
776https://icjournal.org

ABSTRACT

Background: Co-infection with bacteria and severe acute respiratory syndrome coronavirus 
2 may result in greater use of healthcare resources and a poor prognosis. Therefore, 
early selection and use of optimal antibiotics are essential. The direct rapid antibiotic 
susceptibility test (dRAST) can detect antibiotic resistance within 6 h of a Gram smear 
result. This study aimed to assess the effectiveness of dRAST for improving early selection of 
appropriate antibiotics for coronavirus disease 2019 (COVID-19) patients with bacteremia.
Materials and Methods: This retrospective study included 96 blood culture-positive 
COVID-19 patients. Bacterial isolates and antimicrobial resistance profiles of each case 
were evaluated. Cases were divided into two groups based on whether they underwent 
conventional antibiotic susceptibility test (AST) or dRAST. The time to optimal targeted 
treatment for the two groups was investigated and compared. In addition, we examined the 
proportion of cases for which appropriate antibiotics were selected and broad spectrum 
antibiotics were administered at 72 h from blood sample collection.
Results: The mean time to optimal targeted antibiotic treatment was shorter for the dRAST 
group [55.7; standard deviation (SD), 28.7 vs. 92.3; SD, 51.1 h; P = 0.041]. The proportion of 
cases receiving optimal targeted antibiotics 72 h after blood collection for culture was higher 
[6/10 (60.0%) vs. 10/25 (40.0%)] and the percentage receiving broad spectrum antibiotics at 
72 h was lower [6/10 (60.0%) vs. 19/25 (76.0%)] in the dRAST group than in the conventional 
AST group. In terms of microbiology profile, the contamination rate was high (35.5%) and 
multidrug-resistant strains were common (63.2%) in COVID-19 patients with bacteremia.
Conclusion: Application of dRAST for selection of antibiotics to treat bacteremia in 
COVID-19 patients may enable earlier and optimal treatment. The high incidence of 
contamination and resistant organisms in blood cultures from COVID-19 patients suggest 
that dRAST may speed up appropriate targeted treatment.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that has, so far, resulted in 
a large number of positive cases and deaths worldwide [1]. Despite the rollout of several 
vaccines, many countries are still struggling with ongoing outbreaks. In the midst of the 
pandemic, medical staff have learned a lot about the disease, and treatments have changed 
continuously as more evidence emerges from extensive research [2, 3]. In particular, the role 
of antibiotics for the treatment of COVID-19 has continued to change, and the importance of 
antimicrobial stewardship is being increasingly emphasized [4].

COVID-19 patients are prone to bacterial co-infection and superinfection, which are related 
to a poor prognosis and a fatal outcome, similar to other respiratory viruses such as influenza 
[5-7]. According to previous studies, the overall proportion of secondary bacterial infections 
in COVID-19 patients was actually low [8], however they were more common in critically ill 
patients [9]. Therefore, it is important to diagnose and treat combined bacterial infections 
in severely ill patients with COVID-19. However, a major obstacle to identification of 
secondary bacterial infection in patients with severe COVID-19 is high levels of blood culture 
contamination [10-12]. Consequently, patients should be re-evaluated continuously using 
appropriate culture tests and to assess the probability of co-infection with bacteria [13].

During the pandemic, the majority of COVID-19 patients received antibiotics empirically 
without evidence of bacterial infection [14]. Most of those patients even received broad 
spectrum antibiotics unnecessarily [15]. Increased prescription of antibiotics [16] increases 
the incidence of multidrug-resistant bacteria in critically ill COVID-19 patients, which is a 
serious medical concern [17, 18] Therefore, it is crucial to use appropriate antibiotics to treat 
COVID-19 patients based on best current evidence.

The time to diagnosis and treatment of bacteremia was often delayed during the COVID-19 
pandemic [19]. Mortality rates in patients with septic shock increase with each hour of delay 
of administration of antibiotics [20]. Therefore, early diagnosis of bacterial infection and 
timely administration of appropriate antibiotics are essential. To detect bacteremia early, it is 
necessary to obtain blood culture results quickly [21]. However, it takes about 3 days to report 
the results of conventional antibiotic susceptibility tests (AST); this delay in identifying the 
culprit pathogen leads to unnecessary use of broad spectrum antibiotics.

A novel AST, called the direct rapid antibiotic susceptibility test (dRAST; QuantaMatrix, Inc., 
Seoul, Korea.), delivers antimicrobial susceptibility test results within 6 h after a Gram smear 
examination by analyzing changes in the morphology of a single bacterial cell under various 
antibiotic conditions [22]. dRAST can accelerate administration of optimal antibiotics and 
reduce use of broad spectrum antibiotics [23, 24]. However, clinical application of dRAST 
has not yet been established widely, especially during the COVID-19 pandemic. Herein, we 
assessed the effectiveness of dRAST for improving selection of appropriate antibiotics and 
the prognosis of COVID-19 patients with bacteremia.
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MATERIALS AND METHODS

1. Study design
This was a cross-sectional retrospective study conducted at Seoul National University 
Hospital (Seoul, Korea), a tertiary hospital with 1,779 beds including 48 nationally designated 
negative pressure isolation units. Data from all blood culture-positive cases of COVID-19 
hospitalized from June 1, 2020 to September 30, 2021 were collected, and 96 blood culture-
positive cases were identified among total 1,984 blood culture samples collected during the 
study period. Of these, 20 cases in which the same bacteria were identified in follow-up blood 
cultures were excluded (Fig. 1), leaving 76 cases in which bacteria were first identified. Cases 
with fungemia were excluded because dRAST does not provide information about antifungal 
resistance. Next, cases considered to be contamination were excluded. Finally, cases that 
had already received antibiotics appropriate for the identified bacteria at the time of blood 
collection for culture were excluded. Thus, 35 cases were identified and divided into two 
groups based on whether they underwent conventional AST or dRAST. The conventional 
AST group was further subdivided into two groups on the basis of whether they underwent 
conventional identification (ID) or matrix-assisted laser desorption/ionization time-of-flight 
(MALDI-TOF) mass spectrometry. There was one case that underwent MALDI-TOF but its 
identification result was unreliable assigned to conventional ID group.

2. Procedures
When a positive blood culture result was notified, medical staff treating COVID-19 patients 
could request a dRAST with MALDI-TOF or MALDI-TOF only, based on individual judgment. 
They evaluated the need for obtaining results earlier on basis of clinical factors such as 
patients’ severity. If requested by the primary medical team, blood culture samples were 
subjected to MALDI-TOF mass spectrometry (Biotyper and Sepsityper kits; Bruker Daltonik 
GmbH, Bremen, Germany) [25]. Then if ordered, rapid phenotypic AST was performed 
using the QMAC-dRAST (QuantaMatrix, Inc., Korea), a method based on microscopic 
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96 blood culture (+) cases
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Figure 1. Diagram of the study design. 
AST, antibiotic susceptibility test; dRAST, direct rapid antibiotic susceptibility test; ID, identification; MALDI-TOF, 
matrix-assisted laser desorption/ionization time-of-flight.



image analysis with microfluidic chip technology [22]. Along with MALDI-TOF, dRAST 
can determine minimal inhibitory concentrations (MIC) and antimicrobial susceptibility 
within 6 h after Gram staining. MIC results were interpreted according to the Clinical and 
Laboratory Standards Institute M100-Ed30, 2020 [26]. Conventional AST used the Micro-
Scan (Beckman Coulter, Inc., Atlanta, GA, USA) for Gram-positive bacteria and the VITEK2 
system (bioMerieux, Inc., Durham, NC, USA) for Gram-negative bacteria.

3. Outcomes
The effectiveness of dRAST was evaluated by comparing the dRAST and conventional AST 
groups with respect to the following outcomes: time from blood collection to reporting of 
AST results; time to optimal targeted antibiotic treatment; proportions of cases receiving 
optimal targeted antibiotics at 48 and 72 h post blood collection; proportions of cases 
receiving broad spectrum antibiotics at 72 h post blood collection; amount of major broad 
spectrum antibiotics (glycopeptide, carbapenem) used within 1 week from blood collection; 
time to defervescence; and proportion of cases with persistent bacteremia at follow up 
culture conducted 48 h after a first positive blood culture. In addition, subgroup analysis of 
the same outcomes comparing conventional ID and MALDI-TOF ID groups was conducted to 
investigate whether rapid identification rather than rapid AST improves clinical outcomes.

In addition, basic characteristics such as age, sex, Gram stain profile, multidrug resistance 
of the identified microorganisms, and intensive care unit (ICU) admission of cases in the 
dRAST and conventional AST groups were evaluated. Bacterial isolates and the antimicrobial 
resistance profile of all 76 cases with bacteremia were also investigated.

Optimal antibiotics, defined as the most effective antibiotics with the narrowest 
spectrum, are determined based on antibiotic resistance profile. In this study, multidrug-
resistant strains were defined as methicillin-resistant Staphylococcus aureus, vancomycin-
resistant Enterococcus species, and other bacteria resistant to at least one agent in at least 
three antimicrobial categories [27]. If normal skin flora, including coagulase-negative 
staphylococci, were identified from only one blood culture bottle, then the case was 
considered to be contamination [28]. Also, if there was negative conversion in a follow-up 
blood culture without administration of antibiotics, or if there were no signs of infection, 
then the case was regarded as contamination.

4. Statistical analysis
Counting data were expressed as the number and percentage, and measurement data 
were expressed as the mean ± standard deviation (SD). Comparisons between two groups 
were performed using two independent-sample t-tests and the chi-square test. Data that 
were nonparametrically distributed were expressed as the median and interquartile range 
and analyzed using the Mann-Whitney U-test and the chi-square test (between-group 
comparisons). All statistical analyses were conducted using SPSS version 26.0 (SPSS, Inc., 
Chicago, IL, USA).

5. Ethics
This study was approved by the Institutional Review Board of Seoul National University Hospital 
(IRB No. H-2111-033-1269). The requirement for informed consent was waived by the IRB.
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RESULTS

1. Baseline characteristics
Of the 35 cases selected, 25 underwent conventional AST and ten underwent dRAST. There 
were no significant differences between the groups in terms of age, sex, Gram stain profile, 
multidrug resistance, or ICU admission. (Table 1). In the conventional AST group, and 
in contrast to the dRAST group, Gram-positive bacteria were more common than Gram-
negative bacteria; however, the difference was not significant. Also, there was no difference 
in the proportion of multidrug-resistant bacteria between the two groups.

2. Effectiveness of dRAST
The mean time from blood sample collection to optimal targeted antibiotic treatment was 
shorter for the dRAST group (55.7 ± 28.7 h) than for the conventional AST group (92.3 ± 
51.1 h; P = 0.041). Also, the proportion of cases receiving optimal targeted antibiotics at 72 
h after blood collection for culture was higher in the dRAST group than in the AST group 
[6/10 (60.0%) vs. 10/25 (40.0%), respectively], although the difference was not statistically 
significant (P = 0.454). However, the percentage of cases receiving appropriate antibiotics at 
48 h was the same for dRAST (2/10, 20.0%) and conventional AST (5/25, 20.0%) groups.

The proportion of cases receiving broad spectrum antibiotics 72 h after blood collection 
was lower in the dRAST group than in the AST group [6/10 (60.0%) vs. 19/25 (76.0%), 
respectively; P = 0.421]; again, the difference was not significant. There was no difference 
between the groups regarding the number of days of broad spectrum antibiotics 
administration within 7 days of blood sample collection (4.70 for dRAST vs. 4.72 days for 
AST; P = 0.985).

Regarding prognosis, time to defervescence was significantly shorter for the dRAST group 
(1.10 ± 1.20 days) than for the conventional AST group (3.04 ± 3.08 days; P = 0.011). However, 
the proportion of cases with persistent bacteremia was higher in the dRAST group than in the 
AST group [4/10 (40.0%) vs. 6/25 (24.0%), respectively].

The mean time from blood collection to the AST result was significantly shorter for the dRAST 
group than in the AST group (62.5 ± 21.6 vs. 102.3 ± 28.8 h, respectively; P=0.421) (Table 2).
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Table 1. Baseline characteristics of the study population
Characteristics Conventional AST (n = 25) dRAST (n = 10) P-value
Age 73.0 [63.0 - 77.0] 73.0 [66.0 - 80.0] 0.351
Sex 0.123

Male 18 (72.0) 4 (40.0)
Female 7 (28.0) 6 (60.0)

Organisms 0.077
Gram-positive bacteria 18 (72.0) 4 (40.0)
Gram-negative bacteria 7 (28.0) 6 (60.0)

MDRO 19 (76.0) 4 (40.0) 0.106
Gram-positive bacteria 13 (52.0) 1 (10.0)
Gram-negative bacteria 6 (24.0) 3 (30.0)

ICU admission 19 (76.0) 8 (80.0) 0.799
Data are presented as the number (%) or median [interquartile range].
P-value was calculated using the Mann-Whitney U-test (continuous variables) or Chi-square test (categorical 
variables).
AST, antibiotic susceptibility test; dRAST, direct rapid antibiotic susceptibility test; MDRO, multidrug-resistant 
organisms; ICU, intensive care unit.



3. Subgroup analysis: MALDI-TOF
Of the 25 cases that underwent conventional AST, 10 underwent MALDI-TOF and fifteen 
underwent conventional ID. Subgroup analysis of outcomes revealed that the mean time to 
optimal targeted antibiotic treatment was shorter for the MALDI-TOF group (67.7 ± 22.7 h) 
than for the conventional ID group (108.7 ± 58.6 h; P = 0.024). By contrast, there were no 
significant differences in other variables (Table 3). There was no difference between the two 
groups with respect to mean time from blood collection to the AST result (97.6 ± 18.0 for 
MALDI-TOF vs. 105.3 ± 34.5 h for conventional ID; P = 0.522).

4. Epidemiology of bacteremia in COVID-19 patients
Among the 76 cases in which bacteria were first identified, Gram-positive bacteria were 
isolated in 53 cases, Gram-negative bacteria were detected in 14 cases, and fungus was 
detected in nine cases (Table 4). Coagulase-negative Staphylococcus, which was considered 
to be a contaminant, was most common among the Gram-positive isolates, followed 
by Enterococcus species. The proportion of bacterial isolates which are considered as 
contamination was as high as 56.6% (30/53) from Gram-positive bacteremia cases. Of the 
Gram-negative bacterial isolates, Acinetobacter baumannii was the most common. The rate 
of contamination in cases of Gram-negative bacteremia was lower (2/14, 14.3%) than that 
in cases of Gram-positive bacteremia; however, the rate of multidrug resistance was 71.4% 
(10/14). Overall, the data show that multidrug-resistant strains were common in COVID-19 
patients with bacteremia (48/76, 63.2%).
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Table 2. Outcomes of conventional AST versus dRAST for COVID-19 patients with bacteremia
Outcomes Conventional AST (n = 25) dRAST (n = 10) P-value
Time to report AST (h) 102.25 ± 28.82 62.48 ± 21.62 <0.001a

Time to optimal targeted antibiotic treatment (h) 92.30 ± 51.13 55.71 ± 28.66 0.041a

Optimal targeted antibiotics
48 h 5 (20.0) 2 (20.0) >0.999
72 h 10 (40.0) 6 (60.0) 0.454

Broad spectrum antibiotics
72 h 19 (76.0) 6 (60.0) 0.421
in 7 days (days) 4.72 ± 2.17 4.70 ± 3.02 0.985

Time to defervescence (days) 3.04 ± 3.08 1.10 ± 1.20 0.011a

Persistent bacteremia 6 (24.0) 4 (40.0) 0.421
Data are presented as the number (%) or as the mean ± standard deviation.
P-value was calculated using the Student’s t-test (continuous variables) or Chi-square test (categorical variables).
aStatistically significant.
AST, antibiotic susceptibility test; dRAST, direct rapid antibiotic susceptibility test.

Table 3. Subgroup analysis of outcomes of conventional ID versus MALDI-TOF for COVID-19 patients with bacteremia
Outcomes Conventional ID (n = 15) MALDI-TOF (n = 10) P-value
Time to report AST (h) 105.3 ± 34.5 97.6 ± 18.0 0.522
Time to optimal targeted antibiotic treatment (h) 108.7 ± 58.6 67.7 ± 22.7 0.024a

Optimal targeted antibiotics
48 h 2 (13.3) 3 (30.0) 0.358
72 h 4 (26.7) 6 (60.0) 0.122

Broad spectrum antibiotics
72 h 10 (66.7) 9 (90.0) 0.345
in 7 days (days) 5.0 [3.0 – 7.0] 4.5 [4.0 – 7.0] 0.955

Time to defervescence (days) 1.0 [0.0 – 4.5] 3.0 [0.0 – 6.0] 0.572
Persistent bacteremia 3 (20.0) 3 (30.0) 0.653
Data are presented as the number (%) or as the mean ± standard deviation or median [interquartile range].
P-value was calculated using the Student’s t-test or Mann-Whitney U-test (continuous variables) and Chi-square 
test (categorical variables).
aStatistically significant.
ID, identification; MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight; COVID-19, coronavirus 
disease 2019.



DISCUSSION

This study showed that dRAST helps to expedite selection and use of optimal antibiotics to 
treat COVID-19 patients with bacteremia. We found that dRAST reduced the time to reporting 
of the results of antibiotic susceptibility tests markedly when compared with conventional AST. 
The time to administration of optimal targeted antibiotics was remarkably shorter, and the 
proportion of cases receiving optimal targeted antibiotics used at 72 h after blood collection 
was higher, for the dRAST group. The time to reporting of results was approximately 40 h 
shorter than that for conventional AST; dRAST results were reported at an average of 62.5 h 
post-blood collection. This explains the difference in the proportion of cases receiving optimal 
antibiotics at 72 h but not at 48 h. In addition, in terms of prognosis, prompt administration of 
appropriate antibiotics after dRAST showed the benefit of earlier defervescence.

As MALDI-TOF was performed to identify bacteria prior to reporting AST, medical staff were 
able to predict and administer optimal antibiotics further swiftly. However, as shown in 
previous studies [29], MALDI-TOF alone was inadequate for resistant organisms. Conducting 
MALDI-TOF with dRAST is essential for selection of appropriate antibiotics to treat bacterial 
infections in COVID-19 patients with multidrug resistance. In addition, dRAST with MALDI-
TOF further expedites the use of optimal antibiotics (55.7 ± 28.7 h) over MALDI-TOF alone 
(67.7 ± 22.7 h). Thus, MALDI-TOF with dRAST can speed up selection of proper antibiotics.

The proportion of broad spectrum antibiotics used at 72 h was lower for the dRAST group 
than for the AST group, although the difference was not statistically significant. Meanwhile, 
the use of broad spectrum antibiotics over the course of a week was similar for both groups. 
This is different from the results of previous studies [23], which may be due to the smaller 
sample size and the higher proportion of multidrug-resistant strains in both groups in this 
study. This suggests the need for further studies to evaluate the utility of dRAST for reducing 
use of broad spectrum antibiotics use during a pandemic. Additionally, the proportion 
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Table 4. Identification of bacteremia in COVID-19 patients
Organisms Total No. Contamination No.
Gram-positive bacteremia 53 30

Enterococcus spp. 14 2
Vancomycin resistance 10 2

Staphylococcus aureus 4 1
Methicillin resistance 1 0

Coagulase-negative Staphylococcus 30 24
Methicillin resistance 27 22

Streptococcus spp. 1 0
Gram-positive rod 4 3

Gram-negative bacteremia 14 2
Escherichia coli 4 0

ESBL production 2 0
Pseudomonas aeruginosa 1 0

Carbapenem resistance 1 0
Acinetobacter baumannii 7 1

Carbapenem resistance 7 1
Stenophomonas maltophilia 1 0
Veillonella parvula 1 1

Fungemia 9 0
Candida spp. 8 0
Cryptococcus neoformans 1 0

COVID-19, coronavirus disease 2019; ESBL, extended spectrum beta-lactamase.



of cases with a positive blood culture 48 h after the initial blood culture was higher in the 
dRAST group. Further studies should investigate the reason why bacteremia persists despite 
appropriate antibiotic administration to COVID-19 patients.

In the present study, contamination of blood cultures was common as in previous studies [10-
12]. Also, resistant organisms, such as methicillin-resistant coagulase-negative staphylococci 
and imipenem-resistant Acinetobacter baumannii, were identified frequently. High incidence 
of contamination may be due to procedural difficulties such as blood sampling in isolated 
wards. This reinforces the importance of antimicrobial stewardship for patients with 
COVID-19. Multidrug-resistant organisms can be transmitted to other susceptible patients 
and have the capability to trigger outbreaks in isolation wards [30]. Hence, surveillance of 
multidrug-resistant organisms and avoidance of unnecessary broad spectrum antibiotics are 
essential. Fortunately, the dRAST system in ICU setting has been covered since November 
2021 by the national medical insurance in Korea. The high incidence of contamination and 
the presence of resistant organisms in blood cultures from COVID-19 patients mean that 
dRAST may help antimicrobial stewardship by speeding up differentiation of contaminants 
and multidrug-resistant bacterial infection.

This study has a few limitations. First, the sample size was small. This is because the frequency 
of true bacterial infection among patients hospitalized with COVID-19 was relatively low. We 
could collect 10 cases underwent dRAST during 16 month of the study period. Nonetheless, we 
could confirm that dRAST accelerated the use of appropriate antibiotics significantly, in spite 
of the small number of cases. Further research with additional cases is needed to investigate 
whether we could not find statistical significances due to small sample size. Second, the study 
was retrospective. However, to the best of our knowledge, this study is the first to report the 
effectiveness of rapid phenotypic AST for patients with COVID-19, and the results are consistent 
with those of a randomized controlled study [21]. Finally, the long-term prognostic impact of 
dRAST was not investigated. Further research is warranted to determine whether application of 
dRAST improves the long-term prognosis of patients.

In conclusion, application of dRAST for COVID-19 patients with bacteremia may enable 
earlier selection and use of optimal antibiotics. Considering that contamination and 
antibiotic resistant bacteria are common in severely ill patients with COVID-19, dRAST may 
be more helpful during the continuing COVID-19 pandemic.
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