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Abstract

Motivation: Previously we presented swarm, an open-source amplicon clustering programme that produces fine-
scale molecular operational taxonomic units (OTUs) that are free of arbitrary global clustering thresholds. Here, we
present swarm v3 to address issues of contemporary datasets that are growing towards tera-byte sizes.

Results: When compared with previous swarm versions, swarm v3 has modernized Cþþ source code, reduced
memory footprint by up to 50%, optimized CPU-usage and multithreading (more than 7 times faster with default
parameters), and it has been extensively tested for its robustness and logic.

Availability and implementation: Source code and binaries are available at https://github.com/torognes/swarm.

Contact: frederic.mahe@cirad.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In emerging planetary biology, large-scale amplicon sequencing
datasets are used to unravel global ecological and evolutionary pat-
terns within and across biomes and biota (de Vargas et al., 2015;
Mahé et al., 2017; Giner et al., 2020). With today’s sequencing plat-
forms, such as Illumina and PacBio, single environmental diversity
studies can produce massive amounts of data. A critical bioinformat-
ics step in the handling of these massive metabarcoding datasets is to
cluster the sequencing reads into operational taxonomic units
(OTUs). OTUs are often used as units of comparison in downstream
statistical analyses and are often interpreted as proxies for species
and other taxa (Santoferrara et al., 2020).

Swarm v1 (Mahé et al., 2014) was introduced as a novel ap-
proach to cluster amplicons into OTUs, inspired by previous single-
linkage methods, such as DOTUR (Schloss and Handelsman, 2005).
The key underlying idea of swarm was to use a local, iterative,
single-linkage clustering process to group closely related sequences
(by default with one difference in their nucleotide sequences, i.e.

d¼1). Swarm’s clustering process differs from global clustering
threshold approaches that apply an arbitrary fixed minimal similarity
between the OTU seed and other OTU members; often set at 97% or
98% (Edgar et al., 2010), or from model-based noise-filtering meth-
ods, such as DADA2 (Callahan et al., 2016) and Deblur (Amir et al.,
2017). The recommended usage of these methods is to process sam-
ples or sequencing runs independently and then to merge the results.
Swarm offers a fast alternative allowing users to (re-)process entire
datasets at once. Swarm v2 (Mahé et al., 2015) implemented in Cþþ
two additional features to refine clustering: OTU-breaking that splits
OTUs that are only linked via low-abundant sequences (–no-otu-
breaking to disable); and the merging that grafts low-abundant OTUs
onto higher-abundant OTUs (–fastidious to enable).

Swarm v2 was completely implemented in Cþþ and was sub-
stantially faster due to algorithmic advances when used with default
parameters (d¼1). There was still room for improvement. There
were issues with code standardization that could limit compile-time
optimization and raise warnings or errors with future compilers
(Darriba et al., 2018; Wilson et al., 2014). The code could only be
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executed on GNU/Linux and macOS on x86-64 CPUs. And although
swarm v2 was multithreaded and fast, its time and memory require-
ments could become a limiting factor on very large current and fu-
ture datasets, especially as amplicon sequences become longer.
Swarm v3 addresses these issues.

2 Code quality and portability

Following the recommendations of Darriba et al. (2018), swarm v3
features a substantially revised and improved documentation (e.g. help
and man page), as well as clearer and more helpful warnings and error
messages. Swarm’s logic and behavior have been tested extensively via
automatically generated input (afl-fuzz; https://lcamtuf.coredump.cx/
afl/) and 669 hand-crafted functional software tests (https://github.
com/frederic-mahe/swarm-tests/), covering more than 95% of swarm’s
code (the remaining code is CPU architecture-specific). The Codecov
(https://codecov.io) tool tracks code coverage evolution, and the
Travis-CI (https://travis-ci.org) suite automatically executes the test
suite on each new code modification to prevent regressions.

To facilitate swarm’s long-term maintenance and portability,
advanced compiler options [gcc (https://gcc.gnu.org) and clang
(https://clang.llvm.org)] as well as state-of-the-art static [cppcheck
(http://cppcheck.sourceforge.net) and clang-tidy (https://clang.llvm.
org/extra/clang-tidy/)] and dynamic Cþþ analyzers [valgrind
(https://www.valgrind.org)] were used to detect unsafe or deprecated
code not reported by commonly used compiler options. More than
1600 warnings were fixed so far, improving swarm’s global code
quality score as assessed by SoftWipe (Zapletal et al., 2020) from
5.2 to 6.6 out of 10. Swarm has now been ported to new combina-
tions of CPU architectures and operating systems: Microsoft’s
Windows on x86-64, GNU/Linux and macOS on ARM 64 and
GNU/Linux on POWER8, in addition to the already available ver-
sions for GNU/Linux and macOS on x86-64.

3 Time and space optimization, real-world results

DNA sequences are stored in silico as strings of the four characters A,
C, G and T. Rather than using a byte of memory for storing each nu-
cleotide, it is possible to only use two bits. Thereby, four nucleotides
can be stored per byte. This compression reduces the global memory-
footprint but also requires some storage overhead and additional
encoding-decoding operations as CPUs cannot operate directly on
anything smaller than a byte. To alleviate this, swarm v3 deploys a
faster hash function (Zobrist, 1970) and an efficient Bloom filter
(Putze et al., 2009), and was re-written to operate on fixed-length
chunks of compressed sequences, rather than on individual nucleoti-
des (see Supplementary File). It should be noted that this new algo-
rithm only applies to the default value for swarm’s d parameter
(d¼1). Higher d values use the same algorithm as in swarm v2.

On a dataset of 10.6 million unique SSU-rRNA V4 sequences
(representing 31.6 million reads, 380 bp on average, Mahé et al.,
2017), and a series of subsamplings (1% and 10–90% steps), swarm
v3 outperformed swarm v2 in every performance metric, while yield-
ing exactly identical clustering results. With both versions running
on 1 core, v3 was more than 7 times faster than v2. When both were
running on 16 cores, v3 was about 10 times faster than v2. The
memory requirement of v3 was about half that of v2
(Supplementary Fig. S1). Comparable results were obtained on a se-
cond dataset of 10.6 million unique SSU-rRNA V9 sequences
(130 bp on average, de Vargas et al., 2015), but with a less pro-
nounced memory-footprint reduction as the storage overhead of
two-bit compressed sequences has a larger impact with shorter
sequences (see Supplementary Figs. S2, S3 and Supplementary File
for a detailed benchmark description).

When using the merging option (named fastidious), swarm v3 is
more than 5 times faster for SSU-rRNA V9 (130 bp), and more than
9 times faster for SSU-rRNA V4 (380 bp) (Supplementary Fig. S2).
The memory-footprint is only reduced by 5–10% due to the fact that

the fastidious algorithm relies on a Bloom filter to store hash values
instead of DNA sequences, and therefore does not profit from the
two-bit sequence compression.

4 Conclusion

Swarm v3 is a clustering method designed to maximize taxonomic
resolution, sensitivity and speed. If coupled with ‘lossy’ post-
clustering filtering steps, such as chimera detection, quality filtering
and multi-sample co-occurrence patterns (e.g. Frøslev et al., 2017),
swarm has the potential to yield robust, single-nucleotide resolution
results. Swarm v3 can be used on short and long read metabarcoding
data (with sequences up to 10 Mbp when using d¼ 1), or on meta-
transcriptomic/genomic data that has been subsampled from the
same locus. It offers a comprehensive set of options that gives users
full-control and access to intermediate internal data, such as the
complete pairwise sequence network (see Forster et al., 2020, for a
usage example). Swarm v3 is open-source, actively maintained, port-
able and efficient, thus reducing the need for expensive computation-
al resources. As an example, the UniEuk project (Berney et al., 2017)
gathered from the global research community an SSU-rRNA V4
dataset with nearly 324 million unique sequences (123 billion
nucleotides), more than three times the volume of the recently pub-
lished Earth Microbiome Project (Thompson et al., 2017). Using de-
fault parameters, swarm v3 required 50 min to cluster the UniEuk
dataset on a 16-core system. We estimate that it would take less than
six hours on the same machine to process a one trillion nucleotide,
or one tera-byte dataset.
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