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Abstract Glioblastoma (GBM) is the most common aggressive malignant tumor in brain neuroepithe-

lial tumors and remains incurable. A variety of treatment options are currently being explored to improve

patient survival, including small molecule inhibitors, viral therapies, cancer vaccines, and monoclonal an-

tibodies. Among them, the unique advantages of small molecule inhibitors have made them a focus of

attention in the drug discovery of glioblastoma. Currently, the most used chemotherapeutic agents are

small molecule inhibitors that target key dysregulated signaling pathways in glioblastoma, including re-

ceptor tyrosine kinase, PI3K/AKT/mTOR pathway, DNA damage response, TP53 and cell cycle inhibi-

tors. This review analyzes the therapeutic benefit and clinical development of novel small molecule

inhibitors discovered as promising anti-glioblastoma agents by the related targets of these major path-

ways. Meanwhile, the recent advances in temozolomide resistance and drug combination are also re-

viewed. In the last part, due to the constant clinical failure of targeted therapies, this paper reviewed

the research progress of other therapeutic methods for glioblastoma, to provide patients and readers with

a more comprehensive understanding of the treatment landscape of glioblastoma.
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1. Introduction

Glioblastoma (GBM) is the most frequent tumor with poor
prognosis in the central nervous system (CNS)1. Normally, the
median age of clinically diagnosed GBM is 59 years (42e73
years), and the ratio of male to female patients diagnosed with
GBM is 1.62. Standard care for GBM includes safe maximal
surgical resection, radiotherapy (RT), and chemotherapy with the
alkylating agent temozolomide (TMZ)3. Among them, both RT
and TMZ activate the death of apoptotic cells by inducing DNA
double strand breaks (DSBs) to kill GBM cells. Fig. 1 summarizes
the standard of care for patients with newly diagnosed GBM. In
carefully selected clinical trials, GBM patients still have a median
overall survival (OS) of about 15e18 months and a median time to
relapse of approximately 7 months, with a 5-year survival of less
than 10% and even shorter survival in elderly patients4. Moreover,
GBM with IDH-wt usually has a worse prognosis and inevitable
diagnosed patients with GBM. In ge

ce the MGMT methylation status c

ethylated tumors, especially when

ltransferase; RT, radiotherapy; TT
relapse5. Consistently, there are scarce treatment options for the
inexorable recurrency, showing only modest anti-tumoral activity
in second-line chemotherapy6. Once GBM recurred, the median
OS was estimated 24e44 weeks7. Standard of care treatment
paradigm for recurrent GBM is shown in Fig. 2. DNA alkylating
drugs lomustine (CCNU) and carmustine (BCNU) and the anti-
angiogenic agent Avastin (bevacizumab) have been approved by
the US Food and Drug Administration (FDA) for the treatment of
relapsing GBM, but existing treatment options are limited and
treatment results in patients are also unsatisfactory3. At the same
time, the uncontrolled growth of primary and recurrent tumors is
mainly due to redundant activation or dysregulation of a large
number of signaling pathways in GBM8. In order to better un-
derstand the clinical needs of GBM patients and the current status
of drug development, we will mainly discuss the therapeutic
benefit and clinical development of new small molecule inhibitors
discovered as promising anti-GBM agents by the related targets of
neral, 6 weeks of standard RT plus TMZ can be considered for elderly

an predict the efficacy of TMZ, it is considered not to choose TMZ for

the risks brought by TMZ outweigh the benefits. GBM, glioblastoma;

F, tumor-treating fields; TMZ, temozolomide.
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Figure 2 Standard of care therapies for patients with recurrent GBM. Bevacizumab for anti-edema benefit in symptomatic patients may be

considered as the common treatment options. Chemotherapy with bevacizumab, including TMZ or nitrosourea (class IIb recommended), may be

considered.
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these major pathways in details in this review. We will also review
the recent advances in TMZ resistance and drug combination. In
the final part, the research progress of other therapeutic methods
for GBM will be briefly introduced.

2. Targets of GBM and relevant small-molecule novel
therapeutics

There are three main dysregulated pathways in GBM: the receptor
tyrosine kinases (RTKs)/Ras/phosphatidylinositol 3-kinse (PI3K)
pathway altered in 88% of patients, p53 pathway altered in 87% of
patients, and the RB pathway altered in 78% of patients8. Fig. 3
shows candidate dysregulated molecular pathways suitable for
GBM targeted interventions. In the analysis of more sample data,
the most common amplification events on the GBM chromosomes
were chromosome 7 (EGFR/MET/CDK6), chromosome 12
(CDK4 and MDM2) and chromosome 4 (PDGFRA)9. The
candidate amplified gene targets and deleted gene targets in GBM
are showed in Table 1. The alternations in these pathways are used
to differentiate between molecular and epigenetic subtypes of
GBM, which contributed to the development of targeted therapies
to influence clinical outcomes and the sensitivity of individual
tumors to treatment10,11.

2.1. Receptor tyrosine kinase (RTK) inhibitors

The RTKs are mutated or amplified in 67.3% of GBM overall:
epidermal growth factor receptor (EGFR) (57.4%), PDGFRA
(13.1%), mesenchymaleepithelial transition (MET) (1.6%), and
fibroblast growth factor receptor 2/3 (FGFR2/3) (3.2%). The al-
terations of the RTKs affect a wide range of downstream cellular
pathways and processes, including apoptosis, growth, survival,
and translation12. As noted in Fig. 4, a multitude of downstream
targets including protein kinase B (AKT), the PI3K, and
mammalian target of rapamycin (mTOR) and their respective
pathways are driven by activation of RTKs and G-protein-coupled
receptors (GPCRs).
2.1.1. PDGFR and VEGFR inhibitors
A large number of studies have shown that while abnormal
angiogenesis supports the growth of GBM stem-like cells (GSCs),
these tumor cells may also regulate and promote the tumor
vascular system by directly transdifferentiating into endothelial
cells or by secreting regulatory growth factors, such as vascular
endothelial growth factor (VEGF) and hepatocellular carcinoma
derived growth factor (HDGF)13. Meanwhile, the platelet-derived
growth factor (PDGF) and its receptor (PDGFR) are overex-
pressed in approximately 16% of GBM14. Therefore, concomitant
administration of small molecule inhibitors of the VEGF pathway
and the PDGF family will likely have a positive impact on che-
moradiation treatment outcome15. There are several VEGFR/
PDGFR inhibitors on the market for cancer treatment. Table 2
shows FDA-approved VEGFR inhibitors for clinical use. Several
inhibitors with activity against VEGF and PDGF have been
investigated for the treatment of GBM, like sorafenib (1, Nexavar,
Bayer), and sunitinib (2, Sutent, Pfizer). Unfortunately, clinical
evaluations have showed that neither 1 nor 2 appeared to provide
any significant benefit in GBM patients.

Sorafenib (1, Nexavar, Bayer, Fig. 5) is a multi-targeted kinase
inhibitor that is active against both types of VEGF (VEGFR-2 and
-3) and PDGF (PDGFb and Kit) families. 1 monotherapy showed
a significant survival benefit in preclinical evaluation of U87 cells
compared with vehicle treatment (P < 0.05)22. Regrettably, the
clinical 1 treatment provided no survival benefit over historical
controls to GBM patients16. Vandetanib (4, ZD6474, Fig. 5), a
small molecule inhibitor of VEGFR, EGFR and RET tyrosine
kinases23, has been approved by FDA for the treatment of
advanced medullary thyroid cancer (MTC) in 2011. 4 was well



Figure 3 Candidate molecular pathways amenable to targeted interventions in GBM.
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tolerated in combination with other conventional chemotherapy
agents in clinical trials in patients with GBM. However, results
from a phase II study of more than 100 patients with newly
diagnosed GBM showed that it was well tolerated but did not
significantly extend OS. This led to the premature termination of
further treatment studies in GBM24. The unsatisfactory therapeutic
effect of 4 in GBM may be related to its failure to exert effective
effect in brain because of the active efflux at blood‒brain barrier
(BBB) mediated by P-glycoprotein (P-gp) and breast cancer
resistance protein (Bcrp1). Studies have also shown that mTOR
inhibitors can increase the effective concentration of 4 in the
brain. This could also serve as a future strategy to improve
VEGFR inhibitors in GBM25. Axitinib (5, AG013736, Fig. 5),
approved for the treatment of renal cell carcinomas by FDA in
2012, is a second-generation orally effective PDGFR and
VEGFR1/2/3 antagonist26. In addition to these FDA-approved
VEGFR inhibitors, several small molecule compounds with bio-
logical activity are also under development.
Table 1 The candidate amplified gene targets and deleted

gene targets in GBM. Effective small molecule inhibitors tar-

geting GBM amplification genes are also listed in the table.

Small molecule

inhibitor that targets

amplified gene

The amplified

gene

in GBM

The deleted gene

in GBM

Abemaciclib,

palbociclib,

ribociclib

CDK4 CDKN2A/B

Gefitinib, erlotinib,

afatinib, lapatinib,

osimertinib

EGFR PTEN

Palbociclib,

abemaciclib,

ribociclib

CDK6 RB1

Ninedanib PDGFRA TP53

AMG232,

idasanutlin

MDM2/4 QK1

AZD4547,

infrgratinib,

erdafitinib

FGFR3/2 CDKN2C

Perifosine, PBI-05204 AKT3/7 LSAMP
Cediranib (6, AZD2171, AstraZeneca Pharmaceuticals, UK,
Fig. 5) is an oral pan-VEGFR tyrosine kinase inhibitor (TKI) with
activity against PDGF receptors and c-Kit, which can normalize
tumor vasculature and alleviate edema in GBM to some extent27.
Unfortunately, the success of 6 has been limited by its low
permeability across the BBB. 6 is not clinically feasible due to its
short half-life, high toxicity and multiple intracranial procedures
required for local administration28. Regorafenib (7, BAY73-4506,
Fig. 5) is an oral multi-kinase inhibitor that inhibits angiogenesis,
interstitial, and oncogenic RTKs. The structure of 7 is the result of
optimization of 1 structure. A phase II clinical trial
(NCT02926222) was completed in GBM multiforme. The results
showed a significant improvement in OS after treatment with 7
compared with the lomustine group, with a median OS of 7.4
months29. In addition, two clinical trials of 7 are being recruited
for the treatment of GBM (NCT04051606, NCT04810182).

Tivozanib (8, AV-951, Fig. 5) is a very potent pan-VEGFR
inhibitor with nanomolar activity against PDGFR. Clinical trials
have shown that 8 can significantly improve the treatment of
advanced RCC. However, 8 has shown limited antitumor efficacy
in phase II GBM trials, which may indicate that despite GBM
tumor vascular abnormalities, anti-VEGFR therapy alone has very
limited efficacy30. Dovitinib (9, TKI-258, Fig. 5) is a multi-target
RTK inhibitor that had several clinical trials in patients with brain
tumors due to its safety and ability to cross the BBB. 9 showed
efficacy in a small subset of patients with recurrent GBM in a
phase I trial but showed no therapeutic advantage in patients with
recurrent GBM in phase II31,32. Nintedanib (10, BIBF1120, Fig. 5)
is a potent triple angiokinase inhibitor targeting VEGFR, PDGFR,
and FGFR. But considering the limited CNS penetration of 10, the
inhibitory effects are difficult to obtain in GBM. Anlotinib (11,
AL3818, Fig. 5) is an oral, highly selective VEGFR2 inhibitor
with similar tolerability to other VEGFR inhibitors in patients.
Moreover, 11 has significantly fewer side effects than 233. In 2018,
11 was approved in China for the treatment of patients with non-
small cell lung cancer (NSCLC)34. In a case of recurrent GBM,
magnetic resonance imaging (MRI) scan showed reduction of
tumor size 26 days after 11 treatment. However, the tumor
continued to progress 2 months after treatment with 1135. So far, a
50-participant clinical trial of 11 in the treatment of recurrent
GBM is being recruited (NCT04004975). Given the limited
treatment options available for recurrent GBM, further clinical



Figure 4 Alterations in RTKs are related to a wide range of downstream cellular pathways and processes.
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trials of 11 are very meaningful. Tandutinib (12, MLN518, Fig. 5)
is a highly active oral PDGFR inhibitor that has been evaluated in
several clinical trials for GBM. Phase II results showed that 12
combined with bevacizumab was equally effective but more toxic
than bevacizumab monotherapy for patients with recurrent
GBM36. Another phase II study was discontinued during interim
analysis due to lack of efficacy of 12 in patients with recurrent
GBM, although GBM with altered PDGF pathway was not
extensively studied in this study37.

Vatalanib (13, PTK787, Fig. 5) is a small molecule inhibitor of
VEGFR, PDGFR, and c-Kit. To date, three clinical studies using
13 for GBM treatment have been completed, showing that 13 is
safe and well tolerated in patients. Cabozantinib (14, XL184,
BMS-907351, Fig. 5) is a multikinase inhibitor targeting VEGFR-
2, MET, and RET with IC50 values in the low nanomolar range in
enzymatic analysis. It received orphan drug approval from FDA in
2011, which supports its use in the United States as a treatment for
a variety of cancers, particularly NSCLC, GBM and MTC38. In
addition, preclinical studies have shown that 14 can effectively
inhibit multiple RTKs in multiple cancer cell lines and animal
xenograft models and has significant oral bioavailability and BBB
penetration. However, the efficacy of 14 in a phase II clinical trial
of GBM was not significant39. In addition to these VEGFR/
PDGFR inhibitors routinely used in other tumors, a number of
small molecules have been developed to treat GBM, which are
still at the laboratory level and require additional data to support
further research but are worth waiting for. For example, DW10075
(15, Fig. 5) is a potent small-molecule inhibitor of VEGFR, the
IC50 values of VEGFR-1, VEGFR-2 and VEGFR-3 were 6.4, 0.69
and 5.5 nmol/L, respectively40. Even at 10 mmol/L, 15 had no
inhibitory effect on 18 other kinases including FGFR and PDGFR.
Oral administration of 15 could significantly suppress the U87-
MG xenograft tumors in nude mice and reduce the expression
of CD31 and Ki67 in tumor tissues40. The chemical structures of
the related VEGFR/PDGFR inhibitors are presented in Fig. 5.

Bevacizumab is the humanized VEGF antibody for GBM.
Although bevacizumab has become a standard part of salvage
treatment for recurrent GBM, multiple studies have shown that it
does not improve survival41,42. There is growing evidence that the
root cause of angiogenesis is hypoxia, which makes bevacizumab
resistant43. In addition to being limited by the BBB, another
disadvantage of PDGFR/VEGFR inhibitors is that, like other RTK
inhibitors, their off-target activities may lead to drug toxicity.
Further study of other components of RTK receptor may provide
new possibilities for GBM treatment.

2.1.2. EGFRvIII inhibitors and EGFReSTAT3 signaling
As studies shown, the amplification and mutation of EGFR are the
most prevailing genetic alterations occurring in more than 50% of
GBM (164/291)9. Especially, the overexpression of epidermal
growth factor receptor variant III (EGFRvIII) in GBM typically
ranges from 25% to 81%. Consistently, EGFRvIII is rare in low-
grade gliomas. Therefore, its high occurrence in high-grade gli-
omas supports its important role in the progression of GBM. The
EGFRvIII mutant is an in-frame deletion of 267 amino acids from
the extracellular domain (ECD) in GBM, which is different from
the kinase domain (KD) mutations found in lung cancer. EGFR-
vIII targeted vaccines in clinical trials have also demonstrated



Table 2 Approved VEGFR/multitargeted inhibitors and the relevant clinical use.

Drug targeting VEGFR Preclinical assessment of brain

penetration

Clinical trial in GBM The relevant clinical use

Sorafenib (1) P-gp and Bcrp substrate.

Limited brain penetration in mice

NCT00544817 (phase 2;

completed)

NCT00597493 (phase 2;

completed)16

NCT00445588 (phase 2;

completed)17

In 2005 sorafenib was approved

by FDA for the treatment of

advanced renal cell carcinoma

(RCC) and in 2007 for the

treatment of hepatocellular

carcinoma (HCC)18

Sunitinib (2) P-gp and Bcrp substrate.

Limited brain penetration in mice

NCT00535379 (phase 2; active,

not recruiting)

NCT02928575 (phase 2;

recruiting)

In 2006 sunitinib was approved

by FDA for the treatment of RCC

and of gastrointestinal stromal

tumor (GIST)

Pazopanib (3) P-gp and Bcrp substrate.

Limited brain penetration in mice

NCT00459381 (phase 2;

completed)19
In 2009 pazopanib was approved

by FDA for RCC and in 2012 for

soft tissue sarcoma20

Vandetanib (4) P-gp substrate NCT00995007 (phase 2;

completed)

NCT00441142 (phase 1/2;

completed)

In 2011 vandetanib was approved

by FDA for treatment of late-

stage (metastatic) medullary

thyroid cancer in adult patients

who are ineligible for surgery21

Axitinib (5) P-gp and Bcrp substrate.

Limited brain penetration in mice

NCT03291314 (phase 2;

completed)4
In 2012 axitinib was approved by

FDA for use in patients with

RCC that had failed to respond to

a previous treatment
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safety and efficacy in patients with GBM44. This also suggests that
EGFRvIII is an effective therapeutic target for GBM, and the
development of EGFRvIII targeted inhibitors is a potential ther-
apeutic approach for the treatment of GBM.

Many EGFR inhibitors (Fig. 5), such as erlotinib (16), gefitinib
(17) and lapatinib (22), have been widely evaluated in the clinic for
the treatment of GBM45. 16 and 17, the first generation of EGFR-
tyrosine kinase inhibitors (TKIs), significantly improved survival in
lung patients but had no significant effect in GBM clinical trials.
This failure may be related to their inhibition of catalytic activity by
competing with ATP binding sites in KD rather than EC46. The
second-generation EGFR inhibitors, afatinib (18) is an FDA-
approved irreversible inhibitor targeting EGFR, HER2, HER4 and
EGFRvIII. In preclinical evaluation, 18 combined with TMZ
significantly prevented tumor progression in nude mice cultured by
intracranial injection of U87 EGFRvIII luciferase-transfected
cells47. Clinical trial results showed limited single-agent activity
of 18 in unselected patients with recurrent GBM48. However,
further studies of 18 in patients with GBM are still meaningful and
should be based on appropriate biomarker-based preselection49.

JCN037 (19) is an EGFR inhibitor with anilinoquinazoline
scaffold, which reduces the number of rotatable bonds and polar
surface area and improves efficiency and BBB penetration by
introducing ortho-fluorine and meta-bromine into aniline ring and
fusing 6,7-dialkoxy groups. It showed obvious inhibitory activity
in orthotopic GBM xenograft mice50. AZD3759 (20), a selective
EGFR inhibitor, effectively penetrates the BBB and has the same
free concentration in the blood, cerebrospinal fluid, and brain
tissue51. Its penetrant properties and antitumor activities have been
demonstrated in an early clinical study in patients with brain
metastasis (BM) and leptomeningeal metastasis (LM)52. The good
permeability of 20 to the BBB and its promising clinical activity
support further evaluation of this compound in studies. NT113
(21) is a pan-ERBB inhibitor with high brain penetrance.
Compared with 16 and 22, 21 showed the most significant
improvement in survival and the most significant inhibition of
tumor growth in intracranial GBM xenograft mice53. 21 deserves
more clinical investigations in patients with GBM. Dacomitinib
(23, Fig. 5) is a second-generation irreversible EGFR TKI that
penetrates the BBB in a multicenter phase II trial
(NCT01520870)54. The clinical trials showed that although 23
was not effective in most GBM patients with amplified EGFR, a
subset experienced a durable, clinically meaningful benefit.

Rociletinib (24, CO-1686, Fig. 5), one of the third generation
EGFR TKIs, is active against the EGFR T790M mutation while
preserving the wild-type EGFR55. Preclinical results showed 24
did not achieve tumor regression in an EGFR-TKI-sensitizing
mutations (EGFRm) PC9 mouse brain metastases model56. Osi-
mertinib (25, AZD09291, Fig. 5) is an oral, third-generation
irreversible EGFR inhibitor with significant brain permeability.
In preclinical evaluation, 25 showed significant growth inhibition
activity against all six GBM cell lines. Among them, the inhibi-
tory effect of 25 on GBM cell proliferation was 10 times that of
the first-generation EGFR inhibitors. This anti-GBM cell prolif-
eration mechanism may be different from first-generation EGFR
inhibitors, which effectively inhibit the EGFR/ERK pathway57.
Meanwhile, in the in-situ GBM model, 25 can significantly inhibit
the growth of GBM tumors in mice and prolong the survival time
of animals. Furthermore, the activity result of 25 in a progressive,
EGFR mutant GBM patient who was treated with the drug as an
off-label salvage therapy indicated that the patient eventually
progressed to a separate tumor site, highlighting the heterogeneity
of the tumor, which is a major challenge for EGFR-targeted GBM
therapy. This case highlights the need for further clinical evalua-
tion of 25 for GBM, including identifying which EGFR alterations
are sensitive to this drug58. The chemical structures of the related
EGFR inhibitors are presented in Fig. 5.

Overall, the main challenges of current EGFR-targeting stra-
tegies for GBM are the lack of CNS permeability in most TKIs,
the molecular heterogeneity of GBM, and the need to enhance the
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specificity of small-molecule inhibitors of GBM-related EGFR
mutations. For example, 17, 18, and 25 have been reported to act
as substrates for P-GP and Bcrp, so brain penetration of these
EGFR inhibitors is expected to be limited. Dose-limiting toxicity
(DLT) is another reason for the failure of TKIs in clinical appli-
cation of GBM58. Other EGFR-targeting therapies are currently
represented by antibodyedrug conjugates (ADCs) and human
antibodies. For example, depatuxizumab mafodotin (ABT-414)
and nimotuzumab have demonstrated anticancer activity in pre-
clinical and clinical evaluations for the treatment of GBM.

2.2. PI3K/AKT/mTOR pathway inhibitors in GBM

Many downstream targets and pathways of RTKs are thought to be
important drivers of glioma development, apoptotic escape, and
cell growth9. Among them, the PI3K/AKT/mTOR pathway is one
of the most targeted and dysregulated downstream pathways59. In
clinical analysis, the PI3K pathway affected by phosphatase and
tension homolog (PTEN) mutation, was abnormally activated in
GBM patients, resulting in poor prognosis60.

2.2.1. PI3K inhibitors and their preliminary clinical results
A growing body of preclinical and clinical evidence suggests that
PI3K pathway inhibitors will offer promising options for the
treatment of cancer patients, including GBM. To better exploit the
efficacy of PI3K inhibitors in patients with GBM, future chal-
lenges may include identifying which patient populations will
Figure 5 (A) The chemical structures of the related VEGFR/PDGFR in

related EGFR inhibitors advanced in clinical study. Both 1 and 7 are ora

fluorinated form of 1. Regorafenib (7) is a very promising small molecule i

The chemical structures of 16‒23 all contain anilinoquinazoline pharmaco
benefit from these inhibitors (PTEN loss vs PIK3CA mutations)
and optimizing the combination of PI3K pathway inhibitors with
other pathway therapeutics.

BKM120 (26, buparlisib, Novartis, Fig. 6) is a pan-PI3K in-
hibitor with significant brain penetration. Indeed, 26 showed anti-
tumor activity in GBM cell lines and intracranial U87 tumor mice
regardless of PTEN or EGFR status93. However, the clinical re-
sults showed insufficient overall pathway inhibition by tolerable
doses in patients with recurrent GBM. In a recent phase II trial
(NCT01339052) of 65 patients with PI3K pathway-activated
recurrent GBM, the result of the trial showed only 8% patients
reached 6-month PFS, the median PFS is 1.7 months. The reason
for the lack of clinical efficacy is that the PI3K pathway cannot be
completely blocked in tumor tissues. Recent studies have shown
that 26 in combination with the PARP inhibitor rucaparib (79,
Fig. 12) can complement each other in terms of DNA damage
responses and drug accumulation in vitro and in vivo, improving
anti-tumor efficacy compared to each monotherapy61. PQR309
(27, bimiralisib, Fig. 6) is an effective PI3K/mTOR inhibitor with
good BBB penetration and oral bioavailability in mammals. It has
a higher inhibitory effect on PI3K than mTOR kinase62. 27 has
been confirmed to have antitumor activity against GBM in vitro
and in vivo. Moreover, the combination 27 with AKT inhibitor
showed stronger anti-GBM activity in nude mouse orthotopic LN-
229 glioma xenograft model63.

GNE-493 (28, Fig. 6) is a potent inhibitor of PI3K and mTOR
with good pharmacokinetic (PK) parameters64. However, its poor
hibitors advanced in clinical study. (B) The chemical structures of the

l diphenylurea multi-kinase inhibitors approved by the FDA, 7 is the

nhibitor for the treatment of GBM (its structure is highlighted in box).

phore, marked by red boxes in the figure.



Figure 6 Structures and modification of PI3K inhibitors advanced to clinical study for GBM. The PI3K/mTOR reference IC50 values for 26 and

27 are given in this figure.62 30, a PI3K inhibitor with BBB permeability and metabolic stability, was found by structural modification of PI3K/

mTOR inhibitors 28 and 29. HBD, hydrogen bond donor.
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brain penetration limits its use as a treatment for GBM. 28 was
used as the initial lead compound to obtain analogues with better
brain permeability by reducing the number of hydrogen bond
donors. GNE-317 (29, Fig. 6) was designed out of these efforts
and is an effective brain penetrant PI3K inhibitor. It markedly
inhibits the PI3K pathway in the brains of mice with intact BBB65.
29 was uniformly distributed throughout the brain in the U87 and
GS2 orthotopic mice of GBM, with tumor growth inhibition rates
of 90% and 50%, respectively, showing a survival benefit65,66.
However, 29 was found to have unacceptable projected human
clearance, so it was further optimized to paxalisib (30, GDC-0084,
Fig. 6). 30 is a PI3K inhibitor with comparable potency and
similar BBB permeability to 24, but with more desirable human
PK properties67. The effective results of 30 in mice with U87 and
GS2 intracranial tumors promoted its clinical trials in GBM67. The
phase I study of 30 in GBM has shown that 30 has typical PI3K/
mTOR inhibitor related toxicity. Fluorodeoxyglucose positron
emission tomography (FDG-PET) and concentration data from
brain tumor tissue indicated that 30 crossed the BBB68.

Pilaralisib (31, XL147, SAR245408, Fig. 6) is a pan-PI3K in-
hibitor developed by Sanofi/Exelixis. The clinical results of 31
showed favorable safety in combination with other chemothera-
peutic agents in the treatment of solid tumors69. The PI3K/mTOR
inhibitor voxtalisib (32, XL765, SAR245409, Fig. 6) showed an
attractive activity in a range of genetically diverse GBM xenografts,
either alone or in combination with conventional therapeutics. The
study showed that 32 had superior tumor suppression effects to 31
in cancer cell models70. Phase I study showed that 32 combined
with TMZ with or without RT had good safety and moderate PI3K/
mTOR pathway inhibition in high-grade glioma patients71,72.

Idelalisib (33, Fig. 6), an oral bioavailable small molecule
inhibitor, is the first PI3K inhibitor approved by FDA in July 2014
for the treatment of relapsed lymphocytic leukemia (CLL)73.
However, 33 is difficult to benefit GBM patients due to its poor
permeability to the BBB74. Sonolisib (34, PX-866, Fig. 6) is a
kind of oral PI3K inhibitor. In a phase II study of patients with
recurrent GBM, the results showed although 34 was relatively
well tolerated, the overall response rate was low75. The chemical
structures of the related PI3K inhibitors are presented in Fig. 6.

2.2.2. AKT/mTOR inhibitors
Protein kinase B (AKT) pathway is associated with most human
malignancies, including GBM. Meanwhile, the RTK/PTEN/PI3K
pathway leads to elevated levels of activated and phosphorylated
AKT in most GBM tumor samples and cell lines, which have been
shown to contribute to the uncontrolled growth of glioma cells,
avoid apoptosis, and enhance tumor invasion76. The mammalian
target of rapamycin (mTOR), a component of both the mTOR



Figure 7 (A) Chemical structures of AKT inhibitors advanced to clinical study for GBM. B: Chemical structures of mTOR inhibitors advanced

to clinical study for GBM. 35e37 have molecular weights (MW) greater than 500 (MW of 35, 36 and 37 are 914, 1030 and 958). The chemical

structure of RapaLink-1 and the mTOR cocrystallized with rapalink-1. (a) The structure of 42, a polyethylene glycol-based linker combines

rapamycin with 38. Studies showed a long linker was necessary for improving potency97. (b) mTOR catalytic-domain-bearing TORKi PP242

(PDB ID: 4JT5) and mTOR FRB-domain-rapamycin-FKB12 (PDB ID: 1FAP) are two valid co-crystal structures that can be used to construct the

molecular binding model.
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complex 1 (mTORC1) and the mTOR complex 2 (mTORC2), is a
serine/threonine kinase with broad activity in cell proliferation,
growth, and survival77. Hyperactivation of mTOR is common in
GBM and its high expression is associated with poor prognosis
and a decrease in survival78,79.

Perifosine (35, KRX-0401, Fig. 7) is the first allosteric AKT
inhibitor with brain penetration to enter clinical phase. It attenu-
ates AKT activation by blocking pleckstrin homology (PH)
domain-dependent localization of AKT on the cell membrane.
Although the result of a phase II clinical trial of 35 for the
treatment of recurrent GBM showed that it was well tolerated but
ineffective. Its synergistic effects with other approaches still have
potential in the treatment of GBM80. GDC-0068 (36, ipatasertib,
Fig. 7), is a highly selective ATP-competitive pan-AKT inhibitor
that preferentially binds to AKT in an activated conformation,
resulting in increased anti-proliferative activity in cell lines with
the activation of the PI3K/AKT pathway81. Preclinical data also
showed that 36 can enhance the antitumor activity of classical
chemotherapy drugs. Meanwhile, 36 can significantly inhibit the
growth of PIK3CA mutated tumor in the BM model of breast
cancer, suggesting to some extent that 36 can adequately penetrate
the BBB82. 36 has also been reported as part of effective AKT
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kinase degraders, and future research progress in the treatment of
GBM still deserves attention.

Among mTOR inhibitors, sirolimus (37, Fig. 7), temsirolimus
(38, Fig. 7) and everolimus (39, Fig. 7) are FDA-approved
agents83. Sirolimus (37, rapamycin, Pfizer), a well-studied natu-
ral product with antifungal, immunosuppressive, and antineo-
plastic activities, is a macrolide antibiotic. 37 is widely recognized
for its ability to inhibit the mTOR signaling pathway and has been
widely studied for its therapeutic potential. It’s reported that 37
and TMZ have a synergistic effect in inhibiting GBM activity,
increasing reactive oxygen species (ROS) production and depo-
larizing mitochondrial membrane potential (MMP)84. A phase I
study result demonstrated that the combination of 37 with
metronomic chemotherapy was well tolerated in children with
recurrent or solid and intractable brain tumors85. However, 37
works primarily by inhibiting mTORC1, while the uninhibited
mTORC2 can activate the AKT signaling pathway to counteract
reduced mTOR levels. This may be the main reason why 37 fails
in clinical treatment of GBM.

38 and 39, analogues of 37, have been submitted for clinical
trials to treat a variety of cancers. Temsirolimus (38, CCI-779), a
water-soluble mTOR inhibitor with molecular weight of a thou-
sand, has been demonstrated that 38 is well tolerated in mono-
therapy but has limited efficacy in the phase trial II of 65 patients
with recurrent GBM86. Subsequently, a further phase II study of
bevacizumab in combination with 38 in the treatment of recurrent
GBM showed that the combination was safe but did not show an
advantage over bevacizumab alone60. Notably, the patients with
newly diagnosed unmethylated GBM may benefit from 38 ac-
cording to mTOR-Ser2448 phosphorylation in a randomized
phase II trial associated with 111 patients. The phase II trial
data of RT þ TMZ � 39 (RAD001) in 171 patients with newly
diagnosed GBM showed there were no difference in PFS, while
the OS for 39 was inferior to that for control patients87. Pal-
omide 529 (41, P529, Fig. 7) is a dual mTORC1/2 inhibitor that
has the potential to enhance the efficacy of RT by delaying the
DNA repair mechanism88. Meanwhile, 41 has been confirmed to
have good brain penetration, which provides support for further
evaluation of 41 treatment for GBM89. CC-223 (42, Fig. 7) is a
potent orally bioavailable inhibitor of mTOR kinase and may have
theoretical advantages over the first-generation drugs by inhibiting
mTORC1 (pS6RP and p4EBP1) and mTORC2 [pAKT(S473)]. A
phase II study on 42 described that it resulted in highly durable
tumor regression and control of neuroendocrine tumors (NET)
carcinoid symptoms. This makes 42 a promising agent for further
development90. AZD2014 (43, vistusertib, Fig. 7) is also a dual
mTORC1/2 inhibitor that enhances the radiosensitivity of GSCs
both in vitro and under orthotopic in vivo conditions91. Studies
results of 41 and 43 suggest that the dual mTORC1/2 inhibitor
may be suitable radiosensitizers for GBM treatment. Furthermore,
the results of a phase I trial showed that 43 combined with TMZ
showed good safety at the tested dose levels in patients with first
recurrent GBM92.

Rapalink-1 (44, Fig. 7) is a third generation mTOR inhibitor
that links 37 to 40 with better activity than first-generation and
second-generation mTOR inhibitors. It showed good inhibitory
activity in mice with U87MG intracranial xenografts. It was well
tolerated by mice and significantly improved survival compared
with the control group93. Studies also showed that 44 can
effectively impair the motility and clonogenicity of GBM stem
cells and reduce the expression of stem cell molecules94. However,
44 has an effect on the aggravation of BBB disruption, which may
lead to serious side effect95. The chemical structure of 44 and the
mTOR co-crystallized with 44 are presented in Fig. 7.

Studies have shown that PTEN tumor suppressor positively
regulates autophagy by inhibiting the PI3K/AKT pathway96.
Common mutations of PTEN and neurofibromin 1 (NF1) occur
frequently in gliomas, leading to constitutive activation of PI3K/
AKT/mTOR signaling, suggesting that synergistic action of
autophagy inhibitors by using inhibitors of the PI3K pathway
could contribute to the treatment of GBM.

2.3. RB pathway and related small-molecule inhibitors

Studies have demonstrated that cell-intrinsic sex differences in RB
regulation and stem-like cell function may be one of the reasons
for the large number of male patients with GBM98. The CDK-RB-
Early 2 factor (E2F) pathway integrates external and internal
signals to control the process of G1/S transition in mammalian cell
cycle. Alterations in this pathway have been found in GBM.

2.3.1. CDK4/6 and pan-CDK inhibitors in GBM
GBM genomic instability markers were associated with S-phase
perturbations and G2/M transitions controlled by CDKs. This
provides a theoretical basis for the development of small molecule
inhibitors targeting CDKs in the treatment of GBM99. There are
many compounds in the existing cyclin-dependent kinase in-
hibitors (CKIs) that have entered clinical trials for GBM treat-
ment, including pan-CDK inhibitors that target CDK1 [seliciclib
(45), flavopiridol (46), dinaciclib (47), SNS-032 (48), AT7519
(49), R547(50), AZD5438(51), and milciclib (52)], the CDK4/6
inhibitors [LY2835219 (53), LEE011 (54), palbociclib (55)].
Clinical studies of cyclin-dependent kinase 9 (CDK9) inhibitors
45e48 all had their additional targets, which led to their cancer
treatment failure and involved many adverse reactions100. Un-
derstanding which CDKs are activated in GBM and whether these
complexes are uniquely altered to cover cell cycle protection
checkpoints could help design more selective inhibitors for GBM
therapy. GBM shows overexpression of a protein called cyclin D1,
which induces the level of cyclin-dependent kinase 4 (CDK4) and
cyclin-dependent kinase 6 (CDK6). This outcome leads to the
growth of tumors. GBM is characterized by high-frequent dysre-
gulation of the cyclin-dependent kinase inhibitor 2A(CDKN2A)/
cyclin D2 (CCND2)/CDK4/CDK6 pathway. Consequently, dual
inhibition of CDK4 and CDK6 may be an attractive approach for
the treatment of GBM101.

Abemaciclib (53, LY2835219, Eli Lilly, Fig. 8) is the first
selective inhibitor of CDK 4 and CDK6 with safety features that
allow continuous administration to achieve sustained targeted in-
hibition102. In laboratory studies, 53 was able to enter the brain,
stop CDK4/6 from making cells, and slow growth of mice with
GBM. As a CDK4/6 inhibitor, 53 has an ongoing phase II trial
(NCT02981940) in recurrent GBM patients with activation of
CDK4/6 pathway103. A pilot study (NCT04074785) of 53 with
bevacizumab in recurrent GBM patients with loss of CDKN2A/B
or amplification of CDK4/6 is recruiting by university of Texas
Southwestern Medical Center. Ribociclib (54, LEE011, Novartis,
Fig. 8) is another inhibitor of CDK4/6104. A phase Ib study



Figure 8 The structures for CDK inhibitors and aurora inhibitors with available BBB penetration in clinical trials. 53e55 have been approved

by FDA for breast cancer therapy. Both 53 and 55 could cross the BBB.
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(NCT02345824) has been conducted to determine whether this
inhibitor can penetrate tumor tissue and modulate downstream
signaling pathways including RB in patients with recurrent GBM.
But the results showed that 54 alone seemed ineffective for the
treatment of recurrent GBM105. Palbociclib (55, PD0332991,
Pfizer, Fig. 8), a selective inhibitor of both CDK4 and CDK6106,
has been approved for use in breast cancers in 2015107. In addi-
tion, some preclinical studies have shown 55 is effective for
treating GBM108. Annexin V in vitro assay showed that 55
significantly increased the percentage of cells apoptotic during the
G1 cell cycle. Preclinical results support the possibility of 55 as an
adjunct therapy to RT and merit further clinical investigation108.

53‒55 have been approved for the treatment of CDK4/6 in-
hibitors of HRþ/human epidermal growth factor receptor 2
(HER2)-breast cancer, but due to poor BBB permeability, these
drugs may not be ideal for the treatment of brain tumors101. In
terms of adverse reactions, 54 and 55 were mainly toxic to bone
marrow, but had no significant effect on gastrointestinal tract.
While 53 can cause many gastrointestinal adverse events109.
Overall, the off-targets and inadequate BBB penetration are major
limitations of CDK4/6 inhibitors for GBM treatment.

2.3.2. PLK1/aurora kinase inhibitors
The polo-like kinase 1 (PLK1) and the aurora kinase A (AurA)
pathways play key roles in GBM cell growth/migration and in the
self-renewal of the GSCs component and have been studied as an
innovative strategy to overcome GBM resistance and recurrence110.

The pan-aurora kinase inhibitor tozasertib (56, VX-680, Fig. 8)
has been shown to reduce stem cell differentiation by inhibiting
AurA kinase in GBM cells111. In mice GBMs originating from
subventricular zone neural stem cells (NSCs), 56 can enhance the
effect of RT, reduce tumor growth, and increase survival.
Furthermore, the effect of 56 after RT is better than before RT in
the treatment of GBM112. AMG900 (57, Fig. 8) is also a pan-
aurora inhibitor and induces cell cycle arrest and senescence to
inhibit the proliferation of A172, U87MG and U118MG GBM
cells by upregulating p53 and p21113. MLN8237 (58, alisertib,
Fig. 8) is a selective aurora A kinase inhibitor for the treatment of
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hematologic malignancies, ovarian cancer, and other solid tumors
in clinical trials. The phase I trial result indicated that 58 tablets
with irinotecan and TMZ showed significant antitumor activity in
patients with neuroblastoma114. Encouragingly, the combination
of 58 and TMZ has shown promising results in Phase II clinical
trials in patients with v-myc avian myelocytomatosis viral onco-
gene neuroblastoma derived homolog (MYCN) non-amplified
tumors115. However, the number of patients involved in the
study was limited and focused on children, the efficacy of 58 in
GBM needs to be further studied. The chemical structures of the
related CDK inhibitors and aurora inhibitors are presented in
Fig. 8.

2.4. p53 pathway and related small-molecule inhibitors

2.4.1. p53 inhibitors in GBM
In GBM patients, more than half were p35 positive, and DNA
sequencing analysis showed that p53-positive microvascular
proliferating cells were identical to TP53 mutations observed in
primary tumors. The p53 protein is encoded by the TP53 gene,
which is thought to be the most mutated gene in human tumors116.
The components of the deregulated p53 pathway are related to the
invasion, migration, proliferation, avoidance of apoptosis and stem
cell properties of GBM cells.

2.4.2. Murine double minute-2 (MDM2) inhibitors in GBM
MDM2 inhibitors and proteolysis targeting chimera (PROTAC)
degraders have been recognized as attractive cancers treatment
strategies for blocking the MDM2/p53 proteineprotein interac-
tion (PPI)117. At the same time, integrins a5b1 and p53 are part
of the convergence pathway that controls glioma apoptosis,
prompting researchers to search for effective molecules that can
regulate both target families simultaneously. Compound 59
(Fig. 9) is a potent MDM2/4 and a5b1/avb3 blocker among
these molecules. And in p53-wild glioma cells, 59 arrested cell
cycle and proliferation while strongly reducing cell invasive-
ness. Further biological studies are needed to deepen the anti-
cancer activity of such novel class of compounds118. Compound
60 (Fig. 9) is a promising cytotoxic agent targeting TSPO and
MDM2, which reactivates p53 function, inhibits the activity of
both human GBM cells and glioma tumor stem cells (CSCs).
Meanwhile, it sensitizes GBM cells and CSCs to the activity of
TMZ119.

AMG-232 (61, KRT-232, Fig. 9) is an effective and selective
oral piperidinone inhibitor of MDM2‒p53 PPI with favorable
toxicological properties in vitro and in vivo120. In addition, the
molecule is projected to have a low clearance rate and a long
Figure 9 The chemical structure of potent small-m
half-life in humans120. It is currently recruiting patients with
GBM in phase I with the trial number of NCT03107780117.
Idasanutlin (62, RG7388, Fig. 9) is an MDM2 inhibitor with
better efficacy and selectivity than before. Current research data
support the process of clinical development of 62. At the same
time, 62 is recruiting phase I/II GBM patients. It has been
recognized as an attractive cancer therapeutic strategy to reac-
tivation of p53 through inhibiting MDM2 and MDMX, the
negative suppressors of p53. However, the acquired resistance
and toxicity of p53 activation continue to limit the development
of MDM2 inhibitors as clinical anticancer agents. The chemical
structures of the related MDM2‒p53 inhibitors are presented in
Fig. 9.

2.5. Miscellaneous

2.5.1. Integrin avb3 inhibitors in GBM
Integrins avb3 and avb5 regulate tumor angiogenesis and
aggressiveness, possibly by regulating the activation of trans-
forming growth factor b (TGFb) pathway121. In the brain of pa-
tients with GBM, the expression of avb3 and its ligand vitronectin
are associated with tumor progression and invasive behavior at
tumor margins. In preclinical models, integrins avb3 and avb5
have been identified as therapeutic targets for GBM122.

Cilengitide (63, Fig. 10), the avb3 and avb5 integrin inhibitor,
is a pentapeptide that has undergone several clinical trials in
GBM123. In the phase II study, data showed compound 63 had
antitumor activity in patients with GBM either as a single agent or
in combination with TMZ. However, 63 has not been further
developed as an anticancer drug because in a phase III trial
involving 3417 patients with newly diagnosed GBM with meth-
ylated MGMT promoter, its combination with TMZ failed to
improve treatment outcomes124. Results from clinical trials in
GBM using 63 revealed treatment benefits in only a subset of
patients in a phase III trial. In the current study, the researchers
provided an explanation for the clinical failure of 63 by finding
that sensitivity to integrin blockade is not dependent solely on the
expression of integrin avb3, but rather on the integrin avb3‒Glut3
axis125. Studies showed that integrin avb3 activated a PAK4-YAP/
TAZ signaling (Fig. 10) axis to enhance Glut3 expression126. The
researchers also found that the growth and survival of
mesenchymal-subtype GBM may be dependent on another
glycolytic gene product, further suggesting that these tumors may
be also sensitive to p12-activated kinase 4 (PAK4) or Yes-
associated protein (YAP)/WW domain-containing transcription
regulator 1(WWTR1, also known as TAZ) inhibitors126. For
example, PF-03758309 (64, Fig. 10) is a classic inhibitor of PAK4,
olecule inhibitors of the MDM2‒p53 inhibitors.



Figure 10 Chemical structure of a variety of other small molecule inhibitors in the treatment of GBM. These mainly include inhibitors tar-

geting the PAK4-YAP/TAZ signaling, PRTM5 inhibitors and IDH1/2 inhibitors in GBM.
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verteporfin (65, Fig. 10) is a YAP/TAZ inhibitor. They deserve to
be tested for their potential in GBM treatment in the future.

2.5.2. Protein arginine methyltransferase 5 (PRMT5) inhibitors
in GBM
The expression of protein arginine methyltransferase 5 (PRMT5) is
increased in GBM and its expression is negatively correlated with
GBM patient survival. It has been recently emerged as a promising
target in GBM. PRMT5 inhibition can effectively attenuate the
growth and clonogenic capacity of most patient derived GSCs
lines127. EPZ015666 (66, GSK3235025, Fig. 10) is an orally
available inhibitor of PRMT5 enzymatic activity with IC50 of
22 nmol/L in biochemical assays and broad selectivity against a
panel of other histone methyltransferases. 66 showed synergistic
anti-GBM effects in combination with mTOR inhibitor in vitro and
xenograft mouse models128. Both EPZ019896 (67, Fig. 10) and
EPZ2015938 (68, Fig. 10) are two effective inhibitors of PRMT5 by
further optimizing the structure of 66129. 68 has been licensed to
GSK (GSK3326595) and has already been evaluated its safety, PK,
and pharmacodynamic (PD) in phase 1 clinical trial
(NCT02783300). 69 (GSK591, Fig. 10) is a substrate-competitive
inhibitor of the PRMT5-methylosome protein 50 (MEP50) com-
plex. Studies have shown that 69 can significantly increase
resveratrol induced cell apoptosis and enhance chemosensitivity of
tumors by inhibiting PRMT5130. 69 has also shown the ability to
suppress the growth of a range of 46 patient-derived GSCs cul-
tures127. LLY-283 (70, Fig. 10), a potent and selective inhibitor of
PRMT5 enzyme activity with good brain penetration, significantly
prolonged survival in mice with orthotopic GBM patient-derived
xenografts (PDXs) in preclinical data127. Onametostat (71, JNJ-
64619178, Fig. 10) is one of the few inhibitors of PRMT5
currently in clinical trials131. CMP5 (72, Fig. 10) is a class of agents
that can effectively block the activity of PRMT5. In vivo treatment
of intracranial tumors in zebrafish shows that 72 can effectively
inhibit the growth of GBM tumors and improve the survival rate132.
Future research will focus on drug development of 72 to improve its
PD and PK properties for the treatment of GBM.
2.5.3. Isocitrate dehydrogenase (IDH) inhibitors in GBM
Cancer genetics studies have shown that hotspot mutations in
isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2
(IDH2) occur frequently in various human cancers, including
malignant gliomas, acute myeloid leukemia (AML), intrahepatic
cholangiocarcinoma, chondrosarcoma, and thyroid carcinomas133.
Diffuse gliomas are malignant brain tumors that includes low-
grade gliomas (LGGs) and GBM. IDH1 gene mutations are
mostly concentrated in LGGs (70%)134. IDH mutated gliomas
have been reported to be more suitable for surgical resection, and
maximum surgical resection may provide a significant survival
advantage for patients with IDH mutated gliomas.

Ivosidenib (73, AG-120, Fig. 10) is an inhibitor of mutant IDH1
that is being evaluated clinically in patients with solid tumors. The
results of a current clinical trial involving 66 patients show that 73
can slow the growth of gliomas that have not yet progressed, thus
preventing LGGs from turning into advanced GBM134. Enasidenib
(74, AG-221 Fig. 10) is an orally allosteric inhibitor of mutant
IDH2 under clinical development133. 74 has a significant clinical
survival benefit for patients with AML. There are also ongoing
clinical trials of 74 in other IDH2 mutated solid tumors, including
gliomas. However, clinical data are not available yet135.

In general, there are not many small molecule inhibitors that
specifically target IDH mutations for high-grade gliomas known as
GBM. On the one hand, most of GBM is IDH wild type, but IDH
inhibitors can be used to prevent further deterioration of low-grade
glioma; On the other hand, for GBM with IDH mutation, it can be
seen from current clinical trials that most chemotherapy regimens
are formulated by inhibiting other targets, such as using PARP
inhibitors and anti-PD-L1/anti-PD-1 antibody combined with
TMZ.



Figure 11 The structure and activation route of prodrug TMZ and repair of O6-methylguanine-DNA methyltransferase. TMZ hydrolyzed

spontaneously to active fragment MTIC and TMZ metabolite at physiological pH. MTIC is further hydrolyzed to 5-amino-imidazole-4-amide

(AIC) and methylhydrazine, the former being an intermediate in the biosynthesis of purines and nucleic acids, and the latter being considered

as the active fragment of alkylation. Key DNA repair mechanisms that affect cellular response to TMZ. MGMT methylation status is predictive of

the efficacy TMZ.

1794 Hui Liu et al.
3. TMZ-resistant GBM and recent advances

TMZ is an imidazotetrazine derivative like dacarbazine (DTIC), as
an alkylation agent with good ability to cross the BBB. It has been
evaluated largely in the therapy of malignant brain tumors and as
the first line option treatment, especially in methylated MGMT-
carrying patients with GBM136. The cytotoxicity of TMZ is based
on its methylation capacity of O6-guanine to result in O6-meth-
ylguanine (O6-MeG). It is noteworthy that the methyl of O6-MeG
can be removed by MGMT (direct repair, Fig. 11). Additionally,
O6-MeG is tolerated in mismatch repair (MMR)-deficient tumors.
Therefore, MGMT or MMR deficiency confers resistance to
TMZ137. Fig. 11 shows that MGMT methylation status may be a
biomarker for predicting the TMZ treatment effect in GBM. The
key DNA repair mechanisms that affect the cellular response to
TMZ are also shown in Fig. 11.

3.1. Combination therapy to boost temozolomide effects

TMZ combined with other targeted small molecule inhibitors is a
significant therapeutic strategy for GBM. In this section, we
discuss the potential strategies that might overcome TMZ
resistance such as combinations with other chemotherapies, tar-
geting the acquired vulnerabilities associated with resistance to
TMZ or suppressing genomic instability. At the same time, Table
3 summarizes the existing completed clinical trials of effective
drugs in combination with TMZ.

3.1.1. Combination cannabidiol (CBD) with TMZ therapy
Cannabidiol (75, CBD, Fig. 12), a naturally occurring small
molecule compound that can cross the BBB to reach the site of
brain tumor, was approved by FDA in 2018 to treat refractory
childhood epilepsy. 75 has also been shown to have potential anti-
tumor effects. Previous studies in 2015 showed that 75 could
induce autophagy through a transient receptor potential vanilloid-
2 (TRPV2)-dependent manner and inhibit the differentiation of
GSCs144. In 2021, it was further found that 75 can activate tran-
sient receptor potential vanilloid-4 (TRPV4) to induce mitophagy
and ultimately kill glioma cells145. Preclinical studies have shown
that the combination of 75 and TMZ therapy for GBM has a more
selective inhibitory effect on cancer cells in the brain. Clinical
trials have also shown that 75 combined with TMZ therapy can
bring significant survival differences in patients, which supports
further research on 75 in the treatment of GBM146. These



Table 3 Selected completed clinical trials of the combination potent agents with TMZ.

Combined agent Study design Study population Median OS Median PFS DLT Trial (NCT

number)

Carboxyamidotriazole

orotate (CTO)138
Non-randomized

phase I study of

CTO in

combination

therapy with TMZ

for patients with

GBM or recurrent

GBM

100 participants

(older than 18

years of age)

Newly

diagnosed

GBM,

combination:

2-year OS of

62%. TMZ: 16

e19 months

Combination:

15 months;

TMZ: 6e7

months

No dose-limiting

toxicities were

observed

NCT 01107522

BKM120139 Non-randomized

phase I study of

BKM120 in

combination with

adjuvant TMZ in

patients with

newly diagnosed

GBM

38 participants

with newly

diagnosed GBM

Novartis has decided not to

proceed with the development of

BKM120 in newly diagnosed

GBM due to the failure to meet

the primary objective of the

estimated MTD, as well as the

challenging safety observed

The MTD of

buparlisib in

combination with

TMZ at stage I:

80 mg/day; the

AEs: nausea,

fatigue (>50%)

NCT 01473901

Lomustine140,141 Randomized

phase III trial of

CCNU/TMZ

combination

therapy vs

standard TMZ

therapy for newly

diagnosed

MGMT-

methylated GBM

patients

141 participants

with MGMT-

methylated GBM

(18e70 years)

Combination:

41.8 months

(32.6 months

enot
assessable)

TMZ: 31.4

months (95%

CI 27.7e47.1)

Combination:

16.7 months

(95% CI 11.4

e24.2); TMZ:

16.7 months

(12.0e32.0)

The AEs of grade

3 (>50%) in

combination with

CCNU

NCT 01149109

Cilengitide124 Randomized

phase III study of

cilengitide in

combination with

TMZ/RT vs

standard treatment

alone

545 participants

with MGMT-

methylated GBM

(>18 years)

Combination:

26.3 months

(95% CI 23.8

e28.8); TMZ:

26.3 months

(23.9e34.7);

(HR 1.02,

95% CI 0.81

e1.29,

P Z 0.86)

Combination:

13.5 months

(95% CI 10.8

e15.9); TMZ:

10.7 months

(8.1

e13.3); HR
0.93, (95% CI;

0.76e1.13,

P Z 0.46)

No overall

additional toxic

effects with

cilengitide, the

AEs of grade 3

(<20%)

NCT 00689221

Disulfiram142,143 Randomized

controlled trial of

disulfiram in

recurrent GBM

88 participants

with previous

diagnosis of

GBM/23 recurrent

TMZ-resistant

GBM patients

7.1 months

(95% CI: 5.8

e8.5) in

recurrent

GBM

1.7 months

(95% CI: 1.4

e1.9) in

recurrent

GBM

Only one patient

(4%) had DLT,

MTD of

disulfiram:

500 mg/day

NCT 02678975,

NCT 03034135

AEs, adverse events; CI, combination index; CCNU, lomustine; DLT, dose-limiting toxicity; HR, hazard ratio; OS, overall survival; PFS,

progression-free survival; RT, radiotherapy; TMZ, temozolomide.
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encouraging results, on the one hand, support that 75 can enhance
the therapeutic effect of TMZ on GBM, on the other hand, also
show that induction of autophagy can be an effective strategy to
improve chemotherapy resistance.

3.1.2. Combination autophagy inhibitors with TMZ therapy
At present, many studies have proved that autophagy is crucial to
the occurrence and growth of GBM, and the development of GBM
can be significantly reduced by inhibiting autophagy147. At the
same time, studies have shown that autophagy endows glioma
with the characteristics of resistance to RT, chemotherapy, and
high recurrence. Therefore, the combination of autophagy in-
hibitors and TMZ is a promising treatment for GBM. Chloroquine
(76, CQ, Fig. 12) can accumulate in lysosomes, thereby increasing
the pH value in lysosomes by preventing autophagosome-
lysosomal fusion to inhibit mitochondrial autophagy148. Preclini-
cal evaluation showed that 76 could effectively block autophagy
of brain glioma cells in mice U87MG tumor subcutaneous trans-
plantation model and improve their chemosensitivity to TMZ149.
Early evidence that 76 can reach the CNS was demonstrated in a
small randomized clinical trial in which it was used in combina-
tion with conventional therapy to improve OS in patients with
GBM. Meanwhile, the results of a recent clinical trial also showed
that 76 combined with TMZ had good toxicity and extended OS.
This supports further clinical studies of 76150. Hychroxy-
chloroquine (77, HCQ, Fig. 12) is a derivative of 76 and an
autophagy inhibitor. The cumulative retinal toxicity of 77 is
smaller than 76151. However, results from a phase I/II clinical trial
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showed that 77 combined with TMZ presented significant toxicity
and side effects in newly diagnosed GBM patients, with no sig-
nificant improvement in OS152. Further development of com-
pounds with more autophagy inhibitory activity than 77 and low
toxicity is worth studying.

3.1.3. ALDH1A3 inhibitors potentiate TMZ efficacy to GSCs
Studies have shown that aldehyde dehydrogenase 1A3
(ALDH1A3) is regulated by autophagy during chemotherapy and
can directly participate in the resistance against TMZ treatment
and lead to poor prognosis of GBM patients. The researchers
found that ALDH1A3 knockout glioma cells were more sensitive
to TMZ treatment than ALDH1A3 wild-type glioma cells. They
also found that the use of higher concentration of TMZ induces
autophagy. These results suggest that autophagy may be induced
by chemotherapy, playing a vital role in chemoresistance153.
Meanwhile, emerging evidence suggests that GSCs can lead to
TMZ resistance and tumor recurrence due to their ability to self-
renew and invade adjacent tissues154. Recent studies have shown
that imidazole[1,2-a]pyridine derivatives, 78 (Fig. 12), have a
nanomolar to picomolar efficacy against GBM stem cells as
ALDH1A3 inhibitors155. Therefore, inhibition of ALDH1A3 may
be a new and promising anti-GBM method to improve TMZ
resistance. Disulfiram (79, DSF, Fig. 12) has been widely reported
as an ALDH inhibitor, but its inhibitory activity against ALDH is
not apparent when used alone. Only copper support can show
significant ALDH inhibitory activity in U251MG, U87MG, and
U373MG GBM cell lines. As an old drug that has been in clinical
use for over 70 years (approved by FDA in 1951), 79 has well-
established PK properties and the ability to penetrate BBB. The
results of the first small phase I clinical trial of 79 and TMZ in the
treatment of GBM showed that the combination is safe and can
prolong PFS to some extent, which supports further clinical trials
of 79, especially 79 with concurrent Cu administration, in
GBM156.
Figure 12 The combination therapy of effective molecules and TMZ (

inhibitor against the PN-157, MES-267, and MES-374 cell lines were 25

anism of copper accumulation involved in the neurotoxicity of disulfiram

inhibitors highlights the conserved nicotinamide pharmacophore. The mai
3.1.4. Combination PARP inhibitors with TMZ therapy
Inhibition of poly(ADP-Ribose) polymerases 1 and -2 (PARP-1
and PARP-2) activated by DNA single- and double-strand breaks
and promotion of their repair through chromatin relaxation and the
supplementation of other repair proteins is another strategy to
enhance the activity of TMZ. The cytotoxicity of TMZ could
potentially enhanced by PARP inhibition through blocking the
base excision repair (BER) pathway157. So far, olaparib (80),
rucaparib (81) and niraparib (82, Fig. 12) have been approved by
FDA to treat certain ovarian cancers158. While veliparib (83) is in
the late stage of clinical development159. Developed by Pfizer,
talazoparib (84) was approved in the USA for the treatment of
adult patients with harmful or suspected deleterious germline
BRCA-mutated, negative HER2, locally advanced or metastatic
breast cancer160. Olaparib (80, AZD2281, Fig. 12) potentiated
radiation and TMZ in GBM models but with limited brain pene-
tration. Clinically, 80 aggravates TMZ-associated hematological
toxicity and requires intermittent administration. The PK, safety,
and tolerability of 80 and TMZ against recurrent GBM were
evaluated in the latest OPARATIC trial. The results showed that
80 could reach central GBM tumors at effective concentrations.
The clinical results support its further clinical development and
highlight the need for better preclinical models161. Rucaparib (81,
AG014699, Fig. 12) is the first PARP inhibitor to be evaluated in
clinical trials. In several preclinical studies, 81 significantly
improved the efficacy of TMZ in various solid tumor models.
However, preclinical studies in the treatment of GBM showed that
81 was excluded from the CNS by the BBB, which limited the
efficacy of 81 in the in-situ GBM xenotransplantation model162.
Veliparib (83, Fig. 12) combined with TMZ had a stronger
inhibitory effect on MSH6-inactivated orthodontic xenograft tu-
mors, compared with TMZ monotherapy159. Talazoparib (84,
BMN 673, Fig. 12) is currently the most potent clinically used
PARP inhibitor (PARP-1 IC50 Z 1.3 nmol/L). Meanwhile, studies
have shown that EGFR-amplified GSCs have significant
77, R1 Z H, R2 Z H, R3 Z 4-F, the IC50 values of this ALDH1A3

.2, 63.4 nmol/L, and 2.58 pmol/L, respectively). The chemical mech-

(DSF) is briefly demonstrated. Red coloration of the bond in PARP

n nitrosoureas with good BBB penetration.
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sensitivity to 84 treatment163. A Phase II trial of 84 for the
treatment of recurrent high-grade gliomas is currently being
recruited by the university of Hong Kong (NCT04740190).

Among other PARP inhibitors, BGB-290 (85, pamiparib,
Fig. 12), a potent and selective third-generation PARP inhibitor
(PARP-1 IC50 Z 1.3 nmol/L, PARP-2 IC50 Z 0.9 nmol/L)
showed the ability to cross the BBB in C57BL/6 mice with brain-
to-plasma ratios in the range of 17%e19%164. The combination
effect of 85 and TMZ was evaluated in cellular assays and in
animal models and the results indicated that combination of 85
and TMZ significantly delayed resistance without additional
toxicity157. In clinical studies, 85 is currently being studied as a
maintenance treatment for platinum-sensitive ovarian and gastric
cancers in phase III clinical trials164. A phase I trial of 85 and
TMZ in treating IDH-1/2-mutant gliomas is recruiting to study the
side effects and best dose of 85 and TMZ (NCT03749187). INO-
1001 (86, Fig. 12) is a PARP-1 inhibitor that blocks the repair
process of N-methylpurines generated by TMZ. The water-soluble
PARP-1 inhibitor amelparib, JPI-289 (87, Fig. 12) is a potential
neuroprotective agent for the treatment of acute ischemic
stroke165. The neuroprotective effect of 87 may be due to its
ability to attenuate the permeability of the BBB and decrease the
brain edema. In preclinical evaluation, PARP inhibitor AG14361
(88, Fig. 12) combined with TMZ resulted in complete tumor
regression in mice for more than 60 days166. The study also
showed that 88 increased TMZ activity in all MMR-proficient or
MMR-deficient cells, overcoming TMZ resistance167. CEP-8983
(89, Fig. 12) is the selective PARP inhibitor. Studies have
shown that 89 and its prodrug CEP-9722 are effective chemo-
sensitizing agents against chemotherapy-resistant tumors when
used in combination with TMZ. Fluzoparib (90, SHR-3162,
Fig. 12) is a novel PARP inhibitor undergoing clinical trials168.
Iniparib (91, BSI-201, Fig. 12) was thought as a PARP1 inhibitor
that has clinical activity in cancers mediated by mismatch repair
defects, such as triple-negative breast cancer and pancreatic can-
cer with BRCA2 mutations169. However, later clinical studies
found that 91 did not have the typical characteristics of PARP
inhibitors and had no significant inhibitory effect on PARP. Even
so, as a prodrug with a simple chemical structure, 91 can cause
cell death through intracellular conversion to nitro ions. And a
phase II study of 91 has shown that 91 is well tolerated with RT
and TMZ in newly diagnosed GBM patients and shows potential
antitumor activity. Doses need to be optimized (frequency and
sequence) before other efficacy studies can be conducted170. In
general, PARP inhibitors could improve the efficacy of TMZ in
the clinical treatment of GBM, but the brain penetration is a major
limitation of the use of PARP inhibitors.

3.1.5. Nitrosoureas-TMZ combination therapy (MGMT
methylated)
Nitrosoureas are a kind of the most classical agents in the treat-
ment of GBM. In clinical use of nitrosoureas, lomustine (92,
Fig. 12), carmustine (93, Fig. 12) and fotemustine (94, Fig. 12)
have good BBB permeability171. Data from many clinical trials
also indicated that nitrosoureas had better benefits for patients
with MGMT methylation than those without MGMT methylation.
Lomustine (92) a nitrosourea compound, is one of the most
effective drugs to treat GBM. 92e94 are the most used com-
pounds clinically. Studies have indicated that 92 is generally better
than 93 in oral formulation and has better safety profile.

In the setting of a unrandomized phase II trial and a random-
ized phase III trial (the CeTeG/NOA-09 trial), data suggested that
92-TMZ plus RT might improve survival compared with TMZ
chemoradiotherapy in newly diagnosed GBM with MGMT
methylation. However, due to the limited number of patients in
clinical trials, the results still should be interpreted with
caution140.

3.2. Adjuvant Tumor-Treating Fields (TTFields) with TMZ in
GBM

Tumor-Treating-Fields (TTFields) is a low intensity electric field
transformed by medium frequency (200 kHz), which is an anti-
mitotic treatment. TTFields can deliver a low intensity alternating
electric field to the tumor, which interferes with GBM cell division
and organelle assembly. In a 2012 phase III trial of NovoTTF-
100A, the chemotherapy-free treatment device appeared to be
comparable in efficacy and activity to chemotherapy for recurrent
GBM. Although the results showed that treatment with NovoTTF-
100A alone did not improve OS, TTFields had some advantages in
toxicity and quality of life. Results from a 2015 Phase III clinical
trial showed that adding TTFields to the standard treatment of
TMZ resulted in significant improvement in patients’ PFS and
OS172.

4. Other therapies

4.1. Immunotherapies

A variety of cancers now benefit from these immunotherapies.
More and more researchers are trying to use immunotherapy to
solve the treatment bottleneck of GBM.

Disialoganglioside (GD2) is highly expressed in most pediatric
patients with osteosarcoma, neuroblastoma, and GBM173. Dinu-
tuximab (an anti-GD2 monoclonal antibody) was approved by
FDA in 2015 and is currently used as a combination immuno-
therapy regimen for high-risk neuroblastoma in children174.
Studies data showed that the anti-tumor effect of dinutuximab on
GBM cells provided theoretical support for GD2 targeted immu-
notherapy of GBM175.

Pembrolizumab is an IgG4 monoclonal antibody targeting PD-
1. In a phase II study of pembrolizumab alone or with bev-
acizumab showed that pembrolizumab was well tolerated but of
limited benefit in patients with recurrent GBM176. Immune ana-
lyses showed that in most GBM patients, pembrolizumab treat-
ment failed to induce an efficient immune response, possibly due
to the lack of T cells in the tumor microenvironment and the
preponderance of CD68þ macrophage177.

At present, there are synergistic immunotherapies for GBM to
improve the efficacy of immunotherapy in GBM treatment. For
example, anti-interleukin-6 (IL-6) treatment was found to reduce
CD40 expression in GBM-associated macrophages. It was also
found that antibody cocktail immunotherapy combined with
checkpoint blockade and dual targets of IL-6 and CD40 may
provide a good therapeutic prospect for GBM and other solid
tumors.

4.2. Viral therapies and vaccines

Chimeric antigen receptor T (CAR-T) cell therapy is one of the
most promising immunotherapies in the last decade. Currently,
there are many CAR-T products in clinical stage for GBM treat-
ment. Oncolytic viruses (OVs) are a new class of anticancer drugs
that promote tumor regression by preferring replication in tumor
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Compd. HBD MW cLogP Animal models/

Evaluation index

Preclinical assessment of

BBB

Associated with

autophagy

VEGFR inhibitor:

regorafenib (7)

3 483 4.8 BALB/c nude mice or

NOD/SCID mice with

U87 or U138 cell

orthotopic brain tumor/

tumor volume

P-gp substrate limited

brain penetration in mice

Inducing lethal autophagy

arrest by stabilizing

PSAT1 in GBM184

EGFRvIII inhibitor:

afatinib (18)

2 486 4.1 Athymic mice with

U373 cell orthotopic

brain tumor/Tumor

volume47

P-gp and Bcrp substrate EGFRvIII expressing

xenografts depend on

autophagy for accelerated

regrowth after therapy185

EGFR inhibitor:

AZD3759 (20)

1 460 4.4 Triple-knockout mice/

brain-to-plasma ratios

High rat Kpuu, brain and

Kpuu, CSF in rat; in cyno

by PET

No data reported

EGFRvIII inhibitor:

NT113 (21)

2 506 4.8 Athymic mice with

transplanted

subcutaneously human

GBM tissues/percent

survival

High mouse B/P No data reported

Pan-PI3K inhibitor:

BKM120 (26)

2 410 2.3 Nude rats carrying

orthotopic U87 MG

xenografts/Percent

survival

Effective inhibition of

pAKT in rat/human brain

tissue

26 can induce autophagy.

The use of 26 with

autophagy inhibitors is a

good strategy186

Pan-PI3K inhibitor:

GDC-0084 (30)

2 382 0.3 Mice bearing U87 or GS2

intracranial tumors/

Tumor volume67

High mice [Brain]u/

[Plasma]u

No data reported

Aurora A inhibitor:

MLN8237 (58)

2 519 6.2 Intracerebral-4687 GBM

tumor mice/percent

survival

Effectively crosses the

BBB in PDOX models of

pGBM

58 may induce autophagy

by decreasing TPR

expression187

HBD, hydrogen bond donor; MW, molecular weight; PSAT1, phosphoserine aminotransferase 1; TPR, translocated promoter region.
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cells, inducing immunogenic cell death, and stimulating host anti-
tumor immunity178. Daiichi Sankyo recently announced that OV
therapy Delytact (teserpaturev/G47D) has been granted condi-
tional and time-limited approval by the Ministry of Health, Labor
and Welfare (MHLW) in Japan for the treatment of malignant
glioma. It’s the first oncolytic virus ever approved for treatment of
malignant glioma or any primary brain cancer.

Oncolytic adenovirus DNX-2401 is a highly reproducible
genetically modified virus capable of infecting and killing glioma
cells and stimulating anti-tumor immune responses. The results of
clinical trials show that DNX-2401 can prolong the survival of
patients with recurrent GBM to a certain extent and has good
safety179. Collectively, DNX-2401 can induce an immune
response to the tumor, which may help some patients to fully
respond to significantly improve survival. Further studies could be
conducted to determine which patients would benefit the most.

The personalized vaccination trial, based on the analysis of
mutations and transcriptomes and immunopeptidomes of newly
diagnosed GBM, also shows some feasibility and therapeutic
potential180. Rindopepimut (CDX-110) is a peptide vaccine tar-
geting EGFRvIII, which had been approved for an international
phase III trial (NCT01480479) in 745 patients with EGFRvIII-
positive GBM. However, the trial result was negative showing
no difference in outcome with addition of rindopepimut to stan-
dard chemotherapy181.

DCVax�-L, an autologous dendritic cell vaccine, has
completed its phase III trial in 331 patients with newly diagnosed
GBM. Preliminary clinical results suggest that adding DCVax�-L
to the standard treatment of patients with GBM is feasible, safe,
and may extend survival182. ICT-107, also an autologous dendritic
cell vaccine, has completed a phase II trial in 124 newly diagnosed
GBM patients. The results showed that ICT-107 can significantly
improve PFS, which has good clinical significance183.

So far, trials data from autologous dendritic cell vaccines
have shown superior therapeutic efficacy to peptide vaccines,
and this approach to GBM treatment warrants further study and
analyses.
5. Future perspectives

In conclusion, we discuss the current therapeutic potential of
bioactive small molecule inhibitors of different targets for GBM
as well as their current clinical progress and future development
potential. We screened 7 small molecules (7, 18, 20, 21, 26, 30,
and 58) with good activity and high therapeutic potential from the
mentioned small molecules (selection criteria: good target inhib-
itory activity; adequate BBB permeability) summarizes their key
properties, models and assessment criteria for preclinical use and
current advances in autophagy in Table 4.

Currently, most of small molecule inhibitors have failed at the
clinical level of GBM treatment. On the one hand, there is a lack
of specific targets. Most of the existing targets, such as PI3K and
mTOR, are targets of peripheral tumors, which leads to the exis-
tence of relatively high toxicity and side effects. On the other
hand, due to the restrictions of BBB, it is difficult for drugs to
enter the CNS and reach sufficient effective concentration. Most
small molecule inhibitors used for GBM treatment are kinase
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inhibitors. However, relatively few kinase inhibitors are currently
available specifically for GBM treatment. Only several molecules,
20 (EGFR inhibitor), 21 (EGFR inhibitor), 30 (PI3K inhibitor)
were designed to achieve the brain penetration. CNS drug can-
didates not only require high potency and selectivity against the
intended therapeutic target, but also optimal brain penetration to
achieve the desired pharmacological exposure. For example, off-
target and inadequate BBB penetration are major limitations of
CDK4/6 inhibitors for GBM treatment. While according to the
existing inhibitors and small molecules with satisfyingly biolog-
ical activity, EGFR inhibitors with adequate BBB permeability,
such as 20 and 21, deserve more research in the treatment of
GBM. Furthermore, 30 and 26 of PI3K inhibitors have significant
brain penetration.

Chemoresistance is a hallmark of GBM recurrence, and there is
strong experimental evidence that chemoresistance and tumor
recurrence are associated with stem cell characteristics in GBM.
GBM chemical resistance to TMZ can be improved by targeting
the highly active ALDH1 associated with GSCs or directly tar-
geting GSCs. Meanwhile, targeted inhibition of autophagy and
adaptive unfolded protein response (UPR) may be a strategy to
improve the efficacy of chemotherapeutic agents to overcome drug
resistance caused by autophagy and UPR. The high genomic het-
erogeneity of GBM is the main reason for the lack of efficacy of
targeted therapy in patients. Inhibition of purine synthesis may be a
promising strategy for overcoming therapeutic resistance in GBM,
a genome-heterogeneous disease. Meanwhile, to avoid immune
escape and tolerance, the dosage design and timing of adminis-
tration in combination should also be well studied.

Also, elderly patients have become one of the reasons for poor
prognostic factors in GBM with the increasing longevity of people
in world population and the higher incidence of GBM in elderly
patients. The physical condition of elderly patients and whether
the damage of drugs to the aging brain is irreversible are also
factors that need to be considered in the process of drug devel-
opment and optimization.

From the perspective of innovative GBM treatment strategies,
NSC-CEAd-S-Pk7, an oncolytic adenovirus delivered to across
the BBB via NSCs, is feasible and safe in patients with newly
diagnosed high-grade glioma. This demonstrates that drug de-
livery by NSCs may be an innovative and effective central tar-
geting strategy. Other innovations include combining the capacity
of natural proteins and viral particulates to cross the BBB with
inhibitors that target specific proteins to achieve GBM treatment
via intravenous injection. Finally, peptide vaccines are an
invaluable tool for the application of immunotherapy in the
treatment of GBM.

In the treatment of cancer, though, the efficacy of bio-
macromolecules is increasingly recognized as a priority. How-
ever, in the treatment of GBM, small molecule inhibitors have a
greater advantage in entering the CNS to exert efficacy due to
their relatively simple structure. Meanwhile, the cost of the
compound itself is much lower than that of biological macro-
molecules, which makes it more acceptable to patients. As the
molecular mechanism and biomarkers of GBM are more clearly
studied in the future, more targeted small molecule compounds
with excellent BBB permeability will still be the main research
and development direction of GBM treatment drugs. How to
combine the advantages of biological macromolecules and small
molecule inhibitors to complement each other and bring benefits
to GBM patients is also worthy of researchers’ consideration
and efforts.
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