during coalition operations, aswell as other high-stakes do-

mains such as medicine and autonomous driving. Combining

neural networks’ powerful representational capacity with tech-

niques that improve their inherent interpretability is an active

researcharea,witha variety of approachesshowingpromise.43–45

Uncertainty Quantification. Quantifying epistemic uncertainty

requires the model to have a means of accurately estimating

how far away new inputs are from the data distribution it was

trained on. A common approach is to use Bayesian methods,

whereby epistemic uncertainty is captured as uncertainty in

the model parameters33 or as uncertainty in function space us-

ing, for example, Gaussian processes.46 Another promising

approach is that of evidential learning,47,48 whereby inputs are

mapped to the parameters of a Dirichlet distribution over clas-

ses. Smaller parameter values represent less evidence for a

class, producing a broader distribution representing greater

epistemic uncertainty. This approach also benefits from a direct

mapping to the framework of subjective logic.49 Subjective logic

hasmany appealing properties for AI applications in the coalition

setting, allowing aleatoric and epistemic uncertainty to be

considered during logical reasoning operations as well as

providing a framework for incorporating subjective evidence

from sources with different levels of trust.50

These methods all have associated problems that require

further research for them to be overcome. Bayesian methods

rely on sampling approaches that increase their computational

cost at inference time while Gaussian processes present issues

when scaling to high-dimensional problems.51 The uncertainty

estimates are dependent both on the specifics of the approxima-

tions and on the prior probability distributions used. The eviden-

tial learning approach learns a generativemodel to create out-of-

distribution samples so that the classifier can be explicitly taught

the input regions it should be uncertain about,48 but this intro-
duces complications in the training pro-

cess. The evaluation of epistemic uncer-

tainty estimates is also challenging: they

are fundamentally subjective22 with cases

of high epistemic uncertainty being largely

driven by the prior, so that definingmetrics

to assess the validity of these estimates is

conceptually difficult.

Explanations of Uncertainty, and Uncer-

tainty in Explanations. Creating explana-

tions for the causes of model uncertainty,

and estimating the uncertainty in explana-
tions of outputs, are relatively underexplored areas. Epistemic

uncertainty could arise because an input is unlike the training

data in any feature or because it contains a set of known features

in a previously unseen combination. Distinguishing between

these cases may be helpful for the decision maker, potentially

pointing toward different lines of further inquiry. These kinds of

explanations have only recently begun to be explored.52–54

Explanations may also have some uncertainty attached to

them, especially if they summarize the model’s reasoning trace.

As far as we are aware, only one study has investigated uncer-

tainty in explanations: Merrick and Taly55 calculated the variance

of Shapley values, which are a commonly used method to esti-

mate feature importance.56 This is also an underexplored

research area, yet one that could have important implications

for assessing explanation reliability.

Human Factors Challenges: What Form, What

Circumstances, to Whom

However good the technical solutions for interpretability and un-

certainty awareness become, they will be useless unless they

can be made accessible and useful to humans. AI and data sci-

ence researchers must engage and collaborate with human

computer interaction (HCI), psychology, and social science re-

searchers to find the best approaches for facilitating rapid trust

calibration.

Automation Bias and Algorithm Aversion. Automation bias is a

well-studied phenomenon that hinders trust calibration.57,58 It

occurs when humans accept computer outputs in place of their

own thinking and judgment, leading them to place too much

trust in algorithmic outputs. Various studies have looked at

different factors affecting automation bias, including the cogni-

tive load of the user,58 the accountability of the user in the de-

cision process,59,60 and their level of expertise and training.61

Conversely, algorithm aversion occurs when humans disregard

algorithms that actually perform better than humans, thus

affecting trust calibration in the opposite direction to automa-

tion bias.62 This effect has been studied most in the context

of forecasting tasks, whereby humans tend to lose trust in an

algorithm’s advice very rapidly in response to errors;63 by

contrast, trust in other humans who make the same errors re-

duces more slowly.64 Other experiments have produced con-

flicting results, suggesting that only expert forecasters are
PATTER 1, July 10, 2020 5
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susceptible to algorithm aversion while lay users are more likely

to trust algorithmic advice.65

The possible influences of automation bias or algorithm aver-

sion on AI used for decision support are unclear. Some results

regarding the tendency of explanations to cause humans to be

overly trusting of conventional decision aids seem to transfer

to AI-based aids,66,67 although the effects will be dependent

on the particular characteristics of the explanations provided.68

There are many different kinds of explanation that an AI system

could supply,69–71 so future research on the impact of different

kinds of explanation on trust calibration should be guided by

knowledge gained in the social sciences on how humans under-

stand explanations.72,73 Providing uncertainty estimates along

with explanations may also improve trust calibration, but

research remains to be done in this area. In particular, humans

are not naturally competent at reasoning with probabilities, as

described in the next section.

Communication of Uncertainty. Van der Bles et al.22 surveyed

epistemic uncertainty communication about facts, numbers,

and science, but found no systematic studies of how epistemic

uncertainty affects decision making (noting that many studies

do not distinguish epistemic from aleatoric uncertainty). How-

ever, many papers have looked at how humans understand

probabilistic information, including most famously those by Kah-

neman and Tversky.74–76 This work demonstrated that humans

are not good at reasoning with probabilities, regularly commit-

ting errors such as the base-rate fallacy.77 Research since has

suggested that some such errors can bemitigated by presenting

probabilities in a form closer to humans’ natural mental repre-

sentations of them as frequencies of events.78 Combined with

the observation that people naturally describe aleatoric and

epistemic uncertainties differently,35 this suggests that finding

suitable forms to present probabilistic uncertainty information

to users could allow them to use this information to improve their

trust calibration in an AI system. Some studies have found that

particular non-probabilistic representations of uncertainty or

confidence can lead to improved trust calibration in specific set-

tings,79,80 but further work is needed to understand the best way

to represent different kinds of uncertainty under different circum-

stances and how best to combine the characteristics of inter-

pretability and uncertainty awareness.

Suggestions for Researchers and Practitioners

The discussion above leads us to the following suggestions for

future research into these topics, as well as recommendations

for data science practitioners working with decision-support

AI today.

Researchers. Interpretability and uncertainty awareness are

currently very active topics in AI research, particularly in the

deep-learning community where standard methods provide

neither of these properties.81–85 This research still lacks a deeper

appreciation of how humans, with various levels of background

knowledge and differing roles and goals, interpret different ex-

planations and uncertainty information. Although important

studies from the HCI community have probed these ques-

tions,67,86,87 more collaborative work between AI and HCI re-

searchers, as well as statisticians and others experienced in

communicating about uncertainty, will be crucial for focusing

technical research toward developing methods that are actually

useful for different human stakeholders.88 We suggest that re-
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searchers from these fields use Lasswell’s communication

model23,24 outlined above as a common reference to help frame

their discussions.

Data Science Practitioners. Although further research is neces-

sary to establish best practices for building interpretable, uncer-

tainty-aware AI systems, data scientists and developers can start

incorporating these ideas into the AI decision-support systems

they build. Explanation is important, but the provision of explana-

tory mechanisms in AI systems needs to be driven by clear re-

quirements (in software engineering terms) specific to the various

classes of user/stakeholder.18 We suggest that developers focus

their efforts on enabling rapid trust calibration by framing user

requirements in terms of (1) explanations for the AI’s outputs (for

interpretability) and (2) communication of theAI’s level of aleatoric

and epistemic uncertainty, and ensuring close collaboration with

all relevant stakeholders to ensure appropriate communication of

these factors. Again, Lasswell’s communication model23,24 may

prove helpful for framing these collaborations.

Conclusion
AI holds great promise for use in decision support. To fulfill its po-

tential, we must create AI systems that help humans to under-

stand their strengths and weaknesses, allowing rapid trust cali-

bration. This is particularly important in military operations,

where AI services are likely to encounter out-of-distribution

data, and operators will not have time to build up adequate

mental models of the AI’s capabilities through training or interac-

tion. In this Perspective, we have proposed building AI services

that are both interpretable and uncertainty-aware, illustrating

how these two features together could facilitate rapid trust cali-

bration. We suggest using the framework provided by Lasswell’s

communication model to structure future research efforts.

Although we have focused on one-way communication from

AI to human, our long-term goal is to enable bidirectional

communication so that the human-AI team can form a shared

conceptualization of the problem space they are tackling (see

Figure 2). This approach has been studied in classical (‘‘good

old-fashioned’’) AI, leading to the creation of ontology technolo-

gies culminating in the Semantic Web;89 our prior work in this

area focused on controlled natural language as a medium for hu-

man-machine collaboration, allowing natural and artificial agents

to operate on the same linguistically expressed information.90

The recent breakthroughs in AI, founded on subsymbolic

models, are compatible with these approaches only if the AI’s in-

ternal representations can be externalized in communicable

terms, and those same terms can be used by the human to

inform the AI’s internal representations. This creates a system

that is both explainable and tellable: we can provide it with

new knowledge directly in human-understandable terms. This

not only has the potential to benefit the human team-member’s

trust calibration91 but also allows the AI to assess its team-

mate’s knowledge and biases, and thus calibrate its trust in

the human, potentially allowing it to alter its communication

strategy to account for the human’s flaws. To create tellable sys-

tems, we see promise in approaches that combine elements of

symbolic AI with successful subsymbolic approaches to allow

humans and machines to operate on shared conceptualizations

of theworld.92,93 How this can best be achieved is currently a key

open problem in AI.94
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