
Sequence analysis

Swarm v3: towards tera-scale amplicon clustering

Frédéric Mahé1,2,*, Lucas Czech 3,4, Alexandros Stamatakis3,5,

Christopher Quince6,7,8, Colomban de Vargas9,10, Micah Dunthorn 11,12 and

Torbjørn Rognes13,14

1UMR PHIM, CIRAD, Montpellier, France, 2PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier,

France, 3Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany, 4Department of

Plant Biology, Carnegie Institution for Science, Stanford, CA, USA, 5Institute of Theoretical Informatics, Karlsruhe Institute of

Technology, Karlsruhe, Germany, 6Organisms and Ecosystems, Earlham Institute, Norwich, UK, 7Gut Microbes and Health, Quadram

Institute, Norwich, UK, 8Warwick Medical School, University of Warwick, Coventry, UK, 9Sorbonne Université, CNRS, Station

Biologique de Roscoff, UMR7144, ECOMAP, Roscoff, France, 10Research Federation for the study of Global Ocean Systems Ecology

and Evolution, FR2022/Tara GOSEE, Paris, France, 11Natural History Museum, University of Oslo, Oslo, Norway, 12Eukaryotic

Microbiology, University of Duisburg-Essen, Essen, Germany, 13Department of Informatics, University of Oslo, Oslo, Norway and
14Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on January 6, 2021; revised on May 24, 2021; editorial decision on June 13, 2021; accepted on July 1, 2021

Abstract

Motivation: Previously we presented swarm, an open-source amplicon clustering programme that produces fine-
scale molecular operational taxonomic units (OTUs) that are free of arbitrary global clustering thresholds. Here, we
present swarm v3 to address issues of contemporary datasets that are growing towards tera-byte sizes.

Results: When compared with previous swarm versions, swarm v3 has modernized Cþþ source code, reduced
memory footprint by up to 50%, optimized CPU-usage and multithreading (more than 7 times faster with default
parameters), and it has been extensively tested for its robustness and logic.

Availability and implementation: Source code and binaries are available at https://github.com/torognes/swarm.

Contact: frederic.mahe@cirad.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In emerging planetary biology, large-scale amplicon sequencing
datasets are used to unravel global ecological and evolutionary pat-
terns within and across biomes and biota (de Vargas et al., 2015;
Mahé et al., 2017; Giner et al., 2020). With today’s sequencing plat-
forms, such as Illumina and PacBio, single environmental diversity
studies can produce massive amounts of data. A critical bioinformat-
ics step in the handling of these massive metabarcoding datasets is to
cluster the sequencing reads into operational taxonomic units
(OTUs). OTUs are often used as units of comparison in downstream
statistical analyses and are often interpreted as proxies for species
and other taxa (Santoferrara et al., 2020).

Swarm v1 (Mahé et al., 2014) was introduced as a novel ap-
proach to cluster amplicons into OTUs, inspired by previous single-
linkage methods, such as DOTUR (Schloss and Handelsman, 2005).
The key underlying idea of swarm was to use a local, iterative,
single-linkage clustering process to group closely related sequences
(by default with one difference in their nucleotide sequences, i.e.

d¼1). Swarm’s clustering process differs from global clustering
threshold approaches that apply an arbitrary fixed minimal similarity
between the OTU seed and other OTU members; often set at 97% or
98% (Edgar et al., 2010), or from model-based noise-filtering meth-
ods, such as DADA2 (Callahan et al., 2016) and Deblur (Amir et al.,
2017). The recommended usage of these methods is to process sam-
ples or sequencing runs independently and then to merge the results.
Swarm offers a fast alternative allowing users to (re-)process entire
datasets at once. Swarm v2 (Mahé et al., 2015) implemented in Cþþ
two additional features to refine clustering: OTU-breaking that splits
OTUs that are only linked via low-abundant sequences (–no-otu-
breaking to disable); and the merging that grafts low-abundant OTUs
onto higher-abundant OTUs (–fastidious to enable).

Swarm v2 was completely implemented in Cþþ and was sub-
stantially faster due to algorithmic advances when used with default
parameters (d¼1). There was still room for improvement. There
were issues with code standardization that could limit compile-time
optimization and raise warnings or errors with future compilers
(Darriba et al., 2018; Wilson et al., 2014). The code could only be

VC The Author(s) 2021. Published by Oxford University Press. 267

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(1), 2022, 267–269

doi: 10.1093/bioinformatics/btab493

Advance Access Publication Date: 9 July 2021

Applications Note

https://orcid.org/0000-0002-1340-9644
https://orcid.org/0000-0003-1376-4109
https://github.com/torognes/swarm
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab493#supplementary-data
https://academic.oup.com/


executed on GNU/Linux and macOS on x86-64 CPUs. And although
swarm v2 was multithreaded and fast, its time and memory require-
ments could become a limiting factor on very large current and fu-
ture datasets, especially as amplicon sequences become longer.
Swarm v3 addresses these issues.

2 Code quality and portability

Following the recommendations of Darriba et al. (2018), swarm v3
features a substantially revised and improved documentation (e.g. help
and man page), as well as clearer and more helpful warnings and error
messages. Swarm’s logic and behavior have been tested extensively via
automatically generated input (afl-fuzz; https://lcamtuf.coredump.cx/
afl/) and 669 hand-crafted functional software tests (https://github.
com/frederic-mahe/swarm-tests/), covering more than 95% of swarm’s
code (the remaining code is CPU architecture-specific). The Codecov
(https://codecov.io) tool tracks code coverage evolution, and the
Travis-CI (https://travis-ci.org) suite automatically executes the test
suite on each new code modification to prevent regressions.

To facilitate swarm’s long-term maintenance and portability,
advanced compiler options [gcc (https://gcc.gnu.org) and clang
(https://clang.llvm.org)] as well as state-of-the-art static [cppcheck
(http://cppcheck.sourceforge.net) and clang-tidy (https://clang.llvm.
org/extra/clang-tidy/)] and dynamic Cþþ analyzers [valgrind
(https://www.valgrind.org)] were used to detect unsafe or deprecated
code not reported by commonly used compiler options. More than
1600 warnings were fixed so far, improving swarm’s global code
quality score as assessed by SoftWipe (Zapletal et al., 2020) from
5.2 to 6.6 out of 10. Swarm has now been ported to new combina-
tions of CPU architectures and operating systems: Microsoft’s
Windows on x86-64, GNU/Linux and macOS on ARM 64 and
GNU/Linux on POWER8, in addition to the already available ver-
sions for GNU/Linux and macOS on x86-64.

3 Time and space optimization, real-world results

DNA sequences are stored in silico as strings of the four characters A,
C, G and T. Rather than using a byte of memory for storing each nu-
cleotide, it is possible to only use two bits. Thereby, four nucleotides
can be stored per byte. This compression reduces the global memory-
footprint but also requires some storage overhead and additional
encoding-decoding operations as CPUs cannot operate directly on
anything smaller than a byte. To alleviate this, swarm v3 deploys a
faster hash function (Zobrist, 1970) and an efficient Bloom filter
(Putze et al., 2009), and was re-written to operate on fixed-length
chunks of compressed sequences, rather than on individual nucleoti-
des (see Supplementary File). It should be noted that this new algo-
rithm only applies to the default value for swarm’s d parameter
(d¼1). Higher d values use the same algorithm as in swarm v2.

On a dataset of 10.6 million unique SSU-rRNA V4 sequences
(representing 31.6 million reads, 380 bp on average, Mahé et al.,
2017), and a series of subsamplings (1% and 10–90% steps), swarm
v3 outperformed swarm v2 in every performance metric, while yield-
ing exactly identical clustering results. With both versions running
on 1 core, v3 was more than 7 times faster than v2. When both were
running on 16 cores, v3 was about 10 times faster than v2. The
memory requirement of v3 was about half that of v2
(Supplementary Fig. S1). Comparable results were obtained on a se-
cond dataset of 10.6 million unique SSU-rRNA V9 sequences
(130 bp on average, de Vargas et al., 2015), but with a less pro-
nounced memory-footprint reduction as the storage overhead of
two-bit compressed sequences has a larger impact with shorter
sequences (see Supplementary Figs. S2, S3 and Supplementary File
for a detailed benchmark description).

When using the merging option (named fastidious), swarm v3 is
more than 5 times faster for SSU-rRNA V9 (130 bp), and more than
9 times faster for SSU-rRNA V4 (380 bp) (Supplementary Fig. S2).
The memory-footprint is only reduced by 5–10% due to the fact that

the fastidious algorithm relies on a Bloom filter to store hash values
instead of DNA sequences, and therefore does not profit from the
two-bit sequence compression.

4 Conclusion

Swarm v3 is a clustering method designed to maximize taxonomic
resolution, sensitivity and speed. If coupled with ‘lossy’ post-
clustering filtering steps, such as chimera detection, quality filtering
and multi-sample co-occurrence patterns (e.g. Frøslev et al., 2017),
swarm has the potential to yield robust, single-nucleotide resolution
results. Swarm v3 can be used on short and long read metabarcoding
data (with sequences up to 10 Mbp when using d¼ 1), or on meta-
transcriptomic/genomic data that has been subsampled from the
same locus. It offers a comprehensive set of options that gives users
full-control and access to intermediate internal data, such as the
complete pairwise sequence network (see Forster et al., 2020, for a
usage example). Swarm v3 is open-source, actively maintained, port-
able and efficient, thus reducing the need for expensive computation-
al resources. As an example, the UniEuk project (Berney et al., 2017)
gathered from the global research community an SSU-rRNA V4
dataset with nearly 324 million unique sequences (123 billion
nucleotides), more than three times the volume of the recently pub-
lished Earth Microbiome Project (Thompson et al., 2017). Using de-
fault parameters, swarm v3 required 50 min to cluster the UniEuk
dataset on a 16-core system. We estimate that it would take less than
six hours on the same machine to process a one trillion nucleotide,
or one tera-byte dataset.

Acknowledgements

The authors thank Étienne Platini and Milena Königshoffen for writing unit

tests, and Claude Monet for providing the impressionist background. The bio-

informatics analyses were performed on the Core Cluster of the Institut

Français de Bioinformatique (IFB) (ANR-11-INBS-0013). We are also grateful

for access to computational resources provided by UNINETT Sigma2—the

National Infrastructure for High Performance Computing and Data Storage

in Norway (project NN9383K), the University of Oslo and the Oregon State

University.

Funding

This work was supported by the Gordon and Betty Moore Foundation

through the UniEuk grant GBMF5275, the Klaus Tschira Foundation, and the

Deutsche Forschungsgemeinschaft (#DU1319/5-1).

Conflict of Interest: none declared.

References

Amir,A. et al. (2017) Deblur rapidly resolves single-nucleotide community se-

quence patterns. mSystems, 2, e00191-16.

Berney,C. et al. (2017) UniEuk: time to speak a common language in protist-

ology! J. Euk. Microbiol., 64, 407–411.

Callahan,B. et al. (2016) DADA2: high-resolution sample inference from

Illumina amplicon data. Nat. Meth., 13, 581–583.

Darriba,D. et al. (2018) The state of software for evolutionary biology. Mol.

Biol. Evol., 35, 1037–1046.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than

BLAST. Bioinformatics, 26, 2460–2461.

Forster,D. et al. (2020) Evaluating geographic variation within molecular op-

erational taxonomic units (OTUs) using network analyses in Scandinavian

lakes. BioRxiv, 2020.08.06.240267.

Frøslev,T.G. et al. (2017) Algorithm for post-clustering curation of DNA ampli-

con data yields reliable biodiversity estimates. Nat. Commun., 8, 1188.

Giner,C.R. et al. (2020) Marked changes in diversity and relative activity of

picoeukaryotes with depth in the world ocean. ISME J., 14, 437–449.

Mahé,F. et al. (2014) Swarm: robust and fast clustering method for

amplicon-based studies. PeerJ, 2, e593.

268 F.Mahé et al.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://github.com/frederic-mahe/swarm-tests/
https://github.com/frederic-mahe/swarm-tests/
https://codecov.io
https://travis-ci.org
https://gcc.gnu.org
https://clang.llvm.org
http://cppcheck.sourceforge.net
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://www.valgrind.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab493#supplementary-data


Mahé,F. et al. (2015) Swarm v2: highly-scalable and high-resolution amplicon

clustering. PeerJ, 3, e1420.

Mahé,F. et al. (2017) Parasites dominate hyperdiverse soil protist communities

in Neotropical rainforests. Nat. Ecol. Evol., 1, 0091.

Putze,F. et al. (2009) Cache-, hash- and space-efficient bloom filters. J. Experi.

Algorithm., 14, 4.

Santoferrara,L. et al. (2020) Perspectives from ten years of protist studies by

high-throughput metabarcoding. J. Eukaryot. Microbiol., 67, 612–622.

Schloss,P.D. and Handelsman,J. (2005) Introducing DOTUR, a computer pro-

gram for defining operational taxonomic units and estimating species rich-

ness. Appli. Environ. Microbiol., 71, 1501–1506.

Thompson,L. et al.; Earth Microbiome Project Consortium (2017) A communal cata-

logue reveals Earth’s multiscale microbial diversity. Nature, 551, 457–463.

de Vargas,C. et al.; Tara Oceans Coordinators (2015) Eukaryotic plankton di-

versity in the sunlit global ocean. Science, 348, 1261605.

Wilson,G. et al. (2014) Best practices for scientific computing. PLoS Biol., 12,

e1001745.

Zapletal,A. et al. (2020) SoftWipe—a tool and benchmark to assess scientific

software quality. BioRxiv, 2020.10.07.330621.

Zobrist,A.L. (1970) A New Hashing Method with Application for Game

Playing. Tech. Rep., 88, Computer Sciences Department, University of

Wisconsin, Madison, WI, USA.

Swarm v3 269


