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Purpose: In functional MRI (fMRI), faster sampling of data can
provide richer temporal information and increase temporal
degrees of freedom. However, acceleration is generally per-

formed on a volume-by-volume basis, without consideration of
the intrinsic spatio-temporal data structure. We present a novel

method for accelerating fMRI data acquisition, k-t FASTER
(FMRI Accelerated in Space-time via Truncation of Effective
Rank), which exploits the low-rank structure of fMRI data.

Theory and Methods: Using matrix completion, 4.27� retro-
spectively and prospectively under-sampled data were recon-

structed (coil-independently) using an iterative nonlinear
algorithm, and compared with several different reconstruction
strategies. Matrix reconstruction error was evaluated; a dual

regression analysis was performed to determine fidelity of
recovered fMRI resting state networks (RSNs).

Results: The retrospective sampling data showed that k-t
FASTER produced the lowest error, approximately 3–4%, and
the highest quality RSNs. These results were validated in pro-

spectively under-sampled experiments, with k-t FASTER pro-
ducing better identification of RSNs than fully sampled
acquisitions of the same duration.

Conclusion: With k-t FASTER, incoherently under-sampled
fMRI data can be robustly recovered using only rank con-

straints. This technique can be used to improve the speed of
fMRI sampling, particularly for multivariate analyses such as
temporal independent component analysis. Magn Reson
Med 74:353–364, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Strategies for accelerating functional MRI (fMRI) data
acquisition have received strong interest since the tech-
nique was introduced for neuroimaging. Faster sampling
of blood oxygenation level dependent (BOLD) signals
provides improved statistical power and richness of the
temporal modeling in brain dynamics measured with
fMRI (1). Furthermore, higher sampling bandwidths can

reduce aliasing of physiological noise (2) and provide
finer characterizations of hemodynamic responses.

One application that gains significantly from acceler-
ated whole brain fMRI is the estimation of brain connec-
tivity, for example, in resting state networks (RSNs) (3,4).
Higher sampling rates can reduce the imaging durations
required to achieve RSN estimation (to a limit, dictated by
the low-frequency nature of the fluctuations), or more
importantly, improve estimation of RSNs with greater
temporal dimensionality over the same total scan time.
Often, fMRI data are modeled as a linear mixture of com-
ponents (commonly using statistically independent com-
ponent models), and robust unmixing of these RSN
components can require many time points (5). Addition-
ally, recent work has suggested that higher sampling rates
can reveal frequency-specific RSN characteristics unavail-
able to methods with lower sampling bandwidths (6).

Acceleration in fMRI has until recently been predomi-
nantly parallel-imaging based, working on an image-by-
image basis without exploiting any structure in the tempo-
ral domain. The classic approaches of SENSE (7) and
GRAPPA (8) can shorten echo train lengths in two-
dimensional (2D) echo-planar imaging (EPI) acquisitions,
although these methods only enable small reductions in
volume measurement times. Faster sampling with 3D EPI
can be achieved using parallel imaging in both phase-
encoded directions (9). Methods that use coil-sensitivity
information in conjunction with regularized inverse prob-
lem solvers (10,11) have demonstrated extremely fast sam-
pling rates of whole brain volumes at 100 ms resolution.
These methods, however, can suffer from low (and spatially
variable) spatial resolution. Simultaneous multislice imag-
ing (1,12,13) has emerged as a successful acceleration strat-
egy that exploits coil sensitivity information without major
signal-to-noise ratio (SNR) penalties or loss of spatial reso-
lution. Inevitably, however, all of these methods have limits
on acceleration, dependent on coil numbers and geometry.

In contrast to time-independent methods, k-t accelera-
tion uses information across both space and time to accel-
erate imaging. In other words, k-t methods exploit
redundancy and/or structure in k-t space (or equivalently
in x-f space) to reduce sampling requirements. One of the
first such methods demonstrated in fMRI, UNFOLD (14),
shares signal bandwidth across multiple aliased spatial
locations. The k-t BLAST method (15) further exploits
spatio-temporal structure and prior information to reduce
sampling requirements in dynamic imaging. While these
methods have been successful in applications such as car-
diac imaging, where the signals of interest have strong
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periodicity, they have not been widely applied in fMRI
due to its broad spectrum temporal characteristics (16).

Compressed sensing methods (17) can also exploit
properties of k-t space to facilitate under-sampling, but
rather than requiring a specific distribution of the x-f sig-
nals in relation to the signal aliasing patterns, accelera-
tion is facilitated by a more general consideration of data
sparsity under a known transform. Although sparse k-t
imaging methods date from the very onset of compressed
sensing in MRI (18), adoption in fMRI has been limited
due to considerable low-frequency signal content which
limits sparsity in the temporal frequency domain. The k-
t FOCUSS method (19) combines the features of prior
information (k-t BLAST) with sparsity-promoting recon-
struction (compressed sensing), and has been applied to
fMRI using a principal component analysis (PCA)-based
temporal sparsifying transform (20,21). Some groups
have also used compressed sensing in a time-
independent manner for accelerating fMRI on an image-
by-image basis, focusing only on its limited spatial spar-
sity characteristics (22,23).

Another class of k-t methods fit low-rank models to
the data, assuming that the measured data can be repre-
sented as a summation of a small number of spatial
maps modulated by associated time-series (24,25). These
methods do not require any specific temporal structure,
and use training data to estimate temporal components
(similar to k-t FOCUSS) followed by estimation of the
associated spatial components. Under-sampling is possi-
ble because a low-rank model has fewer unknowns than
a full-rank model, and hence requires fewer data points
to recover. These methods, however, require robust esti-
mation of a temporal basis before reconstruction, which
can be difficult using a separate acquisition or a subset
of the data.

Recently, a new mathematical framework for recon-
structing randomly under-sampled low-rank matrices has
been developed, called matrix completion (26). Analo-
gous to compressed sensing, matrix completion allows
recovery of a randomly under-sampled low-rank matrix.
In contrast to the low-rank model-fitting methods
described above, matrix completion estimates the tempo-
ral and spatial subspaces simultaneously, and no train-
ing data are required (27). Furthermore, the theoretical
matrix completion problem has been studied with noisy
sampling (28), with evidence suggesting that it can be
more robust than other methods with data that are only
approximately low-rank. A general framework using this
approach has been developed for accelerated MR imag-
ing (29,30), and has recently also been explored in task-
based fMRI (31).

In this study, we introduce the novel application of
matrix completion to accelerate the acquisition of resting
state fMRI data, using a 3D sampling strategy and a new
reconstruction approach (32). This is motivated by the
observation that resting fMRI data are nearly always
modeled as a mixture of distinct temporal (functional)
processes that are distributed across space in functional
networks, which is precisely the definition of a low-rank
space-time (k-t) matrix. In fact, independent component
analysis (ICA)-based analysis of resting state fMRI data
often involves PCA dimensionality reduction (33), which

explicitly enforces the low-rank representation on the
fMRI data matrix by discarding low variance principal
components, assumed to be primarily unstructured (e.g.,
thermal) noise. In effect, matrix completion is used to
directly estimate the principal components (spatial maps
and time-series) of the fMRI data.

We call this approach k-t FASTER: FMRI Accelerated
in Space-time via Truncation of Effective Rank. We
explore its efficacy in recovering k-t matrices and esti-
mating RSNs without coil sensitivity information in both
retrospective and prospective under-sampling experi-
ments with a 4.27� acceleration factor.

THEORY

The proposed k-t FASTER acceleration method relies on
low-rank matrix completion strategies (28) to reconstruct
under-sampled image time-series data. What makes fMRI
so well suited to this type of acceleration is that its data
are inherently low rank, composed of a relatively small
number of spatially coherent temporal processes (i.e.,
spatial maps and associated time-series), so that each
voxel carries information about many other voxels. In
reality, random (e.g., thermal) and structured (e.g., physi-
ological, motion) noise sources are also present, causing
the k-t matrix to be only approximately low rank
(although many of these can also be well represented as
low rank) (34).

Figure 1 illustrates the difference between standard
acquisition strategies and the proposed k-t FASTER strat-
egy. In one common approach to resting-state fMRI, the
rank r k-t matrix is fully (and inefficiently) sampled and
then PCA dimensionality reduction is used to
“compress” the data before applying ICA (35). In this
context, compression refers to the fact that the resulting
(denoised) matrix can be represented with fewer coeffi-
cients. Recognizing the compatibility of PCA compres-
sion with the final fMRI analysis, k-t FASTER efficiently
under-samples the acquired k-t matrix and uses matrix
completion methods to directly approximate the princi-
pal components. Alternatively, k-t FASTER can be
viewed as a technique that uses nonlinear algorithms to
“fill-in” the nonsampled k-t matrix locations using a
low-rank constraint. This matrix can then be used (for
example) to estimate RSNs by searching the
dimensionality-reduced space for independent compo-
nents, which have been shown to correspond to func-
tionally meaningful networks of brain activity (36).

Matrix Completion

The matrix completion (MC) problem can be intuitively
understood by comparison to compressed sensing (CS).
In CS, under-sampled images are recovered by assuming
the data can be represented in a known basis using a
limited number of non-zero coefficients, i.e., using
“sparsity” to constrain reconstruction. In MC, the prop-
erty of matrix rank replaces sparsity, where a matrix of
low rank has few non-zero singular values. Thus the con-
cept of compressibility in CS for sparse signals applies
similarly to low-rank matrices: they contain less informa-
tion, or fewer degrees of freedom (DOF), than their full-
rank counterparts and can therefore be under-sampled.
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However, where CS typically requires a prespecified
basis and estimates sparse coefficients, MC has no such
requirement.

Following the framework laid out in previous low-rank
imaging work (24,29,30), consider the single-channel
low-rank signal model:

X ¼ U S V� þN [1]

where U is an m� r matrix of normalized spatial compo-
nents (maps), V is an n� r matrix normalized temporal
components (time-courses), S is an r � r diagonal matrix
of weights, and N is an m� n matrix of additive noise.
The first term in Eq. [1] is an r-component outer product
model, which is written as a rank r singular value
decomposition (SVD) of a matrix with m voxels and n
time points. Because the SVD can be used to compute
the PCA decomposition of a matrix, Eq. [1] shows the
link between low-rank signal models and PCA dimen-
sionality reduction.

The total DOF in the signal are the number of inde-
pendent coefficients in the SVD: rðmþ n� rÞ. Notably,
with an undersampling factor R, each additional meas-
ured time point adds m=R additional samples, but only r
additional DOF, meaning that the ratio of samples to
unknown matrix DOF decreases with increasing n
(assuming m=R > r, which is typical of imaging data-
sets). Although theoretical sampling requirements have
been characterized (37), practical evaluations of matrix
recovery algorithms have investigated performance in
regimes where the number of samples is nearly the same
as the total DOF (38).

In this single channel model, acceleration is limited by
the intrinsic structure of the data, not by external quanti-
ties such as the number or geometry of receiver coils. A
plot of the singular values, ordered by decreasing var-
iance, for a set of representative fMRI data are shown in
Figure 2. The moderately low-rank structure is apparent,
with the non-zero asymptote reflecting the presence of
noise.

Iterative Hard Thresholding with Matrix Shrinkage

Several strategies have been developed to solve the MC
problem. Early work in low rank dynamic MRI used a
matrix factorization method (29,30) that constructed low
rank estimates by iteratively incrementing the rank of
estimates until the target rank is reached. This algorithm
however, was designed for substantially lower target
ranks (e.g., r¼ 5 for dynamic contrast enhanced breast
imaging) than appropriate for fMRI, where analyses typi-
cally aim to estimate tens to hundreds of functional com-
ponents, with higher dimensionalities reflecting greater
richness of information about brain dynamics (39).

In this study, we introduce the use of reconstruction
approach based on the generalized Iterative Hard Thresh-
olding algorithm (40), which solves the constrained opti-
mization problem:

FIG. 1. Schematic diagram illustrating the

motivation for the k-t FASTER acceleration
strategy. In the standard imaging

approach, the full k-t matrix is acquired
using conventional fMRI acquisition meth-
ods. As a preprocessing step, dimension-

ality reduction is performed by means of
PCA, and information is discarded. Using

k-t FASTER, the k-t matrix is under-
sampled, and a matrix completion algo-
rithm is used to directly reconstruct a

rank-constrained dataset.

FIG. 2. Normalized singular values from fMRI data with 512 time

points. These singular value decays reflect approximately low rank
nature of fMRI data, where after mean centering,>80% of the
signal variance is captured in the top 25% components. Dashed

lines represent fMRI data from six different subjects, with mean
values indicated with the solid line.
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min kY �F X̂
� �
k2

s:t: rank X̂
� �

¼ r
[2]

where X̂ is the matrix estimate, Y is a vector of measure-
ments, and F is a measurement operator that provides
vectorized matrix samples. The solution to this problem
comes from drawing the optimal estimate from the set of
all rank r matrices (a union of linear subspaces) (41) by
means of orthogonal projections, and is calculated by the
following procedure:

Xnþ1 ¼ SrðXn þ mðV Xð Þ �VðXnÞÞÞ [3]

where Xn is the nth matrix estimate, m is a step size
parameter, V is the matrix sampling operator, and Sr is
the hard thresholding (orthogonal projection) operator:

si !
si if i � r

0 otherwise

(
[4]

where si is the ith singular value of the matrix, and r is
the fixed rank cutoff.

An alternative approach to the direct optimisation of
the nonconvex rank constraint in Eq. [2] is a relaxed
approach that replaces the nonconvex rank constraint
with a convex nuclear norm constraint (42), which has
several advantages. A simple approach to the optimiza-
tion of this relaxed cost function is very similar to Eq.
[3], but uses the alternative shrinkage operator:

si !
si � t if si � t

0 otherwise;

(
[5]

where t is some predefined parameter.
To combine advantages of both of these approaches,

the thresholding procedure was modified to incorporate
a shrinkage step which changes the thresholding opera-
tor (Eq. [4]) to:

si !
si � t if i � r

0 otherwise

(
[6]

where t is an additional parameter which shrinks the
remaining singular values by a fixed amount. Here, we
use a floating threshold, so that t ¼ csrþ1 with a propor-
tionality constant 0 < c � 1 (see Appendix A1 for algo-
rithm details). Note that when c ¼ 0, this reduces to the
standard hard thresholding operator. This modification
makes the algorithm similar to the Fixed Point Continua-
tion approach developed by Goldfarb and Ma (43), which
also makes use of both hard thresholding and soft
shrinkage operations, and has demonstrably better per-
formance in recovery of matrices that have moderate
(instead of very low) rank. The floating shrinkage param-
eter is also similar to the nonconvex spectral penalty
introduced in Lingala et al (44). The final step of the
algorithm is replacement of the originally sampled data
back into the matrix estimate, which was found to
improve reconstruction fidelity. However, this modifies
the distribution of singular values, and the final matrix

estimate is no longer strictly rank r (see Supporting Fig.
S1, which is available online).

One advantage of the iterative hard threshold and
matrix shrinkage (IHTþMS) algorithm is its simplicity, as
well as good empirical performance in fMRI data, which
has (a) approximately low rank structure, (b) very large
matrix sizes, and (c) high target ranks. With target ranks
on the order of 102, incremented rank methods can be
inefficient, whereas IHTþMS can use SVD approximation
methods to speed up computation and reduce memory
requirements. As fMRI k-t matrices tend to have a very
large spatial dimension and smaller temporal dimension,
the singular values and right singular vectors of X can be
computed from the eigenvalues and eigenvectors of
XHX ¼ VS

2V�, which is computationally inexpensive due
to the small temporal dimension. The remaining left sin-
gular vectors can be estimated by computing U ¼ XVS

�1.

METHODS

The k-t FASTER method was evaluated in two ways: using
retrospectively under-sampled data, and in experiments
using a prospectively under-sampled 3D EPI acquisition.

Imaging Parameters

Two datasets of six subjects each were collected on
healthy subjects with informed consent in accordance
with local ethics. The first dataset used a simultaneous
multislice EPI acquisition (1,12) to enable retrospective
sampling of data with a known true k-t matrix at high
temporal resolution. These data were acquired on a 3
Tesla (T) (Siemens Verio, 32-channel head coil) with an
acceleration factor of 8 to achieve whole-brain coverage
with volume TR¼836 ms, spatial matrix size of 106 �
106 � 64 at 2 mm isotropic resolution, and 1075 time
points. These data were used to simulate under-sampled
3D acquisitions similar to our second datasets.

The second dataset used prospective under-sampling to
provide a realistic comparison of k-t FASTER with a
duration-matched fully sampled acquisition. These data
were collected on a Siemens 7T using a 32-channel head coil
(Nova Medical) with a 3D segmented EPI acquisition modi-
fied to allow arbitrary under-sampling of the kz dimension.
The 3D EPI was acquired using an in-plane acceleration fac-
tor of 2 to achieve an appropriate TE for fMRI at 7T, and was
reconstructed in-plane using GRAPPA (8), independently of
and before MC. Potentially, g-factor noise amplification
could produce sub-optimal reconstructions by increasing
error bounds that depend on noise characteristics. However,
in these data collected with a low acceleration factor and 32-
channel coil geometry, noise amplification is not expected to
have a significant impact. The acquisition used a spatial
matrix size of 100 � 98 � 64 at 2mm isotropic resolution,
with 72 time points in the fully sampled case and 304 time
points for the accelerated data. Each subject was scanned
twice with matched 5-min scan durations in the fully
sampled and accelerated cases respectively.

Retrospective Sampling and Reconstruction

We explored retrospective sampling and reconstruction
of k-t matrices to evaluate the k-t FASTER approach in
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comparison with three additional methods under condi-
tions where the full k-t matrix is known. We identify
this as “ground truth” data, although because it is real
measured data it still contains noise and artifacts. For all
methods, these data were Fourier transformed along the
spatial dimensions to produce a simulated 3D k-t space
for retrospective under-sampling and subsequent recon-
struction. These simulations mimicked our prospectively
under-sampled data by under-sampling in the kz dimen-
sion (i.e., measuring planes in kx, ky).

For k-t FASTER reconstruction, sampling was per-
formed by selecting a pseudo-random subset of kz

planes. Sampling of 23.4% was achieved by keeping 8
central kz planes and 7 pseudo-randomly selected outer
kz planes (in total 15 of 64 planes) from each time point
(Fig. 3a). Reconstruction of the data was performed using
the IHTþMS algorithm with target rank of 128, chosen a
priori. The shrinkage thresholding parameter c was set to
0.5, which was tuned to produce the best average results
in the retrospectively sampled data, with a step size m of
0.8.

Acceleration by means of the “keyhole” method uses
data sharing or interpolation to recover missing entries
(45) and continues to receive attention as an acceleration
technique for fMRI (46). We performed a keyhole-type
reconstruction, denoted here as “k-t INTERP,” of our
pseudo-randomly under-sampled data (fully sampled
central k-space, under-sampled outer k-space) by linearly
interpolating across time for every under-sampled k-
space location to estimate the missing data.

We also compared k-t FASTER with the linearly recon-
structed low-rank partially separable functions (PSF)
model (24), which we call “k-t PSF.” In the k-t PSF
approach, a central portion of fully sampled k-space is
used to estimate a temporal basis, which is then used to
least squares fit the grid sampled points. The central 8 kz

planes were used as training data, combined with
sheared grid sampling with an 8� under-sampling factor
(Figure 3b, overall sampling factor of 23.4%). A rank

constraint of 26 was used for the matrix reconstruction
error and RSN data analysis, which produced the lowest
Frobenius norm errors after comparison with a range of
candidate target ranks (see Supporting Fig. S2 for a com-
parison of k-t PSF reconstruction error versus rank).

A final comparison with a simulated long-TR fully
(spatially) sampled acquisition of the same total imaging
duration, which we label “k-t SLOW.” To generate this,
the source data were temporally decimated by selecting
every 4th time point (Fig. 3c), resulting in 25% sampling
of the full k-t matrix.

Prospective Sampling and Reconstruction

In the prospectively under-sampled data, the k-t FASTER
method using pseudo-random under-sampling was com-
pared with the slow, fully sampled 3D EPI acquisition
(k-t SLOW), in separate acquisitions from the same sub-
jects. The k-t FASTER reconstruction here differs slightly
from the retrospectively sampled case, using a lower tar-
get rank of 72 due to the reduced number of time points
in the acquisition. Furthermore, reconstruction was per-
formed on a coil-by-coil basis, and then sum-of-squares
combined. In all other respects, except where explicitly
noted, sampling and reconstruction parameters were
identical to the retrospectively sampled cases.

RSN Data Analysis

Following k-t FASTER image reconstruction, the inverse
Fourier transform and magnitude operation was applied
to produce a magnitude image time-series, which under-
went motion correction and linear registration (FSL
FLIRT) (47) to a standard space for comparison. Dual
regression (48,49), a two-stage multiple linear regression
framework, was used to generate spatial z-statistic maps.
It first performs a spatial regression of each dataset
against the canonical maps to extract a time-series of
regression coefficients corresponding to each map, then
performs a second temporal regression of each dataset

FIG. 3. Representative diagrams of the dif-
ferent kz-t under-sampling patterns stud-

ied. Pseudorandom under-sampling (a),
sheared grid under-sampling (b), and tem-

poral under-sampling (i.e., standard low-
temporal resolution) (c). In all cases, in-
plane (kx-ky) data are fully sampled.
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against this set of time-series. The output is a set of z-
statistic maps that reflect the degree to which each spa-
tial regressor, corresponding to a canonical RSN, is
expressed with a unique time-course in the data. Data
from the retrospective sampling comparisons were eval-
uated using dual regression against a set of 82 resting
state spatial regressors (representing canonical network
spatial maps) derived from high-dimensional group-level
ICA of a large, high quality resting fMRI dataset from the
Human Connectome Project (50,51). Output maps were
null-corrected using a Gaussian and Gamma mixture
model (4).

Voxel-by-voxel correlation coefficients were computed
for the output z-statistic maps against input regressor
maps and the ground truth output maps (retrospective
sampling only) to quantify the reconstruction fidelity of
each map in a single summary statistic. This metric

captures the requirement for correct attribution of unique
time-courses to corresponding spatial networks during
matrix recovery to correctly produce a subject-specific
version of a given RSN.

RESULTS

Retrospective Sampling Results

To illustrate the low-rank matrix reconstruction fidelity,
Figure 4a shows a portion of a k-space magnitude time-
series from a representative dataset. The ground truth
data are shown alongside a rank-128 dimensionality
reduced ground truth (i.e., result of a PCA dimensional-
ity reduction with rank 128) and the k-t FASTER time-
series, with overall correlations of 0.81 and 0.72, respec-
tively. Many transient features of the reconstructed k-
space time-series can be seen between the sampled
points, which would be lost by slower traditional sam-
pling or methods that simply interpolate between the
sampled points. Furthermore, although the transient fea-
tures are recovered imperfectly, many of the reconstruc-
tion artefacts are shared between the k-t FASTER and
rank-128 data (arrows), which emphasizes the fact the
k-t FASTER output reproduces (and rejects) many of the
same variance components as a rank-128 decomposition
of the ground truth that might be used in RSN analysis.
Similarly, Figure 4b shows good recovery of dynamic
features in a real-space voxel time-series segment.

Overall k-t matrix reconstruction fidelity for the vari-
ous methods was evaluated using the fractional Frobe-
nius norm error, defined as:

errFðX̂Þ ¼ 100 � kX̂ � XkF

kXkF

% [7]

where X̂ is the estimated matrix, and X is the ground
truth. Figure 5 shows the errF values for all six retrospec-
tively sampled datasets respectively, including the errF

obtained by performing a rank-128 dimensionality reduc-
tion of the ground truth. With this metric, the k-t
FASTER method produces the lowest errF for all data-
sets, comparable to the amount of error present in a rank
128 truncated ground truth. The k-t PSF reconstruction
produced the next lowest errors, followed by k-t INTERP.
A paired t-test between the errF values for k-t FASTER
versus the k-t PSF method shows a significant difference
(p< 0.05). Further analysis of matrix reconstruction
fidelity can be found in Supporting Figs. S3 and S4.

Although the Frobenius norm results are very promis-
ing, the error metric is effectively scaled by the variance
of the matrix components, and preferentially weights the
first few major components and may not capture the
fidelity of lower variance components that are important
in defining RSNs. Ultimately, the reconstruction meth-
ods need to be evaluated in the context of RSN recovery
using dual regression.

The dual regression results show better representation
of RSN spatial maps for k-t FASTER compared with k-t
PSF, k-t INTERP, and k-t SLOW. Figure 6a shows the
correlations coefficients for each reconstruction method,
across all six datasets and 82 dual regression maps. The
grand means (6 standard deviation) for each method

FIG. 4. a: Example portion of a magnitude k-space time-series
from a k-t FASTER reconstruction (red), compared with the ground

truth (grey) and a rank-128 ground truth time-series (blue). The k-t
FASTER data reproduce many dynamic features of the ground
truth in between sampled points. Arrows point to features that are

common to the k-t FASTER and rank-128 time-series, suggesting
that they reflect the rank constraints rather than errors intrinsic to

the k-t FASTER method. b: Example voxel time-series segment
similarly showing good recovery of dynamic features in the k-t
FASTER reconstruction.
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were: k-t SLOW 0.13 6 0.05, k-t PSF 0.10 6 0.04, k-t
INTERP 0.18 6 0.06, and k-t FASTER 0.22 6 0.08. The
mean difference between k-t FASTER and the other
methods is significant (paired t-tests, P< 0.05 corrected).
The relatively low correlations values reflect the fact that
these correlations were performed against canonical
maps derived from a large set of group-averaged data,
which are expected to show substantial mismatch with
individual subject maps.

The results in Figure 6a could be driven by smoothing
or de-noising in k-t FASTER, which would inflate correla-
tions with the canonical RSNs (which tend to be smooth
as a result of averaging across a large cohort). It is thus
important to ensure that dataset-specific features are being
retained in the reconstruction. Whereas Figure 6a shows
results from regression with the canonical RSN maps
used in the dual regression, Figure 6b shows correlations
against the z-statistic maps output from a dual regression
analysis of the ground truth (subject-specific) maps.
Under this metric, means (6 standard deviation) of the
spatial correlations were: k-t SLOW 0.64 6 0.06, k-t PSF
0.35 6 0.10, k-t INTERP 0.57 6 0.10 and k-t FASTER

0.73 6 0.06. These results also demonstrate a highly sig-
nificant mean difference for k-t FASTER compared with
the other methods (paired t-tests, p<0.05 corrected), indi-
cating that k-t FASTER reconstructions are superior at
retaining the dataset-specific detail.

One feature of these results is that low variance com-
ponents produced lower correlations than high variance
components in the k-t FASTER reconstruction (not
shown), indicating that reconstruction performance is
dependent on component strength. Supporting Figures
S5 and S6 provide more detailed analysis of the average
k-t FASTER dual regression results in context of varying
amounts of rank information.

Figures 7 and 8 show example z-statistic maps from
representative datasets for each method, alongside the
ground truth maps, for an occipital visual RSN and bilat-
eral parietal RSN, respectively. In each of the examples,
characteristics common to each reconstruction method
can be observed. The k-t SLOW maps resemble sparser
versions of the truth maps, lacking the temporal DOF
necessary to capture all the detail in each map. The k-t
PSF data show relatively poor recovery of RSNs, while
both k-t INTERP and k-t FASTER produced maps with
good agreement with the ground-truth data. From both
quantitative and qualitative evaluations of the data,

FIG. 5. a: Relative Frobenius norm errors for all six subjects,
across the three different reconstruction methods and the rank-
128 dimensionality reduction of the ground truth data. b: Frobe-

nius norm errors normalized to the error in the rank-128 truth
data, highlighting the excellent performance of the k-t FASTER
method compared with the k-t PSF and k-t INTERP methods.

FIG. 6. a: Mean z-statistic map correlations for the reconstructed
data compared to the canonical input regressors. b: Direct corre-
lation of the z-statistic maps for each method with the truth maps,

which show that the k-t FASTER maps match the truth maps
best. In both cases, error bars denote standard deviation.
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however, the k-t FASTER method reproduces RSNs with
the highest fidelity.

Prospective Under-Sampling Results

The prospectively under-sampled data were acquired
such that the fully sampled k-t SLOW data had only 72
time points, whereas the k-t FASTER data produced 304
time points in the same duration. To accommodate the
reduced temporal DOF in the k-t SLOW data, only 64
regressors were used for the dual regression analysis. As

an additional test, the set of regressors was further
reduced to 32, to further examine the effect of the DOF
on these analyses. Figure 9 shows the correlation coeffi-
cients for the first 32 regressors (ordered by variance), by
performing 2 separate dual regression analyses. The first
dual regression used 32 regressors only, while the sec-
ond dual regression used 64 regressors, including the
same 32 used in the first analysis. There is a striking
increase in correlation in k-t SLOW when halving the
number of regressors, indicating insufficient DOF when
using 64 regressors in a dataset with 72 time points. In

FIG. 7. Z-stat image dual regression output for a single dataset for a regressor corresponding to an occipital (visual) resting state net-
work. All images are un-thresholded with color scale mapped between 0< |z|<6.

FIG. 8. Z-stat image dual regression output for a single dataset for a regressor corresponding bilateral parietal resting state network. All
images are un-thresholded with color scale mapped between 0< |z|<4.
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comparison, k-t FASTER has consistently higher correla-
tions than k-t SLOW, with essentially no change with
increased number of regressors. These results demon-
strate that, despite identical total acquisition durations
for the two approaches, the k-t FASTER data contain
greater temporal DOF than the k-t SLOW acquisition.
This provides further evidence that k-t FASTER is not
performing a trivial operation (e.g., interpolation) with
the sampled points, but is actually identifying meaning-
ful spatial-temporal structure in the data. Again, rela-
tively low correlations are expected in individual subject
maps.

Finally, Figure 10 shows an example z-statistic map
corresponding to a left somatosensory RSN in a represen-
tative dataset, compared with the corresponding spatial
regressor map. These maps were chosen to be representa-
tive of the mean correlations for each case. The k-t
FASTER maps clearly show a greater extent of high (and
spatially well localised) z-statistics, most evident in the
axial and sagittal views, and are a good reflection of
the aggregate correlation differences between the k-t
SLOW and k-t FASTER data expressed in the boxplots of
Figure 9.

DISCUSSION

Following the recent success of CS-based acceleration
strategies, several new techniques and applications have
emerged in MR exploiting the properties of sparsity or
matrix rank for image reconstruction. Functional neuroi-
maging, however, has not seen wide adoption or explora-
tion of any of these methods, and fMRI acceleration
techniques have instead focused primarily on multicoil
parallel imaging methods. k-t FASTER takes a different
approach by exploiting the spatio-temporal structure of
fMRI data, following similar strategies previously
applied to dynamic contrast enhanced and cardiac cine
imaging (29,30). While application to fMRI has been
mentioned previously (29), and recently presented for
task-fMRI (31), the k-t FASTER approach (32) makes the
explicit link between low-rank acceleration strategies
and resting state fMRI data models.

We were able to recover under-sampled image time-
series, resulting in a higher temporal sampling rate than
can be achieved with full sampling. The low-rank

FIG. 9. Boxplot of correlation coefficients from the dual regression

averaged across scans and 32 maps for each of the six subjects,
using both 32 and 64 regressors.

FIG. 10. Z-stat image dual regression output for a single subject for a regressor corresponding to left somatosensory resting state net-

work. Correlation coefficients with the canonical regressors are shown at the bottom of the images. All maps are thresholded at |z|>2
and with color scale mapped between 2< |z|<6, except for the regressor maps, which are scaled and thresholded at 10�.
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structure allows k-t FASTER to generate the missing
points in an intelligent way, by preferentially recovering
high-variance (i.e., signal) components using an iterative,
SVD-based algorithm. Furthermore, the 3D segmented
EPI sampling used here does not suffer from the jittery
TE or irregular off-resonance artifacts that can be present
with randomly undersampling phase-encoding lines of a
traditional 2D EPI sequence (21).

Evaluation of a range of image reconstruction meth-
ods with similar sampling densities found the lowest
Frobenius matrix norm errors using k-t FASTER. The k-
space time-series reconstructed by k-t FASTER was fur-
ther observed to capture true temporal features that
would be missed by methods that impose temporal
smoothing, such as keyhole or interpolation methods.
More importantly, the dual regression analysis found
the highest RSN reproduction fidelity for the k-t
FASTER method, in both retrospectively and prospec-
tively sampled evaluations. It should be noted that in
this evaluation, the k-t FASTER results benefitted from
the final data replacement step, which re-introduces
higher rank information to the image estimate (beyond
the rank constraint of 128). In contrast, the k-t PSF
reconstructions at the comparatively low rank of 26 per-
formed poorly in the dual regression analysis, which
likely reflects the high complexity of the fMRI datasets
studied.

The differences between the k-t SLOW and k-t
FASTER results in the prospective sampling experiment
indicate that more temporal DOF are available to the k-t
FASTER reconstruction, despite having identical sam-
pling durations. Moreover, information about higher
temporal frequencies is retained using k-t FASTER.
Even in the presence of the smooth hemodynamic
response, this signal contains meaningful information
about neural fluctuations (52). These features support
the use of k-t FASTER as a method for generating fMRI
datasets with higher temporal DOF than standard sam-
pling approaches for use in applications like temporal
ICA (5).

In the prospectively sampled data, reconstruction
fidelity was evaluated using only correlations with
group-averaged RSN spatial maps. With this metric, it is
difficult to ensure that subject-specific detail is retained
in the k-t FASTER reconstructions. While the retrospec-
tive sampling comparison may not have fully captured
artifacts and phase effects that are present in real sam-
pling conditions, it provided a validation where ground
truth data were available, indicating that subject-specific
spatial features are largely preserved. Also, while the
SNR of the 3D sampling strategy used here (both retro-
spectively simulated and prospectively acquired) is inde-
pendent of volume TR, it is important to note that in a
standard 2D multislice acquisition strategy, k-t SLOW
data would be expected to have increased SNR due to
reduced saturation effects from longer TRs.

Although the low-rank reconstruction is largely inde-
pendent of TR, consideration of SNR and physiological
noise can be important. Imaging in low SNR conditions
may not be feasible, because the low-rank signal compo-
nents need to be distinguishable from additive thermal
noise. Generally speaking, however, physiological noise

can be viewed as additional signal components, given
that it exhibits coherent signal fluctuations across space
and time (i.e., not thermal noise). Large amounts of phys-
iological noise can therefore increase the effective rank
of data matrix, which would have to be taken into
account in the reconstruction. Furthermore, the effects of
motion and field inhomogeneity on the image phase and
reconstruction fidelity should not be ignored, as the
reconstruction is performed using fully complex data.
Modeling of these effects and incorporating phase con-
straints in the reconstruction process is a topic of future
consideration.

The achievable under-sampling factors in MC are
intrinsically linked to the underlying rank of the matrix
to be recovered. There would be a clear penalty in recon-
struction fidelity associated with under-sampling beyond
limits supported by the data, and improving acceleration
factors in k-t FASTER will likely require the use of addi-
tional constraints, information (e.g., coil sensitivities) or
longer sampling durations. One advantage of exploring
coil-independent acceleration methods is that overall
acceleration factors can be increased by the combination
of both methods. In fact, the prospectively sampled data
presented here already included a 2� in-plane accelera-
tion in addition to the 4.27� acceleration in the partition
encoding direction recovered using MC, demonstrating
the compatibility of k-t FASTER acceleration with stand-
ard parallel imaging.

In this initial work, we used a hard-thresholding
approach to MC, which required a fixed rank input as a
hard thresholding parameter. This method was found to
be more robust in the fMRI datasets studied than soft-
thresholding approaches. One drawback of the k-t
FASTER iterative reconstruction is that it is significantly
slower than the noniterative approaches of k-t INTERP
and k-t PSF, requiring hours of computation time for
large k-t matrices. Future development of the IHTþMS
algorithm used in k-t FASTER will investigate selection
criteria for the hard rank thresholds, and optimization
for speed and computational efficiency using parallel
computation techniques and GPU-acceleration. Also,
exploration of joint coil sensitivity constraints to
improve reconstruction fidelity and achievable accelera-
tion factors is a topic of future interest, and has already
been explored in alternative dynamic low-rank imaging
methods (53–55). Furthermore, many rank-constrained
imaging methods are now incorporating joint sparsity
constraints (31,44,56,57), or decomposition of sparse and
low-rank components to an image time-series (54). These
features can be integrated into k-t FASTER in future
refinements of the technique using penalized matrix
decomposition methods (58) or the robust PCA formal-
ism (59). Finally, extension of the approach to include
non-Cartesian sampling trajectories that take advantage
of more distributed k-space coverage is easily facilitated
through use of the NUFFT (60) instead of the FFT in the
measurement operator.
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APPENDIX A1: IHT1MS RECONSTRUCTION
ALGORITHM

• Let the matrix Y contain the sampled data, M be a
sampling matrix with 1s in sampled positions, and
0s in unsampled positions, and Xi be the ith matrix
estimate, where all matrices are m� n

• The � operator denotes element-wise multiplication
• Choose a rank r, step size 0 < m � 1, and soft-

thresholding parameter 0 � c � 1
• Initialise matrix estimate X0 to the zero matrix with

appropriate dimensions (or some alternative initial
guess)

• While kXi � Xi�1kF > min update criterion or i <
max iterations

Z ¼M � ðY� XiÞ
USV� ¼ SVDðXi þ m � ZÞ
For j ¼ 1 : n

If j � r : ~S j; jð Þ ¼ S j; jð Þ � c � srþ1

Else : ~S j; jð Þ ¼ 0
Xiþ1 ¼ U~SV�
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