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Abstract: There is an urgent need for intelligent home surveillance systems to provide 

home security, monitor health conditions, and detect emergencies of family members. One 

of the fundamental problems to realize the power of these intelligent services is how to 

detect, track, and identify people at home. Compared to RFID tags that need to be worn all 

the time, vision-based sensors provide a natural and nonintrusive solution. Observing that 

body appearance and body build, as well as face, provide valuable cues for human 

identification, we model and record multi-view faces, full-body colors and shapes of family 

members in an appearance database by using two Kinects located at a home’s entrance. 

Then the Kinects and another set of color cameras installed in other parts of the house are used 

to detect, track, and identify people by matching the captured color images with the registered 

templates in the appearance database. People are detected and tracked by multisensor 

fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or 

partial measurements. People are identified by multimodal fusion (face, body appearance, 

and silhouette) using a track-based majority voting. Moreover, the appearance-based 

human detection, tracking, and identification modules can cooperate seamlessly and benefit 

from each other. Experimental results show the effectiveness of the human tracking across 

multiple sensors and human identification considering the information of multi-view faces, 

full-body clothes, and silhouettes. The proposed home surveillance system can be applied 

to domestic applications in digital home security and intelligent healthcare. 
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1. Introduction 

With the advances in medical technologies, the global population is aging, and the elderly are 

becoming the fastest growing population sector in most developed countries. In addition to elders, 

toddlers and patients are also at a higher risk of falling and require continuous and long-term 

monitoring. There is an urgent need for an intelligent and inexpensive home surveillance system to 

provide home security, monitor health conditions, and detect emergencies of family members. To 

realize the power of these intelligent services in digital homes, one of the fundamental problems is how 

to detect, track, and identify people in a home environment. Wearable RFIDs can identify humans 

effectively, but users are forced to wear tags all the time. Alternatively, vision-based surveillance 

provides a natural and non-intrusive solution to human detection, tracking, and identification. 

Typical smart homes deploy a variety of visual sensors (or cameras) located in and around house to 

monitor human activities and detect critical events. Each type of visual sensors has its own unique 

strengths and limitations. For example, iris scanners are very accurate in human identification but only 

work on stationary people within a close range. Similarly, fingerprint scanners require people to show 

fingers from a very short distance. Alternatively, a depth camera can resolve the problems of casting 

shadows and dynamic illuminations but its sensing range is limited, for example, 0.8 ~ 4 m for a  

Kinect [1]. In addition, face recognition algorithms provide passive sensing but rely on high resolution 

facial images. As a result, typical video surveillance systems utilize omni-directional (OD) cameras to 

locate people and subsequently guide pan-tilt-zoom (PTZ) cameras to capture close-up facial images. 

However, clear facial images are unavailable when a person wears a mask or turns back to the camera 

intentionally. Table 1 compares the pros and cons of various sensors in a home environment. 

Table 1. Comparison of various sensors for human detection, tracking, and identification  

at home. 

 
RFID-Based 

Technology 

Vision-Based Technology 

Fingerprint Iris Face Body Appearance 

Hardware 

Requirement 
RFID reader, tag 

Fingerprint 

scanner 
Iris scanner Close-up camera Camera 

User 

Intrusion 
Wear RFID tag Provide finger Show eye Turn to face camera Non-intrusive 

Detection under 

Various Poses 
Yes No No Limited by angle Yes 

Identification 

Accuracy 
Absolute High Highest Medium-high Medium-high 

Dynamic Illumination Unaffected Unaffected Infrared better Shadow, lighting Shadow, lighting 

Visual 

Occlusion 
Unaffected No No Limited Partial 

Multi-View Tracking Not accurate No No Limited by angle Yes 

Recently, Rice et al. [2] revealed that when facial features are difficult to make out, we readily use 

body information to identify a person. Our brains use information from a person’s body size, shape, 

build, and stance for recognition even before we can distinctly see a face. Compared with recognition 
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solely based on faces, they discovered that human recognition is far more accurate when both the face 

and body of the person are shown. In addition to human recognition, human detection and tracking  

can also utilize the body appearance to handle the challenging problems of multi-view variations, 

posture changes, shape deformations, far away views, and partial occlusions. Therefore, we propose 

appearance-based human detection, tracking, and identification modules that cooperate with each other 

seamlessly based on multimodal fusion of multi-view faces, body colors, and silhouettes captured by 

multiple sensors.  

Several techniques have been proposed to perform multimodal fusion at various levels using 

different methods. Multimodal inputs can be integrated at three levels: the signal (low) level, the 

feature (intermediate) level, and the decision (high) level. Fusion at a higher level offers scalability and 

flexibility, but loses signal (or feature) correlation among modalities. Fusion at a lower level offers less 

interaction, but provides more simplicity because only one learning phase on the combined vector is 

required. Multimodal observations can be combined for an estimation using various methods such as 

histogram technique, multivariate Gaussian, linear weighted sum, Kalman filter, or particle filter. Also, 

a decision can be made by multimodal fusion using different approaches such as majority voting, 

artificial neural network (ANN), support vector machine (SVM), or hidden Markov model (HMM). 

These multimodal fusion levels and methods are usually application specific and tailor-designed 

according to the natures and requirements of the target problem. 

The framework of the proposed human detection, tracking, and identification system is shown in 

Figure 1. In the modelling stage, human skeleton and face tracking are performed based on depth 

images captured by two Kinects installed at the home entrance. Then the captured color images are 

utilized to capture faces, extract body silhouettes, and construct a multi-view Flattened Cylindrical 

Template (FCT) in an appearance database. The FCT contains the appearance information of an 

individual person in an upright standing position with a view of 360°. In the guidance stage, a person is 

detected and tracked based on color images captured by the Kinects as well as other color cameras 

installed in other parts of the house. The image of the detected person is compared with each registered 

template in the appearance database. If a match is found, the person is identified and the corresponding 

template can be used to guide the subsequent human detection and tracking; otherwise the system 

prompts for password to further classify the person as a miss-identified family member, a guest, or an 

intruder. The proposed human detection, tracking, and identification system plays a key role in the 

application of security and healthcare in intelligent digital homes. 

In this paper, we discuss the system design, development, and evaluation of the proposed 

appearance-based multimodal human detection, tracking, and identification system. The remaining 

parts of the paper are organized as follows: Section 2 reviews the relevant state-of-the-art techniques. 

Section 3 presents the multi-view modelling of the full-body appearance using color and depth images 

captured by Kinects and the construction of an appearance database. Section 4 explains the human 

detection and tracking using a multisensor fusion (Kinects and color cameras) based on a Kalman 

filter. Section 5 presents the human identification using a multimodal fusion (face, body appearance, 

and silhouette) based on a majority voting. Section 6 evaluates the proposed system. Section 7 handles 

special cases and discusses the limitations and potential applications in smart homes. Section 8  

offers conclusions. 
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Figure 1. Framework of the proposed appearance-based multimodal human detection, 

tracking, and identification system for intelligent healthcare and security in digital homes. 

 

2. Background 

In recent years, techniques for human detection, tracking and identification have progressed 

significantly. A RFID-based method employs either active or passive tags. Active RFID tags have a 

larger range but require batteries to provide power. Passive RFID tags are less expensive but only work 

over a short distance. Similarly, infrared (IR) or ultrasound transmitters can be installed in known 

positions and each person can carry an IR or ultrasound receiver that monitors signals in a range for 

localization. A person is located using a triangulation method based on the distance and angular 

measurements from at least three known locations. Generally, the IR-based methods are accurate but 

can suffer interference from background illumination. Relatively, the ultrasound-based approaches are 

cheaper but less accurate. 

However, people do not feel comfortable about wearing a tag, transmitter, or receiver for a long 

time. To reduce disturbance, passive visual cameras provide a non-intrusive way for human detection, 

tracking, and identification. Sixsmith and Johnson [3] developed a smart inactivity monitor using an 

array-based detector, called SIMBAD, for elderly fall detections. Tao et al. [4] presented an infrared 

ceiling sensor network with binary responses to recognize eight activities including walking, tidying, 

watching TV, reading, taking drinks, using PC, lying, and sweeping in a home environment.  

Ni et al. [5] designed a get-up event detector to prevent potential falls in hospitals based on color and 

depth images captured by a Kinect. Motion and shape features from multiple modalities and channels 

were extracted and combined through a multiple kernel learning process. Based on a mobile robot 

equipped with a Kinect, Mozos et al. [6] used local binary patterns (LBP) and SVM to categorize 
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indoor places including corridor, kitchen, laboratory, study room, and office. Yang and Chuang [7] 

adopted a Kinect to classify behaviors and assess fall risks of toddlers at home. 

For human detection using a typical surveillance camera, Viola and Jones [8] proposed integral 

images for fast feature computations, an AdaBoost algorithm for automatic selections, and a cascade 

structure for efficient human detections. Dalal and Triggs [9] used histogram of oriented gradients 

(HOG) as features and a linear support vector machine (SVM) as a classifier for pedestrian detection 

and demonstrated promising accuracy. Zhu et al. [10] combined integral image, cascade structure, and 

HOG for fast human detection. Dollar et al. [11] proposed a fast human detector, called ChnFtrs, by 

extracting and integrating Harr-like features over multiple channels. They also developed a fast  

multi-scale variant of ChnFtrs, called FPDW [12], by using a sparsely sampled image pyramid to 

approximate features at intermediate scales. Benenson et al. [13] modified FPDW to avoid resizing the 

input monocular images at multiple scales and provided human detection at 50 frames per second 

(FPS). By exploiting geometric information using stixel estimations from stereo images, they achieved 

135 FPS in a CPU + GPU enabled computer. 

For vision-based human tracking, Mean-Shift [14] is a non-parametric method to find the mode of a 

probability distribution function (PDF). It can be applied to visual tracking by creating a PDF in the 

new frame based on a target model, and performing an iterative algorithm to find the peak of the PDF 

near the object’s last position. However, the Mean-Shift algorithm only worked well on targets with 

static PDFs. CamShift [15] extended the Mean-Shift to handle dynamic PDFs by updating the target 

model based on the color histogram of the object in the previous frame, and solve scaling problem by 

adjusting the search window size based on the updated PDF. To model the appearance of both object 

and its background dynamically, Collins et al. [16] developed an online feature selection mechanism 

using a two-class variance ratio to discriminate between a tracked object and its surrounding 

background. Babenko et al. [17] presented an online multiple instance learning algorithm, called 

MILTrack, by extracting positive and negative examples as an adaptive appearance model for object 

tracking. Kalal et al. [18] proposed a tracking-learning-detection (TLD) framework with a pair of 

computerized experts that can learn from missed detections and false alarms. 

Humans can be identified visually by face recognition if the detected person faces the camera 

within a close range. A geometric approach creates a facial signature by measuring distances between 

key features to capture a unique facial profile for each face. Alternatively, a photometric approach 

analyzes the variance of faces over a high-dimensional vector space to form a basis set of facial 

images. To perform dimension reduction, Eigenfaces [19] employed principal component analysis 

(PCA) while Fisherfaces [20] adopted linear discriminant analysis (LDA). In addition to human 

identification, a relevant problem, called human re-identification, is to identify a specific person across 

disjoint camera views and to recognize if a person has been observed over a network of cameras. It is a 

challenging problem due to changes in points of view, background, illumination, pose deformation, 

and visual occlusion. Gandhi and Trivedi [21] proposed a panoramic appearance map (PAM) as a 

compact signature to match people observed in different camera views. Prosser et al. [22] formulated 

the re-identification as a ranking problem and developed an Ensemble RankSVM.  

Generally, tracking-based algorithms can generate a smooth trajectory of an object by estimating its 

motion, but they require initialization and can accumulate drift error during run-time. On the other 

hand, detection-based algorithms can estimate the object location in every frame independently. 
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However, a detector requires an offline training stage and cannot detect unknown objects. Unlike these 

methods, we proposed appearance-based human detection, tracking, and identification modules which 

cooperated seamlessly and benefitted from each other by using a multimodal fusion of facial images, 

body colors, and silhouettes across multiple sensors in home environments. 

3. Human Modelling of Face, Appearance and Silhouette Based on Kinects 

The proposed system modelled multi-view human appearances (faces, body colors, and silhouettes) 

semi-automatically using a set of the latest consumer market depth cameras, called Kinects. A Kinect 

captured both color and depth images at thirty frames per second with 640 × 480 resolution. The 

distance between a three-dimensional point and the camera is called depth (denoted as z). A pixel in a 

depth image indicated the calibrated depth of the pixel’s corresponding three-dimensional point in the 

scene. For the human skeleton tracking, each depth image was segmented into a dense probabilistic 

body part labeling so that a human body was divided into thirty-one parts [23]. The body parts were 

defined to be spatially localized near twenty skeletal joints, hence the three-dimensional locations of 

the skeletal joints can be determined by back-projecting these inferred parts into a world space. As 

shown in Figure 2a, a complete skeleton was represented by a sixty-dimensional vector containing 

three-dimensional coordinates of twenty skeletal joints. In the modelling stage, the face, body 

appearance, and silhouette of each family member should be modelled and registered in the appearance 

database. As shown in Figure 7, two Kinects were installed at opposite sides in a living room to 

facilitate the modelling process.  

Figure 2. Human tracking using a Kinect. (a) Skeleton tracking; (b) Face tracking. 

 
(a) (b) 

3.1. Modelling of Face 

In addition to the skeleton tracking, the Kinect’s face tracking algorithm can determine the location 

and three-dimensional pose of a face in real-time. With the availability of two head joints (the head 

and the neck) in the tracked skeleton, the rough location of the face in the captured images was 

determined. The Kinect’s face tracker extended color-based Active Appearance Model (AAM) to 

incorporate depth information [24]. Based on both color and depth images, the Kinect’s face tracker 

detected 87 contour points along facial parts (as shown in Figure 2b) as well as additional 13  

non-contour points including eye centers, mouth corners, a nose center, and a bounding box around the 
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head. By registering the tracked facial features with a three-dimensional facial model, the head pose 

was estimated and represented by three rotational angles: tilt, yaw, and roll (as shown in Figure 2b). In 

the modelling stage, family members were asked to stare at the Kinect at a short distance (1.0 ~ 2.0 m) 

so clear facial images can be captured and recorded in the appearance database. As shown in Figure 1, 

at least two face templates (front and 45° view) were stored in the appearance database for each 

registered person. Assuming that a human face is symmetric horizontally, the face template in −45° 

view can be simply obtained by mirroring that in +45° view. 

3.2. Modelling of Body Appearance 

Whenever a person passed the living room, multi-view full-body color images were captured and 

the skeletal information was analyzed simultaneously by two Kinects. Then the multi-view full-body 

appearance information was compacted and stored in a template image, called the Flattened 

Cylindrical Template (FCT), in the appearance database. As shown in Figure 3, the FCT combined the 

captured images of a person from various viewpoints and covered the appearance of a full body in 

360°. The FCT was constructed by an image mosaicking process that aligned and stitched one vertical 

slice in the captured color images at a time along the tracked skeletal spine. The aforementioned head 

pose angles can also provide alignment cues in FCT construction. As shown in Figure 1, at least one 

constructed FCT was stored in the appearance database for each registered person. Whenever the 

registered person was identified by face recognition later on but wearing a different set of clothes, a 

new FCT was constructed and added to the appearance database automatically.  

Figure 3. FCT-based human identification and tracking. 

 

3.3. Modelling of Body Silhouette 

In addition to the face images and body colors (FCT), body builds also provide important 

information for human identification. We modeled a body build as a set of body silhouettes observed 

from various points of views. The player masks provided by the Kinect’s SDK were coupled with 

    …                              …
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skeleton tracking and failed to properly segment human hair as foreground. In our modelling stage, the 

body silhouettes were segmented by a background subtraction technique solely based on depth images. 

Because the depth information was invariant to the existence of shadows, the problem of casting 

shadows was solved inherently. Figure 4 shows the extracted body silhouettes for an adult and a child 

in multiple views. Three upper-left human silhouettes (in red rectangles) indicate the segmented 

human masks in three distinct facing directions. Assuming that a human body is symmetric 

horizontally, human silhouettes in the other five facing directions can be simply obtained by mirroring 

(shown as green arrow in Figure 4) or cloning (shown as blue arrow in Figure 4). As shown in  

Figure 1, at least three body silhouettes (front, 45°, and side view) are stored in the appearance 

database for each registered person. 

Figure 4. Segmented body silhouettes in various facing directions. (a) Adult; (b) Child. 

 
(a)                                                                           (b) 

4. Multisensor Human Detection and Tracking 

In the guidance stage, humans can be detected and tracked by a Kinect or a color camera. For a 

person located at the world coordinate (x, y, z), the ground plane coordinate (x, z) and the facing 

direction θ of the person were tracked across multiple cameras. Because these cameras can be installed 

in a wide variety of positions and orientations inside the house, the relationship between the projecting 

(image) coordinates and world (floor) coordinates should be discovered for each camera. The 

projective transform between the image plane and the ground plane of the house was unique for each 

static camera and was computed by four pairs of corresponding points by a camera calibration process 

in the setup phase. Initially, four points on the floor of the house were specified manually. For each 

camera, the coordinates of these four points on the ground plane and the four corresponding points on 
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the image plane were utilized to compute a 3 × 3 matrix called homography. With the help of the 

homography, an image coordinate can be mapped to a ground plane coordinate so that human detected 

by different cameras can be combined and tracked in a unified ground plane coordinate system. 

Similarly, the facing direction θ’ relative to each camera’s focal axis can be converted to a global 

facing direction θ before the multisensor fusion. In addition, a multiple camera synchronization was 

performed using a software-based approach [25]. Finally, the complete or partial measurements from 

multiple cameras were integrated using a Kalman filter as shown in Figure 5a. It should be noted that 

our application is not 3D scene reconstruction, thus sophisticated camera calibration (using 

checkerboard pattern) and synchronization (using hardware genlock) approaches are not required. 

Figure 5. Two data fusion approaches in the proposed system: (a) multisensor fusion for 

human tracking; (b) multimodal fusion for human identification. 

 

4.1. Human Detection and Tracking Using a Kinect 

Human detection and tracking using a Kinect is straightforward because the Kinect skeleton 

tracking provides the three-dimensional coordinates of twenty skeletal joints (as described in  

Section 3). The ground plane coordinate (x, z) of a person was extracted from the skeleton joint 

HIP_CENTER. The facing direction θ’ was determined in two ways. In a shorter distance where the 

Kinect face tracking was effective, the facing direction θ’ was set to the yaw angle of the head pose (as 

described in Section 3.1); Otherwise, the facing direction θ’ was set to the angle between the skeletal 

forward direction and the focal axis of the camera. 

4.2. Human Detection and Tracking Using a Color Camera 

Based on color images acquired by a static camera (either a Kinect or a color camera), moving 

people were detected by a background subtraction algorithm that integrated the information of color, 

shading, texture, neighborhood, and temporal consistency [26]. Assuming that a person stands on the 
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floor, the depth z between the person and the camera was determined by mapping the person’s foot 

coordinate in the image plane to the ground plane through the aforementioned homography 

transformation. With the availability of the depth z and the focal length f, each image plane coordinate 

(x’, y’) can be projected to the world coordinate (x, y) using the following equations: = ∙ ′ ; = ∙ ′
 (1)

The human body appearance provides additional cues for human tracking and identification. The 

acquired color images were compared with the registered human templates in the appearance database. 

A detected person was tracked in the image space using a color-based Mean-Shift approach. The target 

model was represented by a smaller bounding box (BB) covering the target person and including only 

the target pixels in the captured color image. The BB was enlarged proportionally to form a larger BB 

such that the surrounding pixels in the ring area between the larger and smaller BBs were chosen to 

represent the background. For a feature value i, we calculated p(i) as a normalized histogram of the 

pixels on the target, and q(i) as a normalized histogram of the pixels on the background. A log 

likelihood image [16] was constructed. Subsequently, an iterative Mean-Shift algorithm was performed 

in the log likelihood image until the BB converged to the location of the target person in the current 

frame as shown in the upper part of Figure 3. At the same time, the target BB was used as a template to 

shift its corresponding BB in the FCT as shown in the lower part of Figure 3. In other words, a person 

was tracked simultaneously on two image domains: horizontally/vertically on the captured image to 

update image coordinate (x’, y’), and horizontally on the FCT image to update facing direction θ’. By 

repeating this process iteratively, the target, background, and FCT models evolved over time all together. 

In a typical adaptive tracking procedure with a dynamic update of the target model, the model drift 

problem appears over time as misclassified background pixels gradually join the foreground model, 

eventually leading to a tracking failure. To avoid this problem, the histogram of the target model was 

computed by considering the pixels in the target BB in the current captured image as well as the pixels 

in the corresponding BB in the FCT. As a result, the target model was adaptive to keep up with the 

newest conditions. Simultaneously, the target model was constrained by the a priori information in the 

FCT to prevent accumulation of model drift errors. 

4.3. Multisensor Human Tracking Based on a Kalman Filter 

A person was tracked using a three dimensional vector containing the world coordinate (x, z) and 

the facing direction θ across multiple sensors as shown in Figure 5a. From time to time, a sensor can 

fail to track in some dimensions and produce only partial measurements. It is also possible that 

multiple sensors observe the same person simultaneously and provide duplicate measurements. To 

address these problems, a multisensor fusion was performed to accommodate partial and duplicate 

measured data using a Kalman filter [27]. The four dimensional state vector X(t) and the three 

dimensional measurement vector Z(t) at time step t are shown as follows: 
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where (x(t), z(t)) is the ground plan coordinate, θ(t) is the facing direction, and v(t) is the velocity on 

the ground plan of the tracked person at time step t. The relationship between the state vector X(t) and 

the measurement vector Z(t) can be formulized as: 
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where A(t) is the state transition matrix (or called prediction matrix) and H(t) is the observation matrix 

(or called measurement matrix). The variables w(t) and u(t) are zero-mean white Gaussian noise with 

covariance matrices Q(t) and R(t), respectively. In the proposed human tracking, the Kalman filter was 

used to produce the optimal state estimate given a sequence of measurements. At each time step, a 

Kalman filter was applied by an iterative process with two steps. The first step was the time update (or 

called predictor) that projected forward the current state estimate to obtain an a priori estimate for the 

next time step. A linear model with a constant velocity was used for the prediction of the human 

movement, i.e., the state transition matrix was equal to: 
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The second step was the measurement update (or called corrector) that incorporated a new 

measurement into the a priori estimate to obtain an improved a posteriori estimate. The prediction and 

measurement values were combined according to the prediction and measurement variance. For a 

complete measurement with three dimensions, the observation matrix was equal to: 
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In case only partial measurement was obtained (either facing direction or ground plan coordinate 

was unavailable), the negative impact of the missing data can be cancelled by setting the observation 

matrix to: 
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The additive nature of the update stage makes the Kalman filter very attractive for multisensor 

fusion with duplicate measurements. Supposing that there were a set of N sensors, Zi(t) was the 

measurement produced by the i-th sensor, and Ki(t) was the Kalman gain for the data fusion associated 
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to the i-th sensor at time step t, the state estimate X(t) was updated according to the measurements Zi(t) 

using the following equation [28]: 


=

−⋅−⋅+=
N

i
iii )]X(t(t)H(t)[Z(t)KX(t)X(t)

1

1  (7)

The covariance matrix R(t) reflects the uncertainty of the measurements and depends on the 

characteristics of each sensor. In our implementation, the covariance matrix R(t) of each sensor was 

determined by finding the variance in the measurement data that were collected. The Kalman filter was 

further extended to support multiple people tracking. Supposing that there were m maintained tracks 

and n detected persons, an m × n cost matrix was constructed by computing the cost of assigning every 

detected person to each track based on the distance between the position of a detected person and the 

predicted location of an existing track. The cost of assigning a detection to a track was defined as the 

negative log-likelihood of the detection corresponding to the track. The association problem was 

solved by generating a detection-to-track assignment which minimized the total costs. In a given 

frame, some detections might be assigned to existing tracks, while other detections and tracks may 

remain unassigned. If a detected person was assigned to an existing track, the information of the 

person was utilized to update the parameters of the assigned track by the Kalman filter; otherwise, a 

new track was created for the unassigned person. Tracks that have been continuously updated for a 

fixed number of frames were classified as steady. Oppositely, tracks that have not been updated for a 

fixed number of frames were discarded.  

5. Multimodal Human Identification 

Human can be identified by comparing the color images (captured by either a Kinects or a color 

camera) with the registered templates in the appearance database using an individual modality of the 

face, body color, or silhouette. As shown in Figure 5b, a decision level fusion was applied for the 

human identification to adopt the most suitable feature set, distance measure, and identification method 

for each single modality. Afterwards, the identification outputs were integrated by a track-based 

majority voting to make a final identification decision.  

5.1. Human Identification Using Faces 

Face recognition can be performed if the detected person faces the camera within a close range. 

Eigenfaces [19] and Fisherfaces [20] are holistic approaches that work in a high-dimensional image 

space and require several facial images for each person to achieve good recognition rates. 

Alternatively, we adopted local binary patterns (LBP) which summarized the local structure in a facial 

image by comparing each pixel with its neighborhood. By definition the LBP operator is robust against 

illumination changes. After the location and size of the face of the captured person were determined, 

the cropped face was aligned to upright pose and normalized to a standard size. Subsequently, the LBP 

image was divided into local regions and a histogram was extracted from each region. The spatially 

enhanced feature vector, called LBPH [29], was then obtained by concatenating the histograms of 

LBPs. The 32 most relevant features selected through PCA were used to recognize a face  

by comparing a captured face with each registered face template in the appearance database.  
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After comparing various distance (or dissimilarity) measures, we found that the best distance  

measure for the comparison of LBPH between histograms S and M was a Chi-square statistic: ( , ) = ∑ [( − ) /( + )]. 
5.2. Human Identification Using FCTs 

Because a clear facial image is not always available, the human body appearance provides 

additional cues for the human identification. A detected person was tracked using a color-based  

Mean-Shift approach described in Section 4.2, and represented as a bounding box (BB). To match 

color information in the detected BB and a BB of a FCT in the appearance database, a histogram was 

divided to 32 bins and each bin covered a horizontal stripe of the human body. After comparing 

various color spaces and distance measures, we found that the YCbCr color space and the 

Bhattacharyya distance performed the best in the process of the Mean-Shift tracking and color 

histogram matching. The Bhattacharyya distance between two histograms S and M was defined as ( , ) = ∑ ∙ . Similar to the human tracking, the target model was compared with each FCT 

in the appearance database using the same distance measure to find the best match for human 

identification as shown in the lower part of Figure 3. 

5.3. Human Identification Using Silhouettes 

In addition to face images and body colors (FCT), body shape information also provides distinctive 

clues for the human identification. In the guidance stage, human silhouettes were extracted by the 

background subtraction. To compare a detected silhouette mask with each silhouette template in the 

appearance database, two contours were scaled, aligned, and matched. First, the size of a 2D contour 

was normalized to reflect its real size in 3D. Each segmented human silhouette was scaled by a factor 

that was inversely proportional to the person’s depth z that was determined in the aforementioned 

homography computation. Second, two contours were translated so their barycenters overlapped, and 

rotated so their major axes aligned. Third, a polar coordinate space was equally divided into 32 sectors 

and each human silhouette was sampled as a 32 dimensional vector accordingly. Finally, the Hausdorff 

distance [30] between two silhouettes was computed. Given one set of points A containing pixels along 

the boundary of a detected silhouette and another set of points B containing pixels along the boundary 

of a template silhouette, the Hausdorff distance provided a mean to determine the resemblance of these 

two set of points and was defined as the greatest of all the distances from a point in A to the closest 

point in B. To compare a portion of shapes for partial shape matching, the Kth ranked distance  

was selected instead of the maximal distance and the constant K controlled how many points  
of the model needed to be near points of the target, i.e., ( , ) = max ℎ( , ), ℎ( , ) , 	where	ℎ( , ) = 	 ∈ 	min ∈ ‖ − ‖. The Hausdorff distance can be computed efficiently and can 

handle translation, scaling, and partial shape matching effectively. 

5.4. Multimodal Human Identification Based on a Majority Voting 

At a time step, the human identification was performed individually using face, FCT, and silhouette 

modalities. Face recognition was possible if facial images can be captured clearly within a close range. 
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Adding appearance information of body colors (FCT) and the body shapes (silhouette) further 

promoted the recognition accuracy. In each aforementioned track (described in Section 4), the 

identification results of these three modalities (face, FCT, and silhouette) were accumulated over time 

using a majority voting for human identification as shown in Figure 5b. To measure the quality of  

the identification result of each modality in each frame, a confidence value was defined as  

Cd = (d2 − d1)/d2 where d1 was the distance of the best match and d2 was the distance of the second 

best match. The confidence value Cd ranged from zero to one. The greater the confidence value Cd 

was, the higher the probability was of the fact that the best match with the shortest distance was the 

actual match. The identified person ID of each modality in each frame can vote with a weight that was 

equal to its confidence Cd. The person ID receiving the maximal number of votes was outputted as the 

final identification result of the multimodal fusion. Compared to a frame-based identification, the  

track-based identification with a long-term majority voting was much more reliable. 

5.5. Multimodular Cooperation 

As shown in Figure 6, the detection, tracking, and identification modules can cooperate seamlessly 

and benefit from each other to achieve a robust system. The detector treated every frame independently 

and performed a full scan of the image to localize potential foreground people. To reduce false alarms 

made by the detector, the tracker estimated the detected person’s motion between consecutive frames 

under the assumption that the frame-to-frame motion was limited. Nevertheless, the tracker was likely 

to fail if the tracked person moved out of the camera’s view.  

In this case, the detector discovered any newly appearing person, then re-initialized the tracker, and 

thus minimized the tracking failures. Moreover, the identification module can improve the tracking 

performance by constraining the target model by the registered FCT of the identified person to avoid 

model drift errors in the adaptive update process. Also, the identification module can help the detector 

to reduce miss-detections by providing color distributions of the recent identified person for better 

discrimination between the foreground and background in the process of the background subtraction. 

Figure 6. Cooperation among detection, tracking, and identification modules. 
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6. Evaluations 

Figure 7 shows a typical layout of an elderly apartment. Two Kinect were installed on opposite 

sides with overlapping field of view (FOV) in the living room for modelling the multi-view full-body 

appearance, and two color cameras were installed to cover the views of the other parts of the apartment 

for human detection, tracking, and identification.  

Figure 7. Typical layout of an elderly apartment. Two Kinects and two color cameras were 

installed to cover most open areas in the apartment. 

 

The first experiment evaluated the effectiveness of the multisensor human tracking using a Kalman 

filter. Five people walked around in the open space in the apartment in turn and each individual track 

on the ground plan was marked manually as the ground truth. A total of 100 tracks (150 frames in each 

track) were recorded and tracked across two Kinects and two color cameras. For evaluation purpose, a 
measurement error  and a Kalman estimate error  for each tracking feature dimension f (f = x, z, 

or θ) were defined using mean square error (MSE): 
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where m is the number of tracks, n is the number of frames in each track; Gf (T, t) represents the 

ground truth, Mf (T, t) indicates the measurement, and Kf (T, t) stands for the Kalman estimate of the 

feature dimension f in the t-th frame in the T-th track. For a typical track in the apartment, Figure 8 

plots the measurements of distinct sensors (red cross marks for Kinect#1, green plus marks for 

Kinect#2, blue circle marks for color#1, and yellow triangle marks for color#2). The final estimated 
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trajectory after multisensor fusion using a Kalman filter is shown as a thin white curve, and the actual 

trajectory (ground truth) is shown as a thick purple curve in Figure 8e. 

As shown in Figure 7, the open space in the apartment can be divided to three zones. The first zone 

(ZONE1, lower part in Figure 7) was monitored by three cameras (Kinect#1, Kinect#2, and Color#2). 

The second zone (ZONE2, middle part in Figure 7) was monitored by two cameras (Kinect#1 and 

Color#2). The third zone (ZONE3, upper part in Figure 7) was monitored by a single camera 

(Color#1). Table 2 compares the tracking errors of measurements (before tracking) and Kalman 

estimates (after tracking) using distinct sensor types. Generally, the measurement errors of Kinects 

were lower than which of color cameras, and the measurement errors of the feature dimension z were 

higher than which of feature dimension x. The Kalman filter effectively reduced the tracking error for 

both Kinect and color camera. Table 3 compares the tracking errors of measurements (before tracking) 

and Kalman estimates (after tracking) combining different number of sensors. It can be noted that the 

negative effects caused by wrong or missed measurements were suppressed by the multisensor fusion 

using the Kalman filter. Compared to a Kalman tracker using a single sensor (ZONE3), a Kalman 

fusion of two sensors (ZONE2) made an improvement of 21.4%, 37.4%, and 24.6% of the feature 

dimension x, z, and θ, respectively; a Kalman fusion of three sensors (ZONE1) achieved an 

improvement of 38.8%, 51.0%, and 46.0% of the feature dimension x, z, and θ, respectively. 

Figure 8. Measurements of distinct sensors: (a) red cross mark for Kinect#1; (b) green plus 

mark for Kinect#2; (c) blue circle mark for color#1; (d) yellow triangle mark for color#2; 

(e) multisensor fusion; Thin white curve indicates the Kalman estimated trajectory, and 

thick purple curve represents the actual trajectory (ground truth). 

 

(a)                                               (b)                                                (c) 

(d)                                                 (e)
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Table 2. MSE errors of human tracking using different sensor types in each feature 

dimension: x, z, and θ; the unit is cm, cm, and degree, respectively. 

 Measurements Estimates 

Sensor Type       

Kinect 5.70 8.06 10.45 4.43 3.39 6.67 
Color Camera 7.80 9.85 15.92 6.28 5.94 11.33 

Table 3. MSE errors of multisensor human tracking using different number of sensors in 

each feature dimension: x, z, and θ. 

Number of 
Sensors 

Measurements Estimates 

      

1 (ZONE3) 8.18 10.33 16.83 6.13 6.23 11.50 
2 (ZONE2) 5.12 4.90 14.80 4.82 3.90 8.67 
3 (ZONE1) 6.98 9.71 13.35 3.75 3.05 6.21 

The second experiment evaluated the reliability of the multimodal human identification using the 

proposed majority voting. Five family members in an apartment were involved: an elderly male 

(ID#1), a young adult male (ID#2), a young adult female (ID#3), a teenage female (ID#4), and a 

toddler male (ID#5). Tables 4–6 show the vote matrices of human identification of the proposed 

system solely based on faces, FCTs, and silhouettes, respectively. Each number in a vote matrix 

indicated the number of votes of a specific person ID in an individual track, each column represented 

an identified person ID by the proposed system, and each row corresponded to an actual person ID in 

the track. All correct votes were located in the diagonal of a vote matrix. Similar to the aforementioned 

confidence value of the identification result of each modality in each frame, the confidence value of 

the identification result of a track was defined as Cv = (v1 – v2)/v1 , where v1 was the highest number of 

votes and v2 was the second highest number of votes. The confidence value Cv ranges from zero to one. 

The greater the confidence value Cv is, the higher the probability is of the fact that the identification 

result with the highest votes is the actual ID. The number with the highest votes was emphasized in 

bold font, and mismatches (the winner ID not equal to the actual ID) were annotated with an 

exclamation mark. Identification solely based on faces tended to fail if clear face images were 

unavailable; Identification solely based on FCTs could be confused by clothes with similar colors and 

patterns; Identification solely based on silhouettes was ineffective to differentiate people with similar 

body builds. Table 7 shows the vote matrix of the proposed human identification considering faces, 

FCTs, and silhouettes all together. With the proposed multimodal fusion, reliable identification results 

were produced with high confidence values.  

Figure 9a shows the voting results of a track over time. Three modalities of faces, FCTs, and 

silhouettes voted independently to identify a detected person in the appearance database registered 

with five people. At the beginning of the track, several ID competed with each other and the computed 

confidence was low. As the track continues, more votes come in and ID#1 gradually got ahead over 

time. Finally, ID#1 dominated the vote at the end of the track and the detected person was identified as 

ID#1 with high confidence value. Figure 9b shows the changes of the winner ID with the highest votes 

and its confidence value of a track over time. Figure 9c–j shows the voting results of the other four 
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tracks. With the accumulation of votes in each track, the proposed human identification gradually 

obtained more reliable results with higher confidence values over time. As shown in the third and 

fourth tracks, individual identification modality tended to confuse between ID#3 and ID#4 because 

they have similar faces and body builds. Nevertheless, the FCT modality can differentiated them well, 

and gradually accumulated enough votes to make a correct identification decision at the end. 

Table 4. Vote matrix of the proposed human identification solely based on Face. 

                                      Recog. ID 
Real ID 

#1. #2 #3 #4. #5 Winner ID 
Confidence 

Value 

#1 5 4 0 2 0 #1 20% 
#2 2 6 0 2 0 #2 67% 
#3 0 1 10 4 0 #3 60% 
#4 1 0 7 6 0 #3(!) 14% 
#5 2 0 0 3 7 #5 57% 

Table 5. Vote matrix of the proposed human identification solely based on FCT. 

                                      Recog. ID 
Real ID 

#1 #2 #3 #4 #5 Winner ID 
Confidence 

Value 

#1 11 0 3 0 5 #1 55% 
#2 0 17 1 0 0 #2 94% 
#3 3 0 11 4 2 #3 64% 
#4 2 0 4 10 3 #4 60% 
#5 3 2 9 0 5 #3(!) 44% 

Table 6. Vote matrix of the proposed human identification solely based on Silhouette. 

                                      Recog. ID 
Real ID 

#1 #2 #3 #4 #5 Winner ID 
Confidence 

Value 

#1 7 8 1 2 0 #2(!) 13% 
#2 4 7 6 2 0 #2 14% 
#3 4 2 6 7 0 #4(!) 14% 
#4 0 2 3 11 0 #4 73% 
#5 1 0 2 0 16 #5 88% 

Table 7. Vote matrix of the proposed human identification based on a multimodal fusion. 

                                        Recog. ID 
Real ID 

#1 #2 #3 #4 #5 Winner ID 
Confidence 

Value 

#1 23 12 4 4 5 #1 48% 
#2 6 30 7 4 0 #2 77% 
#3 7 3 27 15 2 #3 44% 
#4 3 2 14 27 3 #4 48% 
#5 6 2 11 3 28 #5 61% 
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Figure 9. Track-based voting for the human identification in five tracks with distinct IDs. 

(a) the voting result over time in the first track; (b) the winner ID with the highest votes 

and its confidence value over time in the first track; (c–j) for the second~fifth track. 

  
(a)                                                                   (b) 

  
(c)                                                                    (d) 

  
(e)                                                                    (f) 

  
(g)                                                                    (h) 

  
(i)                                                                    (j) 
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Figure 10. Constructed FCTs of five adult males with similar body builds. 

   

(a) (b) (c) (d) (e) 

Table 8. Comparison of the recognition rate using different methods in various scenarios. 

Scenarios #1 #2 #3 #4 #5 

Participants 
10 persons, 

one at a 
time 

5 adult males 
with similar 
body builds 

2 females 
with similar 

faces 

3 persons 
wearing similar 
colored dresses 

2 or 3 persons in the 
scene simultaneously 

# of tracks 100 50 20 30 10 

Recog. Rate of the 
Proposed 

multimodal method 
96% 92% 95% 87% 90% 

Recog. Rate of 
Gandhi’s full-body 

recognition [21] 
89% 88% 95% 63% 80% 

Recog. Rate of 
Ahonen’s face 

recognition [29] 
74% 76% 60% 70% 70% 

The third experiment compared the performance of the proposed multimodal identification, 

Gandhi’s full-body appearance identification [21], and Ahonen’s face recognition [29] in an apartment 

with two Kinects and two cameras. Gandhi’s method was implemented to identify full-body 

appearance samples which were obtained from all visible cameras and integrated using registration and 

temporal averaging described in their paper. Ahonen’s method was implemented to recognize frontal 

face samples whenever they were detected within a close range of any visible camera. To make a fair 

comparison, identification results of each method were accumulated over time using the proposed 

majority voting (described in Section 5.4) to make a track-based final decision. Table 8 shows the 

recognition rates using different methods in various scenarios. The first scenario was under normal 

conditions in that ten participants walked around in the apartment one at a time. Their FCTs were 

constructed and stored in the appearance database using the image mosaicking process described in 

Section 3.2. The second, third, fourth, and fifth scenarios were under more challenging conditions. The 

second scenario consisted of five adult males with similar body builds (constructed FCTs as shown in 

Figure 10). Even if the silhouette modality failed to make a distinction, the other modalities (FCT and 

face) still worked and helped to make a correct final decision in the process of the majority voting. The 
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third scenario consisted of two females with similar faces. There was some ambiguity using Ahonen’s 

face recognition due to the resemblance of face features. The proposed multimodal method 

outperformed theirs by utilizing more modalities (FCT and silhouette). The fourth scenario consisted 

of three persons wearing similar colored dresses. Gandhi’s method was confused by the small distance 

measure between full-body appearance samples with similar color layouts. The proposed multimodal 

recognition correctly disambiguated them by the other modalities (face and silhouette). The fifth 

scenario evaluated the robustness of the multiple people tracking described in Section 4.3, and 

compared the recognition rate using different methods. Even if two or three persons appeared in the 

scene simultaneously, the result indicated that the proposed multimodal identification was robust under 

multiple people conditions. The problem of visual occlusions between two persons was alleviated in 

the proposed multisensor environment with various perspectives and the multimodal fusion. 

The fourth experiment involved ten participants in four different apartments (as shown in  

Figure 11). The goal of the experiment was to collect feedback from real users. The participants were 

interviewed regarding their experiences using the proposed human detection, tracking, and 

identification system at their homes. Their comments indicated the strengths and weaknesses of the 

proposed system and provided directions of further improvements. Even if cameras were not installed 

inside the bedroom or bathroom, several participants expressed their concerns regarding the privacy. 

Under normal conditions, the captured images can be immediately destroyed once a track is finished. 

In case an emergency is detected, the captured images can be stored for record purpose only. The 

database and the captured images will not be shared with anyone without authorization. Also, family 

members can turn off any cameras at any time. Another concern is the correctness of the automatic 

modelling stage. Because a set of multiple FCTs can be stored for each person to remember their 

favorite leisure wears at home, a FCT scan is performed and recorded in the appearance database  

semi-automatically if a new suit of clothes is detected. Human intervention is only required in 

scheduled maintenance to correct any possible misplacement made by the automatic modelling 

process. Examples of comments regarding these problems are as follows: 

“Can I turn off the cameras by myself?” 

“I don’t want to broadcast live videos of my personal space on Internet”  

“Do I need to register again after I change clothes at home?” 

Despite these problems, participants expect the system to provide useful information on their daily 

routines at home. Even if no camera was installed inside the bathroom, each door of the bathroom or 

bedroom was in the FOV of at least one camera. The proposed human detection, tracking, and 

identification system can count the number of times a specific person enter the bathroom per day by 

monitoring the image area around the door (marked as red rectangle in Figure 7). Similarly, the system 

can also record the time a specific person enter or leave the bedroom for a rough measurement of sleep 

amount. The comments from participants indicated that they anticipate the system to provide more 

intelligent services in the future: 

“Can the system count how many calories I burned by walks at home per day.” 

“Will the system warn me promptly if my elders or kids fall at home?” 

“My doctor wants to know how many times I go to the bathrooms per day.” 

“It is nice to know the system will inform me if an intruder is detected.” 
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Figure 11. Example images captured in four living rooms in different apartments. 

 

7. Discussion 

Although a Kinect can detect, track, and identify people reliably, its working range is limited. The 

FOV of a Kinect is 43° vertically and 57° horizontally. The Kinect’s specifications show that the 

optimal distance between a Kinect and its target is about 0.8 ~ 4.0 m. Our experiences during the 

experiments indicated that the Kinect skeleton tracker was reliable in a three-dimensional frustum with 

a size of about 4.0 m (x-axis) × 3.0 m (y-axis) × 3.0 m (z-axis). The working distance of the Kinect’s 

face tracker is about 1.0~3.0 m. The face tracker is robust under three-dimensional head rotations with 

a yaw range of ±60° and a tilt range of ±45°. Relatively, the working distance of the color camera is 

not limited. The FOV of the color camera is 40° vertically and 51° horizontally.  

Partial occlusions occur when some body parts are occluded by closer objects (such as furniture) 

and usually happen on the human lower body. The up-to-date Kinect SDK (Version 1.5 or newer) 

provides two tracking modes that can be switched dynamically at run time. The normal tracking mode 

is optimized to recognized and track people who are standing and fully visible. On the other hand, the 

seated tracking mode focuses on the tracking of the human upper body in case the lower body was 

visually occluded (as shown in Figure 11c), or was seated on a couch (as shown in Figure 11b). We 

designed an algorithm to switch between the normal and seated modes automatically by analyzing the 

matching scores of the color histogram of the detected person and which of the FCT in the database. 

As described in Section 5.2, each histogram bin covering a horizontal stripe of the human body can 

produce an individual matching score. If the matching scores in the histograms of the lower body 

reduced suddenly, it indicated that the lower body was occluded and the tracking system switched to 

the seated mode to concentrate on tracking the upper body. Conversely, if the matching score of the 

lower body returned to the normal range (similar to that of the upper body), it indicated a leaving of 

occlusion state and the tracking system returned to the normal mode to track the complete body. 

Dynamic switching between these two modes prevented drift-over-time errors of the tracking in 

scenarios with seated postures or lower body occlusions. 

(c)                                                           (d) 

(a)                                                          (b) 
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The proposed human detection, tracking, and identification system was designed for general 

purpose at digital home and provided the foundation of further analysis for intelligent healthcare 

services. The symmetry of human posture, smoothness of moving trajectory, and variation of walking 

pace can be analyzed to provide important visual cues to assess fall risks. Also, the segmented human 

silhouettes can be classified for accidental fall detection. Besides, the captured facial images can also 

be analyzed to recognize abnormal facial expression such as pain or twitch. In the future, we propose 

to explore the possibilities to provide early warning or call for help automatically in case of anomalies 

or emergencies. Furthermore, the proposed system has potentials to assist family members with health 

control in daily life by measuring physical activity amount or recording sleep time.  

8. Conclusions 

As information and communication technologies (ICT) continue to advance, smart digital homes 

promise to provide us with safer, more comfortable and economical residences. To provide intelligent 

and personalized healthcare services in daily life at home, we have proposed an appearance-based 

surveillance system to detect and track where the person locates, and to identify who the person is. A 

set of Kinects were installed at home entrance to model and record multi-view faces, body colors 

(FCTs), and shapes (silhouettes) of family members in an appearance database. A different set of color 

cameras were installed to cover the views of the other parts of the apartment. An adapted Mean-Shift 

algorithm was performed for human tracking on both captured image and FCT in the database 

simultaneously. The target model of tracking was updated iteratively over time to accommodate  

multi-view variations but still constrained by the a priori information in the FCT to avoid model drift 

problem. A Kalman fusion of multiple sensors (Kinects and color cameras) was applied for human 

tracking on the ground plane. The multi-view human identification was solved by a multimodal fusion 

using a track-based majority voting that matched the detected person with the registered face, FCT, 

and silhouette templates in the appearance database. With independent operations, the tracker, 

detector, and identification modules can fail occasionally. A multimodular integration was proposed so 

the detection, tracking, and identification modules can benefit from each other and cooperate 

seamlessly. The proposed human detection, tracking, and identification system can be extended to 

provide more intelligent services in home security and home healthcare.  
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