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ABSTRACT: Natural microtubule inhibitors, such as paclitaxel and ixabepilone, are key sources of novel medications, which have a
considerable influence on anti-tumor chemotherapy. Natural product chemists have been encouraged to create novel methodologies
for screening the new generation of microtubule inhibitors from the enormous natural product library. There have been major
advancements in the use of artificial intelligence in medication discovery recently. Deep learning algorithms, in particular, have
shown promise in terms of swiftly screening effective leads from huge compound libraries and producing novel compounds with
desirable features. We used a deep neural network to search for potent β-microtubule inhibitors in natural goods. Eleutherobin,
bruceine D (BD), and phorbol 12-myristate 13-acetate (PMA) are three highly effective natural compounds that have been found as
β-microtubule inhibitors. In conclusion, this paper describes the use of deep learning to screen for effective β-microtubule inhibitors.
This research also demonstrates the promising possibility of employing deep learning to develop drugs from natural products for a
wider range of disorders.

1. INTRODUCTION
Natural products are always an important source of new
drugs.1 Many famous drugs have been developed from plants,
microbial metabolites, and marine organisms. Natural products
play a vital role in the discovery and development of drugs,
which are particularly evident in anti-tumor drugs. At present,
more than 60% of anti-tumor drugs are closely related to
natural products.2 However, precise and efficient character-
ization of their biological effects remains challenging as the
number of newly discovered natural products exponentially
increased.3 Therefore, without incurring the unsustainable
costs of simply scaling typical discovery processes in parallel,
artificial intelligence-assisted natural drug design has also
emerged.4−6

Recently, there has been a growing enthusiasm for using
deep learning to advance drug discovery.7−9 Deep learning has
been successfully applied in compound property predic-
tion,10,11 de novo design,12−14 lead discovery,15 repurpos-
ing,16−18 and synthetic design.19 Deep learning models

demonstrate significant improvements in rapidly screening
potent leads from massive compounds in available compound
libraries. More recently, deep learning models achieved
encouraging results in identifying antibacterial compounds,18

candidates against osteoclastogenesis,20 repurposing candidates
for COVID-19.21

As a major target for chemotherapy of solid tumors, β-
tubulin is essential for the growth and metastasis of cancer
cells.22,23 Paclitaxel is a milestone natural drug that has been
found to have a special therapeutic effect and action
mechanism for breast cancer and ovarian cancer.24 It stabilizes
microtubule polymers and prevents their division, and
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chromosomes cannot achieve medium-term spindle config-
uration. This blocks the progression of mitosis, prolongs the
activation of mitosis, triggers apoptosis, or reverses the G0
phase of the cell cycle without cell division. Paclitaxel has been
one of the most successful anti-cancer drugs in the last 30
years.25 Ixabepilone is a novel cytotoxic compound derivate
produced by myxomycetes.26 Similar to paclitaxel, it also
inhibits tubulin depolymerization and shows strong anti-tumor
activity in P-glycoprotein-expressing multidrug-resistant tu-
mors. These star drugs from natural products have inspired
natural product chemists to continue their research for
potential molecules with better activity and fewer side effects.
Considering the significant advances of deep learning in drug
discovery, it is particularly interesting to utilize deep learning
to develop a new generation of tubulin inhibitors from the vast
natural product library. In this study, we aim to adopt deep
learning approaches to screen natural product libraries for
potent β-microtubule inhibitors. The overall flowchart of this
study is illustrated in Figure 1.
We assembled a hit dataset of 637 known β-tubulin

inhibitors and a non-hit dataset of 2932 molecules, including
tyrosine kinase inhibitors, small molecular immuno-oncology
compounds, and angiogenesis-related compounds. The hit and
non-hit datasets were used to train a directed message passing
neural network (DMPNN).27,28 An additional group of 4247
compounds was retrieved from public natural product libraries

to form the natural product dataset. The trained DMPNN
combined with various molecular fingerprints were adopted to
virtual screen the natural product dataset. The performance of
DMPNN, and three enhanced DMPNN were evaluated and
additional machine learning algorithms were compared. All
candidates screened by DMPNN were ranked by hit
probability and further filtered by hit probability, Lipinski’s
rule of drug-likeness, and Tanimoto similarity. Potential hits
were manually checked, and three natural products were found
as potent β-microtubule inhibitors. Among them, eleutherobin
was identified as β-tubulin polymerization inhibitor reported in
previous studies,29,30 and for the first time, bruceine D (BD)
and phorbol 12-myristate 13-acetate (PMA) were identified as
active β-microtubule inhibitors by experimental validation.
Current work highlights the significant potential of applying
deep learning-based virtual screening approaches in drug
discovery from natural products.

2. RESULTS AND DISCUSSION
2.1. Identification of Eleutherobin, BD, and PMA as β-

Microtubule Inhibitors. We first used the compounds of the
hit dataset and non-hit dataset to train the adopted DMPNN
model. The performance of DMPNN models on an
independent testing set were summarized in Table 1 and
Figure 2. Additionally, we also systematically evaluated other
machine learning algorithms (see Supporting Information,

Figure 1. Flowchart of the AI-assisted discovery in natural products. A comprehensive hit dataset and a non-hit dataset were used to train a deep
learning model. The trained model was used to screen a selected nature product dataset. The compounds were ranked by hit probability. The
ranked compounds were further filtered to obtain the candidate dataset. Expert evaluated the candidates, conducted biotests, and identified three
highly potent natural products of eleutherobin, bruceine D, and phorbol 12-myristate 13-acetate.
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Tables S5 and S6 and Figures S1 and S2). The trained model
was used to screen the natural product dataset for potential hits
of β-microtubule inhibitors. The screened compounds were
later filtered according to hit probability, Lipinski’s rule of
drug-likeness, and molecular similarity. The qualified com-
pounds were manually evaluated and surveyed in literatures.
Those candidate compounds were further investigated for anti-
tumor activity and β-tubulin polymerization inhibition activity.
Finally, three natural products, including eleutherobin, BD, and
PMA, were identified as β-microtubule inhibitors (Figure 3).

2.2. BD and PMA Inhibit Microtubule Assembly in
MDA-MB-231 Cells. It has been shown that BD and PMA
elicit anti-proliferative effects in multiple types of cancer.31−34

Firstly, we found that BD and PMA exhibited potent anti-
proliferative activity (IC50 values of 10.8 and 10.6 μM,
respectively) in a dose-dependent manner in MDA-MB-231
cells by MTT assay (Figure 4a). Accordingly, 10 BD and 10
μM PMA were used in subsequent experiments. Next, we
performed an immunofluorescence assay to confirm whether
BD and PMA could inhibit microtubule assembly. We
observed β-tubulin was abnormally accumulated, and the
fluorescence intensity was significantly reduced in MDA-MB-
231 cells after treatment with BD or PMA (Figure 4b,c). These
results indicate that BD and PMA may be potential β-
microtubule inhibitors.

2.3. BD and PMA Induce Cell Cycle Arrest in MDA-
MB-231 Cells. Previous studies have shown that BD and PMA
are potent inducers of cell cycle arrest.31,35 Moreover,
microtubules are essential in the mitosis process, and
microtubule inhibitors could disturb the progress of the cell
cycle.36 Therefore, we verified whether BD and PMA could
similarly induce cell cycle arrest in MDA-MB-231 cells.
Accordingly, we found that BD induced S phase arrest and
PMA induced G0/G1 phase arrest (Figure 5a,b). Furthermore,
as the key cell cycle regulators, the expression of CDK1,
CDK2, and cyclin E was inhibited (Figure 5c,d), which further
confirmed the above results. These results suggest that BD and
PMA induce cell cycle arrest, although their respective periods
of action are different.

2.4. BD and PMA Induce Apoptosis in MDA-MB-231
Cells. To ascertain whether apoptosis was associated with the
anti-tumor effects of BD and PMA, we evaluated their
apoptotic ratio in MDA-MB-231 cells using annexin V/PI
double staining. The results showed that a significant increase
in early apoptotic cells in the presence of BD and PMA.
Interestingly, PMA induced a higher rate of apoptosis
compared with BD, indicating that PMA could elicit more
obvious apoptosis (Figure 6a,b). Additionally, we detected the
expression of apoptosis-related proteins such as Bax, Bcl-2, and
caspase-3 in MDA-MB-231 cells, which suggested the
activation of the apoptotic pathway (Figure 6c,d). Taken
together, the above results demonstrate that BD and PMA
elicit anti-proliferative effects via inducing apoptosis in MDA-
MB-231 cells.

3. CONCLUSIONS
In conclusion, we systematically developed a deep learning
framework to screen natural products for potential β-
microtubule inhibitors. In the obtained hits, eleutherobin was
found in agreement with previous reports.29,30 Another two
compounds, BD and PMA were confirmed by experimental

Table 1. Performance of DMPNN Models (2D Normalized
Features, Morgan Fingerprint with Bit Vector Features,
Morgan Fingerprint Count Features, No Appended
Features) in an Independent Testing Dataset

DMPNN models AUC ACC precision recall

2D normalized features 0.9962 0.9600 0.9832 0.9360
Morgan fingerprint with bit
vector features

0.9867 0.9160 0.9906 0.8400

Morgan fingerprint count
features

0.9859 0.9120 0.9813 0.8400

No appended features 0.9915 0.9280 0.9908 0.8640

Figure 2. ROC diagrams of four DMPNN models (2D normalized features, Morgan fingerprint with bit vector features, Morgan fingerprint count
features, no appended features) in an independent testing dataset.
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validation, demonstrating potential β-microtubule inhibition
activity.
In addition, there is still room in the present work for further

improvement with future efforts. Firstly, the datasets could be
further expanded to include more molecules in the hit and
non-hit datasets to train the deep learning model, as well as
more candidates in the natural product dataset. Ideally, more
molecules of diversified chemical structures would enable the
model to further explore the chemical space, hence increasing
the chances of discovering new valid compounds. With the
availability of libraries of massive compounds and natural
products, the pipeline proposed in this work can be easily
applied to these libraries for better model training and
screening. Secondly, the model can be pre-trained using
other massive molecules before being trained by the specifically
assembled hit and non-hit datasets. This approach could
mitigate the cold start issues in deep learning. Thirdly, this
work adopted the DMPNN model, which is not a generative
model. It’s possible and easy to adopt generative models to
replace the DMPNN model in our pipeline. Unlike the
DMPNN, which is a non-generative model, generative models
can be trained to learn the latent representation of molecules,
which allows these models to screen molecules for desired

properties. Moreover, using generative models could generate
new molecular structures beyond the explored chemical space.
Overall, the results of this study demonstrate that our deep

learning-based virtual screening pipeline could successfully
identify three natural compounds as highly potent β-micro-
tubule inhibitors. This work shows the encouraging potential
of applying deep learning approaches in drug discovery,
especially from abundant natural products.

4. EXPERIMENTAL SECTION
4.1. Hit Dataset Preparation. We systematically searched

compounds databases for hits of β-microtubule inhibitors. In
Selleck (a commercial database, selleckchem.com), we
identified 22 microtubule-associated compounds. Furthermore,
we surveyed published literature for FDA-approved drugs and
compounds entering clinical trials and identified four
compounds, including paclitaxel.37−40 In addition to these 26
compounds entering clinical trials, we also considered
compounds from pre-clinical trials which demonstrated as
potential β-microtubule inhibitors. Specifically, in databases of
ChEMBL, PDB, and ZINC15, we identified 611 active
compounds with potential capability. In total, 637 compounds

Figure 3. The structures of the three potential inhibitors are eleutherobin, bruceine D, and phorbol 12-myristate 13-acetate, which are screened by
the DL model. Eleutherobin has been confirmed the capability of inducing β-tubulin polymerization, which is similar to paclitaxel.29,30 The
successful identification of eleutherobin demonstrated the effectiveness of our deep learning approach in screening for β-tubulin polymerization
inhibitors.

Figure 4. Results of MTT assay and images of immunofluorescence confocal microscopy for bruceine D, and phorbol 12-myristate 13-acetate. (a)
MTT assays performed to measure the anti-proliferative potency of bruceine D and phorbol 12-myristate 13-acetate against MDA-MB-231 cell. (b,
c) Immunofluorescence confocal microscopy images of MDA-MB-231 cells treated with 10 μM bruceine D and 10 μM phorbol 12-myristate 13-
acetate for 24 h, respectively. The nuclei and microtubules have been labeled with DAPI and β-tubulin, respectively. Representative images with
quantification of β-tubulin intensity were shown. Scale bar, 20 μm. ***P < 0.001. Statistical significance was compared with respective control
groups.
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were included to assemble the hit dataset (see Supporting
Information, Table S1).

4.2. Non-Hit Dataset Preparation. In order to establish
the non-hit dataset, we searched ChEMBL, PDB, and Selleck

Figure 5. Cell cycle analysis after bruceine D and phorbol 12-myristate 13-acetate treatment and Western blot analysis after bruceine D and
phorbol 12-myristate 13-acetate treatment. (a, b) MDA-MB-231 cell treated with 10 μM bruceine D and 10 μM phorbol 12-myristate 13-acetate
for 24 h, respectively. Cell cycle analysis was performed with propidium iodide. (c, d) Western blot analysis of CDK1, CDK2, and cyclin E in MDA-
MB-231 cell treated with 10 μM bruceine D and 10 μM phorbol 12-myristate 13-acetate for 24 h, respectively. Relative CDK1, CDK2, and cyclin E
expression levels were quantified by normalization to β-actin. **P < 0.01, ***P < 0.001. Statistical significance compared with respective control
groups.

Figure 6. Apoptosis analysis of MDA-MB-231cells treated with bruceine D and phorbol 12-myristate 13-acetate and Western blot analysis. (a, b)
MDA-MB-231 cells were treated with 10 μM bruceine D and 10 μM phorbol 12-myristate 13-acetate for 24 h, respectively. Apoptosis ratios were
determined by flow cytometry analysis of annexin V/PI double staining. Representative images and quantification of apoptosis were shown. (c, d)
Western blot analysis of caspase 3, cleaved caspase 3, Bax and Bcl-2 in MDA-MB-231 cell treated with 10 μM bruceine D and 10 μM phorbol 12-
myristate 13-acetate for 24 h, respectively. Relative Bax and Bcl-2 expression levels were quantified by normalization to β-actin. **P < 0.01, ***P <
0.001. Statistical significance was compared with respective control groups.
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databases for FDA-approved drugs and activate compounds
that were not reported as active β-microtubule inhibitors. As a
result, we collected 2932 compounds to assemble the non-hit
compounds (see Supporting Information, Table S2).

4.3. Natural Products Dataset Preparation. We
manually searched compounds of natural products from
Selleck and Topscience databases. In total, 4247 compounds
were selected, including sesquiterpene, diterpenoid, and those
alkaloids which our group investigated in previous studies.
Therefore, these compounds represent diverse chemical
structures and bioactivities. The selected compounds formed
the natural product dataset for later screening (see Supporting
Information, Table S3).

4.4. Model Implementation. To utilize the information
of molecular structures, a message-passing neural network
(MPNN) framework was used in this study, namely, the
directed message passing neural network (DMPNN)27 was
adopted. In DMPNN, properties of atoms and bonds are
encoded as feature vectors with which multiple rounds of
message passing operations are conducted over the molecular
graph. In each round of message passing, the feature vectors
were updated by aggregating messages from neighbors. After
certain rounds of convolutional embeddings, the global
descriptor in the form of a feature vector was obtained for
the given molecule, with which molecular properties could be
analyzed and predicted using conventional machine learning
approaches. Thanks to the impactful success in search potent
antibiotics, DMPNN has attracted significant attention with
emerging applications of chemical property prediction, drug
discovery, and structure characterization analysis.41−43

Extended on the learned descriptor for the input molecule
by the DMPNN, we appended additional molecular finger-
prints obtained using RDKit (http://rdkit.org/), namely the
binary Morgan fingerprints, count-based Morgan fingerprints,
and RDKit 2D normalized fingerprints to further enhance the
information on the DMPNN descriptor. Using the basic
DMPNN descriptor and the three enhanced fingerprint
combinations, we classify the input molecules against their
hit/non-hit labels. Finally, the hit probability indicating the
likeliness of inhibiting β-tubulin for a given molecule was
obtained for later filtering. For simplicity, the basic hyper-
parameters were adopted from the original implementation of
DMPNN.27,28

4.5. Model Training and Screening. The hit and non-hit
datasets were used to form the training dataset to train the
DMPNN architecture. As described above, for each input
molecule, using the basic DMPNN descriptor and the three
enhanced descriptors, the hit probability and cross-entropy of
binary classification were calculated against the ground truth.
The weights in the DMPNN were updated using back-
propagations. Once all molecules from the hit and non-hit
datasets were input into the models, the DMPNN was trained
and hence learned the capability of discriminating hits from
non-hits. Following the training, we input all the molecules in
the natural product dataset into the trained DMPNN, and the
hit probabilities were obtained using the basic DMPNN
descriptor and the three enhanced descriptors. We ranked all
candidates and focused on the top molecules with a predicted
hit probability larger than 0.8. This screening significantly
narrowed the candidate dataset.

4.6. Molecule Similarity. In order to obtain diversified
chemical structures in selected compounds, we removed
molecules that were structurally similar to the molecules in

the hit dataset. We calculated the Tanimoto similarity
coefficients using RDKit. The coefficient of two given
molecules is obtained by calculating the distance between
the molecular fingerprints of the two molecules. Candidate
compounds having a Tanimoto similarity coefficient larger
than the cut-off of 0.4 to any of the molecules in the hit dataset
were filtered.

4.7. Lipinski’s Rule of Drug-Likeness. The top
molecules with optimal hit probability obtained in the initial
screening using DMPNN were further analyzed using
Lipinski’s rule of drug-likeness. In this study, we set filters as
250 ≤ molecular weight ≤ 500, logP ≤ 5, the amount of
hydrogen bond donors ≤ 5, the amount of hydrogen bond
acceptors ≤ 10. By applying the rules, we further focused on an
even smaller group of candidates, allowing manual evaluations.

4.8. Cell Culture, Antibodies, and Reagents. Cells were
purchased from American Type Culture Collection (ATCC,
Manassas, VA, USA) and were cultured in DMEM with 10%
fetal bovine serum and incubated with 5% CO2. Antibodies
used in this study were as follows: caspase 3 (9662, CST), Bax
(5023, CST), Bcl-2 (2870, CST), CDK1 (201008, Abcam),
CDK2 (2546, CST), cyclin E (4129, CST), β-actin (3700,
CST), β-tubulin (2128, CST). Compound BD and PMA were
purchased from MedChemExpress.

4.9. Cell Viability Assay. Cell viability was measured by
the MTT assay. MDA-MB-231 cell was dispensed in 96-well
plates at a density of 7 × 103 cells/ml for 24 h. Then, cells were
treated with different concentrations of compounds for 24 h.

4.10. Apoptosis and Cell Cycle Assays. For apoptosis
assay, MDA-MB-231 cell was treated with 10 μM BD and 10
μM PMA for 24 h, respectively. Apoptosis ratios were
determined by flow cytometry analysis of annexin V/PI double
staining. For cell cycle detection, MDA-MB-231 cell was
treated with 10 μM BD and 10 μM PMA for 24 h, respectively.
Then, the cell cycle distribution was determined by flow
cytometry analysis of PI staining.

4.11. Immunofluorescence Analysis. The MDA-MB-
231 cell was incubated with β-tubulin (1200) in PBS
containing 1% BSA incubated overnight at 4 °C, followed by
the addition of fluorescent-labeled secondary antibodies (Alexa
Fluor 488, ab150077) for 1 h at room temperature. Images
were captured using a confocal laser canning microscopy
(Zeiss).

4.12. Immunoblotting Analysis. Adherent and floating
cells were collected and lysed by lysis buffer at 4 °C for 30 min.
The protein content of the supernatant was quantified by Bio-
Rad DC protein assay (Bio-Rad Laboratories, Hercules, CA,
USA). Equal amounts of the total protein were separated by
15% SDS-PAGE and transferred to PVDF membranes,
followed by primary antibodies and HRP-conjugated secon-
dary antibodies. Quantification of immunoblot was performed
by ImageJ 1.8.0.

4.13. Data Availability. Data are available within the
article and supplementary files. All other data that support the
findings of the study are available from the corresponding
author upon reasonable request.

4.14. Code Availability. The source codes of DMPNN
architecture are provided in the paper.27 Python codes for the
pipeline are available on GitHub (https://github.com/
gracewang723/chemprop).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02854
ACS Omega 2022, 7, 28334−28341

28339

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c02854/suppl_file/ao2c02854_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c02854/suppl_file/ao2c02854_si_001.pdf
http://rdkit.org/
https://github.com/gracewang723/chemprop
https://github.com/gracewang723/chemprop
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c02854.

Molecules of hit dataset, molecules of non-hit dataset,
natural product dataset, candidate dataset, list of
additional machine learning algorithms, performance of
additional machine learning algorithms in an independ-
ent testing dataset, ROC diagrams of additional machine
learning algorithms using the RDKit topological finger-
print, and ROC diagrams of additional machine learning
algorithms using the RDKit Morgan fingerprint (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Hai-Ning Song − Department of Pharmacy, The Third
People’s Hospital of Chengdu and College of Medicine,
Southwest Jiaotong University, Chengdu 610031, PR China;
Email: songhaining@126.com

Yong Tang − School of Computer Science and Engineering,
University of Electronic Science and Technology of China,
Chengdu 610054, PR China; Email: tangyong@
uestc.edu.cn

Feng Gao − School of Life Science and Engineering, Southwest
Jiaotong University, Chengdu 610031, PR China;
orcid.org/0000-0001-9436-681X; Email: gaof@

swjtu.edu.cn

Authors
Xiao-Nan Jia − School of Life Science and Engineering,
Southwest Jiaotong University, Chengdu 610031, PR China

Wei-Jia Wang − School of Computer Science and Engineering,
University of Electronic Science and Technology of China,
Chengdu 610054, PR China

Bo Yin − School of Life Science and Engineering, Southwest
Jiaotong University, Chengdu 610031, PR China

Lin-Jing Zhou − School of Information and Software
Engineering, University of Electronic Science and Technology
of China, Chengdu 610054, PR China

Yong-Qi Zhen − School of Life Science and Engineering,
Southwest Jiaotong University, Chengdu 610031, PR China

Lan Zhang − School of Life Science and Engineering,
Southwest Jiaotong University, Chengdu 610031, PR China

Xian-Li Zhou − School of Life Science and Engineering,
Southwest Jiaotong University, Chengdu 610031, PR China;
orcid.org/0000-0002-1690-0578

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c02854

Author Contributions
⊥X.-N.J., W.-J.W., and B.Y. contributed equally to this work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This study is supported by the Key R&D Program of the
Ministry of Science and Technology of the People’s Republic
of China (2020YFF0305104), National Natural Science
Foundation of China (31570341 and 31870329), Key
Research and Development Project of the Science &
Techno logy Depa r tmen t o f S i chuan P rov i n c e

(2020YFS0324), and Fundamental Research Funds for the
Central Universities of China (YGJH2020-LY06).

■ REFERENCES
(1) Newman, D. J.; Cragg, G. M. Natural Products as Sources of
New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629−661.
(2) Newman, D. J.; Cragg, G. M. Natural Products as Sources of
New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012,
75, 311−335.
(3) Jeon, J.; Kang, S.; Kim, H. U. Predicting Biochemical and
Physiological Effects of Natural Products from Molecular Structures
Using Machine Learning. Nat. Prod. Rep. 2021, 38, 1954−1966.
(4) Ballester, P. Machine Learning for Molecular Modelling in Drug
Design. Biomolecules 2019, 9, 216.
(5) Lo, Y.-C.; Rensi, S. E.; Torng, W.; Altman, R. B. Machine
Learning in Chemoinformatics and Drug Discovery. Drug Discovery
Today 2018, 23, 1538−1546.
(6) Zhang, L.; Tan, J.; Han, D.; Zhu, H. From Machine Learning to
Deep Learning: Progress in Machine Intelligence for Rational Drug
Discovery. Drug Discovery Today 2017, 22, 1680−1685.
(7) Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T.
The Rise of Deep Learning in Drug Discovery. Drug Discovery Today
2018, 23, 1241−1250.
(8) Mak, K.-K.; Pichika, M. R. Artificial Intelligence in Drug
Development: Present Status and Future Prospects. Drug Discovery
Today 2019, 24, 773−780.
(9) Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran,
E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; Zhao, S.
Applications of Machine Learning in Drug Discovery and Develop-
ment. Nat. Rev. Drug Discov. 2019, 18, 463−477.
(10) Rifaioglu, A. S.; Atalay, R. C.; Kahraman, D. C.; Dogan, T.;
Martin, M.; Atalay, V. MDeePred: Novel Multi-Channel Protein
Featurization for Deep Learning-Based Binding Affinity Prediction in
Drug Discovery. Bioinformatics 2021, 37, 693−704.
(11) Galushka, M.; Swain, C.; Browne, F.; Mulvenna, M. D.; Bond,
R.; Gray, D. Prediction of Chemical Compounds Properties Using a
Deep Learning Model. Neural. Comput. Appl. 2021, 33, 13345−
13366.
(12) Ma, B. A.; Terayama, K.; Matsumoto, S.; Isaka, Y.; Sasakura, Y.;
Iwata, H.; Araki, M.; Okuno, Y. Structure-Based de Novo Molecular
Generator Combined with Artificial Intelligence and Docking
Simulations. J. Chem. Inf. Model. 2021, 61, 3304−3313.
(13) Madaj, R.; Geoffrey, B.; Sanker, A.; Valluri, P. P.
Target2DeNovoDrug: A Novel Programmatic Tool for in Silico-
Deep Learning Based de Novo Drug Design for Any Target of
Interest. J. Biomol. Struct. Dyn. 2021, 1.
(14) Krishnan, S. R.; Bung, N.; Bulusu, G.; Roy, A. Accelerating De
Novo Drug Design against Novel Proteins Using Deep Learning. J.
Che. Inf. Model. 2021, 61, 621−630.
(15) Abdullah, M.; Guruprasad, L. Identification of 3D Motifs Based
on Sequences and Structures for Binding to CFI-400945, and Deep
Screening-Based Design of New Lead Molecules for PLK-4. Chem.
Biol. Drug Des. 2021, 98, 522−538.
(16) Crunkhorn, S. Deep Learning Framework for Repurposing
Drugs. Nat. Rev. Drug Discovery 2021, 20, 100−100.
(17) Issa, N. T.; Stathias, V.; Schurer, S.; Dakshanamurthy, S.
Machine and Deep Learning Approaches for Cancer Drug
Repurposing. Semin. Cancer Biol. 2021, 68, 132−142.
(18) Liu, R.; Wei, L.; Zhang, P. A Deep Learning Framework for
Drug Repurposing via Emulating Clinical Trials on Real-World
Patient Data. Nat. Mach. Intell. 2021, 3, 68−75.
(19) Fang, C.; Shen, Z.; Zhang, Z.; You, X.; Zhang, C. Synthesizing a
Neuron Using Chemical Reactions. In 2018 IEEE International
Workshop on Signal Processing Systems (SiPS); IEEE: New York, 2018;
pp. 187−192.
(20) Liu, Z.; Huang, D.; Zheng, S.; Song, Y.; Liu, B.; Sun, J.; Niu, Z.;
Gu, Q.; Xu, J.; Xie, L. Deep Learning Enables Discovery of Highly
Potent Anti-Osteoporosis Natural Products. Eur. J. Med. Chem. 2021,
210, 112982.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02854
ACS Omega 2022, 7, 28334−28341

28340

https://pubs.acs.org/doi/10.1021/acsomega.2c02854?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c02854/suppl_file/ao2c02854_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hai-Ning+Song"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:songhaining@126.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yong+Tang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:tangyong@uestc.edu.cn
mailto:tangyong@uestc.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Feng+Gao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9436-681X
https://orcid.org/0000-0001-9436-681X
mailto:gaof@swjtu.edu.cn
mailto:gaof@swjtu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiao-Nan+Jia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wei-Jia+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bo+Yin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lin-Jing+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yong-Qi+Zhen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lan+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xian-Li+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1690-0578
https://orcid.org/0000-0002-1690-0578
https://pubs.acs.org/doi/10.1021/acsomega.2c02854?ref=pdf
https://doi.org/10.1021/acs.jnatprod.5b01055?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jnatprod.5b01055?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/np200906s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/np200906s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1NP00016K
https://doi.org/10.1039/D1NP00016K
https://doi.org/10.1039/D1NP00016K
https://doi.org/10.3390/biom9060216
https://doi.org/10.3390/biom9060216
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1016/j.drudis.2017.08.010
https://doi.org/10.1016/j.drudis.2017.08.010
https://doi.org/10.1016/j.drudis.2017.08.010
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.11.014
https://doi.org/10.1016/j.drudis.2018.11.014
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1093/bioinformatics/btaa858
https://doi.org/10.1093/bioinformatics/btaa858
https://doi.org/10.1093/bioinformatics/btaa858
https://doi.org/10.1007/s00521-021-05961-4
https://doi.org/10.1007/s00521-021-05961-4
https://doi.org/10.1021/acs.jcim.1c00679?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00679?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00679?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/07391102.2021.1898474
https://doi.org/10.1080/07391102.2021.1898474
https://doi.org/10.1080/07391102.2021.1898474
https://doi.org/10.1021/acs.jcim.0c01060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/cbdd.13908
https://doi.org/10.1111/cbdd.13908
https://doi.org/10.1111/cbdd.13908
https://doi.org/10.1016/j.semcancer.2019.12.011
https://doi.org/10.1016/j.semcancer.2019.12.011
https://doi.org/10.1038/s42256-020-00276-w
https://doi.org/10.1038/s42256-020-00276-w
https://doi.org/10.1038/s42256-020-00276-w
https://doi.org/10.1016/j.ejmech.2020.112982
https://doi.org/10.1016/j.ejmech.2020.112982
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(21) Delijewski, M.; Haneczok, J. AI Drug Discovery Screening for
COVID-19 Reveals Zafirlukast as a Repurposing Candidate. Med.
Drug Discovery 2021, 9, 100077.
(22) Xu, L.; Wang, W.; Meng, T.; Ma, L.-P.; Tong, L.-J.; Shen, J.-K.;
Wang, Y.-Q.; Miao, Z.-H. New Microtubulin Inhibitor MT189
Suppresses Angiogenesis via the JNK-VEGF/VEGFR2 Signaling Axis.
Cancer Lett. 2018, 416, 57−65.
(23) Islam, M. N.; Iskander, M. N. Microtubulin Binding Sites as
Target for Developing Anticancer Agents.Mini-Rev. Med. Chem. 2004,
4, 1077−1104.
(24) Brito, D. A.; Yang, Z.; Rieder, C. L. Microtubules Do Not
Promote Mitotic Slippage When the Spindle Assembly Checkpoint
Cannot Be Satisfied. Int. J. Biochem. Cell Biol. 2008, 182, 623−629.
(25) Adams, D. J.; Wahl, M. L.; Flowers, J. L.; Sen, B.; Colvin, M.;
Dewhirst, M. W.; Manikumar, G.; Wani, M. C. Camptothecin Analogs
with Enhanced Activity against Human Breast Cancer Cells. II.
Impact of the Tumor PH Gradient. Cancer Chemother. Pharmacol.
2006, 57, 145.
(26) Waight, A. B.; Bargsten, K.; Doronina, S.; Steinmetz, M. O.;
Prota, A. E. Structural Basis of Microtubule Destabilization by Potent
Auristatin Anti-Mitotics. PLoS One 2016, 11, No. e0160890.
(27) Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.;
Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.; Palmer, A.;
Settels, V.; Jaakkola, T.; Jensen, K.; Barzilay, R. Analyzing Learned
Molecular Representations for Property Prediction. J. Chem. Inf.
Model. 2019, 59, 3370−3388.
(28) Stokes, J. M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.;
Donghia, N. M.; MacNair, C. R.; French, S.; Carfrae, L. A.; Bloom-
Ackermann, Z.; Tran, V. M.; Chiappino-Pepe, A.; Badran, A. H.;
Andrews, I. W.; Chory, E. J.; Church, G. M.; Brown, E. D.; Jaakkola,
T. S.; Barzilay, R.; Collins, J. J. A Deep Learning Approach to
Antibiotic Discovery. Cell 2020, 180, 688−702.e13.
(29) Sosonyuk, S. E.; Peshich, A.; Tutushkina, A. V.; Khlevin, D. A.;
Lozinskaya, N. A.; Gracheva, Y. A.; Glazunova, V. A.; Osolodkin, D.
I.; Semenova, M. N.; Semenov, V. V.; Palyulin, V. A.; Proskurnina, M.
V.; Shtil, A. A.; Zefirov, N. S. Synthesis and Cytotoxicity of Novel
Simplified Eleutherobin Analogues as Potential Antitumour Agents.
Org. Biomol. Chem. 2019, 17, 2792−2797.
(30) Long, B. H.; Carboni, J. M.; Wasserman, A. J.; Cornell, L. A.;
Casazza, A. M.; Jensen, P. R.; Lindel, T.; Fenical, W.; Fairchild, C. R.
Eleutherobin, a Novel Cytotoxic Agent That Induces Tubulin
Polymerization, Is Similar to Paclitaxel (Taxol (R)). Cancer Res.
1998, 58, 1111−1115.
(31) Li, L.; Dong, Z.; Shi, P.; Tan, L.; Xu, J.; Huang, P.; Wang, Z.;
Cui, H.; Yang, L. Bruceine D Inhibits Cell Proliferation Through
Downregulating LINC01667/MicroRNA-138-5p/Cyclin E1 Axis in
Gastric Cancer. Front. Pharmacol. 2020, 11, 584920.
(32) Wang, S.; Hu, H.; Zhong, B.; Shi, D.; Qing, X.; Cheng, C.;
Deng, X.; Zhang, Z.; Shao, Z. Bruceine D Inhibits Tumor Growth and
Stem Cell-like Traits of Osteosarcoma through Inhibition of STAT3
Signaling Pathway. Cancer Med. 2019, 8, 7345−7358.
(33) Kim, J.; Lee, D. H.; Badamtsetseg, B.; Lee, S.; Kim, S. A. Anti-
Proliferative Effect of Allium Senescens L. Extract in Human T-Cell
Acute Lymphocytic Leukemia Cells. Molecules 2021, 26, 942.
(34) Zhang, Y.; Liu, D.; Xue, F.; Yu, H.; Wu, H.; Cui, X.; Zhang, X.;
Wang, H. Anti-Malignant Ascites Effect of Total Diterpenoids from
Euphorbiae Ebracteolatae Radix Is Attributable to Alterations of
Aquaporins via Inhibiting PKC Activity in the Kidney.Molecules 2021,
26, 942.
(35) Tian, F.; Tong, M.; Li, Z.; Huang, W.; Jin, Y.; Cao, Q.; Zhou,
X.; Tong, G. The Effects of Orientin on Proliferation and Apoptosis
of T24 Human Bladder Carcinoma Cells Occurs Through the
Inhibition of Nuclear Factor-KappaB and the Hedgehog Signaling
Pathway. Med. Sci. Monit. 2019, 25, 9547−9554.
(36) Steinmetz, M. O.; Prota, A. E. Microtubule-Targeting Agents:
Strategies To Hijack the Cytoskeleton. Trends Cell Biol. 2018, 28,
776−792.
(37) Taraboletti, G.; Micheletti, G.; Rieppi, M.; Poli, M.; Turatto,
M.; Rossi, C.; Borsotti, P.; Roccabianca, P.; Scanziani, E.; Nicoletti,

M. I.; Bombardelli, E.; Morazzoni, P.; Riva, A.; Giavazzi, R.
Antiangiogenic and Antitumor Activity of IDN 5390, a New Taxane
Derivative. Clin. Cancer Res. 2002, 8, 1182−1188.
(38) Ono, C.; Takao, A.; Atsumi, R. Absorption, Distribution, and
Excretion of DJ-927, a Novel Orally Effective Taxane, in Mice, Dogs,
and Monkeys. Biol. Pharm. Bull. 2004, 27, 345−351.
(39) Dieras, V.; Limentani, S.; Romieu, G.; Tubiana-Hulin, M.;
Lortholary, A.; Kaufman, P.; Girre, V.; Besenval, M.; Valero, V. Phase
II Multicenter Study of Larotaxel (XRP9881), a Novel Taxoid, in
Patients with Metastatic Breast Cancer Who Previously Received
Taxane-Based Therapy. Ann. Oncol. 2008, 19, 1255−1260.
(40) Paller, C. J.; Antonarakis, E. S. Cabazitaxel: A Novel Second-
Line Treatment for Metastatic Castration-Resistant Prostate Cancer.
Drug Des., Dev. Ther. 2011, 5, 117−124.
(41) Withnall, M.; Lindelöf, E.; Engkvist, O.; Chen, H. Building
Attention and Edge Message Passing Neural Networks for Bioactivity
and Physical-Chemical Property Prediction. Aust. J. Chem. 2020, 12, 1.
(42) Karlov, D. S.; Popov, P.; Sosnin, S.; Fedorov, M. V. Message
Passing Neural Networks Scoring Functions for Structure-Based Drug
Discovery. Artificial Neural Networks and Machine Learning - Icann
2019: Workshop and Special Sessions 2019, 11731, 845−847.
(43) Jo, J.; Kwak, B.; Choi, H.-S.; Yoon, S. The Message Passing
Neural Networks for Chemical Property Prediction on SMILES.
Methods 2020, 179, 65−72.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02854
ACS Omega 2022, 7, 28334−28341

28341

https://doi.org/10.1016/j.medidd.2020.100077
https://doi.org/10.1016/j.medidd.2020.100077
https://doi.org/10.1016/j.canlet.2017.12.022
https://doi.org/10.1016/j.canlet.2017.12.022
https://doi.org/10.2174/1389557043402946
https://doi.org/10.2174/1389557043402946
https://doi.org/10.1083/jcb.200805072
https://doi.org/10.1083/jcb.200805072
https://doi.org/10.1083/jcb.200805072
https://doi.org/10.1007/s00280-005-0008-5
https://doi.org/10.1007/s00280-005-0008-5
https://doi.org/10.1007/s00280-005-0008-5
https://doi.org/10.1371/journal.pone.0160890
https://doi.org/10.1371/journal.pone.0160890
https://doi.org/10.1021/acs.jcim.9b00237?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00237?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1039/C8OB02915F
https://doi.org/10.1039/C8OB02915F
https://doi.org/10.1002/cam4.2612
https://doi.org/10.1002/cam4.2612
https://doi.org/10.1002/cam4.2612
https://doi.org/10.3390/molecules26010035
https://doi.org/10.3390/molecules26010035
https://doi.org/10.3390/molecules26010035
https://doi.org/10.3390/molecules26040942
https://doi.org/10.3390/molecules26040942
https://doi.org/10.3390/molecules26040942
https://doi.org/10.12659/MSM.919203
https://doi.org/10.12659/MSM.919203
https://doi.org/10.12659/MSM.919203
https://doi.org/10.12659/MSM.919203
https://doi.org/10.1016/j.tcb.2018.05.001
https://doi.org/10.1016/j.tcb.2018.05.001
https://doi.org/10.1248/bpb.27.345
https://doi.org/10.1248/bpb.27.345
https://doi.org/10.1248/bpb.27.345
https://doi.org/10.1093/annonc/mdn060
https://doi.org/10.1093/annonc/mdn060
https://doi.org/10.1093/annonc/mdn060
https://doi.org/10.1093/annonc/mdn060
https://doi.org/10.1186/s13321-019-0407-y
https://doi.org/10.1186/s13321-019-0407-y
https://doi.org/10.1186/s13321-019-0407-y
https://doi.org/10.1016/j.ymeth.2020.05.009
https://doi.org/10.1016/j.ymeth.2020.05.009
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

