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Quantized charge fractionalization at quantum Hall
Y junctions in the disorder dominated regime
Chaojing Lin 1,2✉, Masayuki Hashisaka 3, Takafumi Akiho3, Koji Muraki 3 & Toshimasa Fujisawa 1✉

Fractionalization is a phenomenon where an elementary excitation partitions into several

pieces. This picture explains non-trivial transport through a junction of one-dimensional edge

channels defined by topologically distinct quantum Hall states, for example, a hole-conjugate

state at Landau-level filling factor ν = 2/3. Here we employ a time-resolved scheme to

identify an elementary fractionalization process; injection of charge q from a non-interaction

region into an interacting and scattering region of one-dimensional channels results in the

formation of a collective excitation with charge (1−r)q by reflecting fractionalized charge rq.

The fractionalization factors, r= 0.34 ± 0.03 for ν = 2/3 and r= 0.49 ± 0.03 for ν = 2, are

consistent with the quantized values of 1/3 and 1/2, respectively, which are expected in the

disorder dominated regime. The scheme can be used for generating and transporting frac-

tionalized charges with a well-defined time course along a well-defined path.
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One-dimensional electronic systems provide non-trivial
many-body effects that cannot be explained with single-
particle pictures1. Theoretically, these effects can be cal-

culated using bosonization techniques and the bosonic (plas-
monic) scattering approach, which have been applied for both dc
and ac responses even in inhomogeneous and disordered sys-
tems1–6. Experimentally, many-body states can be investigated
using electronic and optical techniques7–10. Among them, one-
dimensional edge channels in integer and fractional quantum
Hall (QH) systems11–14 are attractive for studying non-trivial
excitations in multiple channels by utilizing mesoscopic devi-
ces15–18. The focus of this study is transport eigenmodes that
govern the interacting edge channels.

For example, the charge and spin (dipolar) modes for copro-
pagating channels in the integer QH system at ν = 2 were
investigated based on the Coulomb interaction in terms of the
chiral Tomonaga-Luttinger liquid19–21. At a Y-junction where
two decoupled channels join to form an interacting region, an
electronic excitation incident from the non-interacting region is
fractionalized into non-trivial charge and spin excitations in the
interacting region19,22–24. In the absence of interchannel tun-
neling, the eigenmodes are determined by the interaction para-
meters and can hence deviate from the pure charge and spin
modes. In this interaction-dominated regime, the fractionaliza-
tion ratio assumes a non-universal interaction-dependent value,
as demonstrated in frequency- and time-resolved measurements
as well as noise measurements25–27.

A similar class of coupled modes appears when disorder allows
for significant tunneling between two edge channels. A well-
known example is the charge and neutral modes in the ‘hole
conjugate’ fractional QH state at ν = 2/3, as suggested by noise
measurements and transport properties for short interacting
regions28–33. We assumed a reconstructed edge with counter-
propagating integer and fractional channels12,13, whereas alter-
native effective models can be considered34,35. Theoretically, the
charge and neutral modes appear at the Kane-Fisher-Polchinski
fixed point in the renormalization group flow36. In this disorder-
dominated regime, an elementary excitation should be fractio-
nalized into pure charge and neutral modes with a quantized ratio
at a Y junction of interacting and non-interacting regions36,37.

In this study, we have experimentally identified this quantized
fractionalization ratio by employing time-resolved measurements
for the hole-conjugate fractional state at ν = 2/3. A similar
quantized fractionalization is also found in the integer QH state at
ν = 2 in the presence of significant tunneling. The obtained
feature is supported by a simulation involving a realistic model
based on the plasmon scattering approach. The quantized charge
fractionalization describes the dc characteristics as well.

Results
Fractionalization processes. We first consider the edge of the
fractional state at ν = 2/3, where the counterpropagating Δν = 1
and 1/3 one-dimensional channels12 are formed along the
interface to the electronic vacuum (ν = 0), as shown in Fig. 1a.
Here, Δν = |ν1 − ν2| denotes a channel along an interface
between insulating (incompressible) regions with ν = ν1 and ν2.
Disorder-induced scattering renders them describable as a com-
posite Δν = 2/3 channel with two counterpropagating transport
modes36, i.e., a charge mode carrying a charge and a neutral mode
carrying heat. We address fractionalization processes at Y-
junctions comprising Δν = 1, 2/3, and 1/3 channels, as shown
in Fig. 1b–d. Two types of Y-junctions are possible, i.e., YC and
YN, which form depending on the cyclic order of the insulating
regions and the direction of the magnetic field B. For the con-
figuration shown in Fig. 1b, a wave packet of charge q incident

from the Δν = 1 channel is fractionalized with factor r (= 1/3 in
the disorder dominated regime) at junction YC into fractional
charges (1−r)q and rq, which propagate through the Δν = 2/3
and Δν = 1/3 channels, respectively. This occurs because the
charge mode in the Δν = 2/3 channel is composed of charges q in
the Δν = 1 channel and −rq in the Δν = 1/3 channel36. The
formation of this collective excitation requires a charge rq to be
reflected back into the uncoupled Δν = 1/3 channel37. A similar
reflection is expected when a wave packet of charge q is injected
from a Δν = 1/3 channel to junction YN shown in Fig. 1c, where
neutral excitation in the Δν = 2/3 channel is formed by reflecting
charge q in the downstream Δν = 1 channel. As shown in Fig. 1d,
a charge wave packet in the charge mode of the Δν = 2/3 channel
is decomposed into a charge in the Δν = 1 channel and heat in
the neutral mode. We focus on the charge fractionalization by
neglecting neutral excitations as the length of the Δν = 2/3
channel (L > 100 μm) is much longer than the equilibration
length leq (typically ~ 10 μm)32,33.

Quantized fractionalization in ν = 2/3 case. We demonstrate
the charge fractionalization in time-domain measurements using
several devices formed in a standard AlGaAs/GaAs hetero-
structure (see Methods and Supplementary Note 1). The follow-
ing data were obtained at ~50 mK from devices #1 and #2
fabricated on the same chip, as schematically shown in Fig. 2a.
For device #1, two Y-junctions, YC and YN, formed at the
intersections of the three regions—the ungated region with bulk
filling factor νB= 2/3, the gated region with a tunable νG (=1 in
Fig. 2a), and vacuum. An initial charge wave packet was excited
by applying a voltage step to the injector gate GI, and the
waveforms of the charge packets after passing through the
junctions were investigated by applying a voltage pulse of width
tw (0.08-0.15 ns) to the detector gate GD. Charge waveforms were

Fig. 1 QH Y-junctions formed with Δν = 1, 2/3, and 1/3 channels. a The
charge and neutral modes in the disorder dominated regime of a composite
Δν = 2/3 channel comprising Δν = 1 (blue) and 1/3 (red) channels along
the boundaries of a hole-conjugate QH region with ν = 2/3, a narrow
integer state with ν = 1, and the electronic vacuum (ν = 0). Excitations are
represented by positive and negative wave packets with ratios of charges in
Δν = 1 and 1/3 channels (1:−1/3 for the charge mode and 1:−1 for the
neutral mode). b Charge fractionalization at junction YC. An incoming wave
packet with charge q in the Δν = 1 channel is fractionalized into two
packets with 2q/3 (comprising q and −q/3) in the Δν = 2/3 channel and
q/3 in the Δν = 1/3 channel. c, d Neutral reflections at junction YN. An
injected packet with charge q in the Δν = 1/3 channel splits into charge q
in the Δν = 1 channel and neutral excitation (comprising −q and q) in the
Δν = 2/3 channel in c, and so as the packet in the Δν = 2/3 channel in d.
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obtained by measuring the detector current ID at various time
delays td of the voltage pulse with respect to the voltage step (see
Methods)38. Trace (i) in Fig. 2b is a reference showing that a single
charge packet was observed for νG= 0 (the gate voltage Vg=−0.3
V), i.e., when a single Δν = 2/3 channel without Y-junctions is
formed, as shown in the inset. This is a typical characteristic of the
edge magnetoplasmon mode39–41 at ν = 2/3. When the YC and YN

junctions were activated by setting νG= 1 (Vg=+0.26 V, B=
11.5 T), a clear charge fractionalization manifested as two distinct
packets in trace (ii). The first packet is associated with the direct
propagation through junction YN, Δν = 1 channel, and junction
YC. The second one is delayed by the round trip around the gated
region, as illustrated in the insets. Subsequent packets associated
with further fractionalization processes are extremely small to be
resolved. By assuming r= 1/3, the entire process yields a series of
packets with 2q/3, 2q/9, … toward the detector. We evaluated the
charge qt in the reference wave packet in (i) as well as qf1 and qf2 in
the first and second packets in (ii), respectively, from the area of
the peaks. The obtained qt, qf1, and qf2 are plotted in Fig. 3b as a
function of Vg, with the vertical axis normalized by the qt value at
Vg=−0.3 V (νG= 0). The ratios qf1/qt and qf2/qt are similar to the
expected values of (1−r) = 2/3 and (1−r)r= 2/9, respectively,
when the Δν = 1 and 1/3 channels are well defined at νG ≥ 1. In
particular, r= qf2/qf1 estimated from each ID profile yields r=
0.34 ± 0.03 in the range of Vg= 0.21-0.27 V, as shown in the inset
of Fig. 3b, consistent with the quantized value of 1/3.

This observation is supported by the dc characteristics of
device #2, which has Corbino geometry with ohmic contacts
surrounded by a QH state, as shown in the lower part of Fig. 2a.
Transport through the Δν = 1/3 channel formed between νG= 1
and νB= 2/3 regions involves the equilibration associated with
scattering between the coupled Δν = 1 and 1/3 channels inside

the composite Δν = 2/3 channels. Fig. 3a shows the two-terminal
conductance G between ohmic contacts Ω1 and Ω2 with other
ohmic contacts floating. The clear plateau of G ≅ e2/6 h at Vg ~
+0.2 V (νG= 1) ensures a full equilibration in the Δν = 1/3
channel and negligible backscattering in both νG= 1 and νB= 2/3
regions. This is a requisite for clear quantization of r= 1/3.
Whereas the dc characteristics of systems involving composite
Δν = 2/3 channels have been successfully explained in various
ways32,33,37, we herein demonstrate that the same can also be
understood with the quantized charge fractionalization. As shown
by the simplified channel configuration in the inset of Fig. 3a, a
fictitious charge packet q emanating from Ω1 is fractionalized into
a series of charge packets through the paths shown by the dashed
lines. Some of them reach Ω2 with the first charge 2q/9 through
path Ω1 - YN - YC’ - YN’ - YC - Ω2, followed by others multiplied
by the geometric ratio of 1/9 associated with round trip YC - YN -
YC’ - YN’ - YC. The total charge q/4 reaching Ω2 explains G= e2/
6 h for the conductance 2e2/3 h of the source channels connected
to Ω1 and Ω2. Hence, charge fractionalization provides a unified
view of dc and time-dependent charge transport.

Quantized fractionalization in ν = 2 case. We observed similar
quantized fractionalization with integer QH states at νG= 2 and
νB= 1, when the two Δν = 1 channels with up- and down-spins
were prepared in the disorder-dominated regime. The two
channels are coupled to form a composite Δν = 2 channel, as
shown in the bottom inset of Fig. 2c. Significant scattering
between them is allowed for example by coupling to nuclear
spins42. Separate experiments show full equilibration for a
channel length of ~300 μm in device #2 (see Supplementary
Note 2). Our previous study showed a short equilibration length
of ~10 μm in a similar device with a slightly lower electron

Fig. 2 Quantized fractionalization of charge wave packets. a Measurement setup with devices #1 and #2. Application of voltage Vg to the large gate
(yellow) forms a rectangular QH region (L = 300 μm and ℓ = 20 μm for #1) and QH junctions YN and YC at νG = 1 and νB = 2/3. For #1, an initial wave
packet is excited by applying a voltage step to the injector gate GI with the underneath fully depleted. Fractionalized wave packets are detected by applying
a voltage pulse of width tw to transmit a part of the packet to be detected as current ID. For #2, two-terminal dc conductance G through similar Y-junctions
is measured with ohmic contacts in Corbino geometry. b Typical charge waveforms obtained in current ID as a function of delay time td of the detector
voltage pulse with respect to the excitation voltage step. The reference trace (i) at νG = 0 (Vg = −0.3 V) and trace (ii) showing charge fractionalizations at
νG = 1 (Vg = 0.26 V) were obtained at νB = 2/3 (B = 11.5 T). Areas under the peaks represent charges with ratios qf1/qt ~ 2/3 and qf2/qf1 ~ 2/9. c The
reference trace (i) at νG = 0 (Vg = −0.3 V) and trace (ii) showing fractionalizations at νG = 2 (Vg = 0.34 V) obtained at νB = 1 (B = 7.5 T). The areas
under the peaks show qf2/qf1 ~ 1/2 and qf3/qt ~ 1/4. Propagation of charge wave packets is illustrated in the respective insets.
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density33. In this disorder-dominated regime, the transport
eigenmodes of the Δν = 2 channel should be a pure symmetric
charge mode and a short-lived antisymmetric neutral mode (see
Methods). These modes are excited at junction YE and decom-
posed at junction YD with quantized charge fractionalization of
factor r= 1/2. Namely, a single charge packet with q in the
symmetric mode splits into two packets with (1−r)q and rq in the
up- and down-spin channels, respectively. Compared with the
reference trace (i) in Fig. 2c for (νG, νB)= (0, 1), trace (ii) shows
charge fractionalizations for (νG, νB)= (2, 1) at Vg=+0.34 V and
B= 7.5 T. A series of well-isolated packets, qf1, qf2, …, manifests
the multiple fractionalization processes at YD. As plotted in
Fig. 3e, the fractionalization factor r= qf1/qf2= 0.49 ± 0.03
obtained in the range of Vg= 0.31-0.37 V is consistent with the
quantized value of 1/2. This is in contrast to previous studies
pertaining to the interaction dominated regime, where asym-
metric modes with an interaction dependent factor of r ~ 0.4 were
observed26,27.

We observed a clear two-terminal conductance plateau G= e2/3 h
at (νG, νB)= (2, 1) using device #2, as shown in Fig. 3d. This
conductance is 1/3 of the original G= e2/h of the single integer
channel emanating from the ohmic contacts. This can be understood
as the sum of the first transmission coefficient (the square of the
fractionalization factor 1/2) of a fictitious charge packet through path
Ω1 - YE - YD’ - YE’ - YD - Ω2 followed by others with a geometric
ratio of 1/4 associated with round trip YD - YE - YD’ - YE’ - YD, as

shown in the inset. Hence, the quantized fractionalization also
explains the dc characteristics of the integer channels.

Plasmon velocities. The velocity of the wave packet is an
important parameter that reflects the interaction, as evident from
chiral Tomonaga-Luttinger theories2,10,19. We experimentally
estimated the velocities from the time of flight, as summarized in
Fig. 3c, f. The velocities of the edge channels (Δν = 1 channel
between νG= 1 and vacuum and Δν = 2/3 channel between νG=
0 and νB= 2/3 in Fig. 3c) are comparable to those in previous
reports regarding edge magnetoplasmons38,39,43,44. The velocity
of the Δν = 1/3 interface channel between the ν = 1 and 2/3
regions, ~30 km/s, is particularly important for transporting
fractional charges45. Unlike edge channels with a well-defined
confining potential, the interface channel is supported by two QH
states with a slight difference in their electrostatic potentials.
Therefore, the contribution of the single-particle drift velocity
arising from the potential gradient is negligible. This is particu-
larly relevant to the Δν = 1/3 channel, as the Fermi level remains
in the lowest Landau level in the fractional state.

To understand the origin of the velocity, we assume that the
charge velocity of a Δν channel is expressed as vc=Δνgq/C, where
gq= e2/h is the quantized conductance, and 1/C measures the
interaction16. Practically, C should be dominated by the geometric
capacitance (per unit length) between the channel and a nearby
gate46. For an interface channel along the side of the gate shown in

Fig. 3 Characteristics of charge transport. a, d Vg-dependence of two-terminal conductance G measured with ohmic contacts Ω1 and Ω2 of device #2
obtained at νB = 2/3 in a and νB = 1 in d. The insets show the channel configurations, where multiple charge fractionalizations at Y-junctions explain the
plateau G = e2/6 h at νG = 1 in a and G = e2/3 h at νG = 2 in d. b, e The reference charge qt, and fractionalized charges qf1, qf2, and qf3 in the respective
packets normalized by qt. A single reference packet typically involves qt ffi 240e in b and 30e in e. The clear plateaus of qf/qt indicate the quantized
fractionalization. The insets show fractionalization factor r = qf2/qf1 with a constant region (r = 0.34 ± 0.03 in b and r = 0.49 ± 0.03 in e). c, f Charge
velocities of the channels. The Δν = 1/3 interface channel between ν = 1 and 2/3 regions, the Δν = 1 edge channel between νG = 1 and vacuum, and the
Δν = 2/3 composite channel between νG = 0 and νB = 2/3 are shown in c, whereas the Δν = 1 interface channel between νG = 2 and νB = 1 regions (0.3
V < Vg < 0.4 V, estimated from the second and the third packets), the Δν = 1 edge channel between νG = 1 and vacuum (Vg < 0.18 V), and the Δν = 2
composite channel between νG = 2 and vacuum are shown in f. Data in b, c, e, and f were obtained using device #1. Vertical dotted lines for representative
νG values were determined from a separate four-terminal measurement (see Supplementary Note 1).
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Fig. 4a, this C is expected to depend on the width, w=wg+wu, of
the channel (compressible region), where wg (wu) is the spread
under the gate (in the ungated region). Our numerical simulation
(see Methods) shows that C is determined primarily by wg rather
than wu (Fig. 4b). The normalized velocities, vc/Δν, obtained for
various values of (νG, νB), are summarized in Fig. 4d. Here, the data
for νG > νB and νG < νB were obtained using devices #1 and #2,
respectively, with Vg > 0 and Vg < 0 (see Supplementary Notes 2 and
3). Except for (νG, νB)= (2/3, 1), vc/Δν indicates similar values for
all interface channels, i.e. Δν = 1/3 (circles) and 1 (squares), as well
as edge channel Δν = 1 (triangles). This coincidence suggests that
the velocities are determined by a similar C ~ 0.4 nF/m, as shown
on the right axis. A comparison with Fig. 4b implies that wg is
sufficiently narrow, comparable to the depth d ~ 100 nm of the
electron system from the surface. This indicates that the velocity
~30 km/s of the Δν = 1/3 channel obtained for (νG, νB)= (1, 2/3)
is reasonable. Meanwhile, a significantly lower velocity of ~ 1 km/s
was observed for the Δν = 1/3 channels in the (2/3, 1)
configuration. This suggests a wide wg ~ 10 μm in the crude
model or quasi-diffusive transport in the presence of disorder
potential. Whereas this might be related to the small energy gaps
of the QH states at lower B in this configuration, the velocity did
not increase significantly with B even after light irradiation (solid
circle), which increased the electron density. The former (1, 2/3)
configuration with a fractional state in an ungated region might be
suitable for minimizing the time-of-flight and hence decoherence
in a fractional-charge interferometer. It is noteworthy that the
fractionalization factor r summarized in Fig. 4c remained at
approximately 1/3 even when the velocity reduced significantly.

Discussion
The observation above suggests robust fractionalization factors in
the disorder-dominated regime. This is consistent with the plas-
mon (charge density wave) transport model (see Methods) shown
in Fig. 5a, where interaction and scattering are characterized by

distributed capacitances and scattering conductances, respec-
tively46–48. The transport eigenmodes generally deviate from the
pure charge and neutral modes at higher frequencies. However,
the deviation is small in the low-frequency regime, where the
wavelength λ of the plasmon is much greater than the equili-
bration length leq. This is observed in the numerical simulation of
multiple charge fractionalizations with realistic parameters, as
shown in Fig. 5b, c, where the distortion of the charge waveform
is negligible. The obtained narrow width (a few nanoseconds) of
the fractionalized wave packets encourages studying microscopic
fractionalization processes including neutral modes and heat
generation, which can be used to identify the appropriate effective
model34–36,49. The deterministic fractionalization processes may
benefit the search for non-trivial anyonic statistics of fractional
charges48,50–53.

Methods
Device fabrication. The devices were fabricated from a standard GaAs/AlGaAs het-
erostructure with a two-dimensional electron gas (2DEG) located 100 nm below the
surface having an electron density of 1.85 × 1011 cm−2 in the dark and 2.07 × 1011 cm−2

after light irradiation at low temperature. After patterning holes into the 2DEG for the
Corbino geometry, ohmic contacts were formed by alloying Au–Ge–Ni metal films;
subsequently metal gates were patterned using photolithography and electron-beam
lithography (see Supplementary Note 1 for details).

Time-of-flight experiment. A charge wave packet was generated by depleting
electrons near the injection gate GI of length lI ~ 50 μm by applying a voltage step
ΔVI= 5–15mV to the static voltage of −0.2–−0.3 V. This induced charge qI ~
CIlIΔVI in the packet, where CIlI is the coupling capacitance. The charge waveform ρ
(t) was evaluated by applying a detector pulse ΔVD= 20mV to the static voltage of

Fig. 4 Velocity of the interface mode. a Schematic cross-section around
the interface channel Δν = |ν1 − ν2 | of width wg + wu (wg in the gated
region and wu in the ungated region) between two QH states at ν1 and ν2.
The interaction inside the channel can be described with geometric
capacitance C to the gate. b Calculated capacitance C as a function of wg for
several wu values. c Fractionalization factor r for junction YC obtained at
(νG, νB) = (2/3, 1) and (1, 2/3) showing r ~ 1/3 (circles), and junction YD at
(1, 2) and (2, 1) showing r ~ 1/2. d Normalized charge velocities vc/Δν for
fractional Δν = 1/3 interface channels at (2/3, 1) and (1, 2/3) marked with
circles, integer Δν = 1 interface channels at (1, 2) and (2, 1) marked with
squares, and conventional edge channels at (0, 2) and (0, 1) marked with
triangles. Data obtained after light irradiation are marked with solid
symbols. Channel capacitance C is shown on the right scale.

Fig. 5 Charge fractionalization calculated using a plasmon model. a Non-
interacting edge channels Δν = 1 and Δν = 1/3 in the central region and
composite Δν = 2/3 channels in the interaction regions on both sides,
forming junctions YN and YC. b Time evolution of a charge wave packet
initially prepared in the left interacting region at x = −200 μm, showing full
transmission and full reflection at YN (x = 0) and charge fractionalization at
YC (x = 300 μm). The sum of the currents I1 and I2 in the original Δν = 1 and
1/3 channels, respectively, is plotted in a color scale (red for positive and blue
for negative in an arbitrary unit). The numerical simulation was performed
using realistic parameters: capacitances C1 = C2 = Cx = 0.07 nF/m;
scattering conductance g inducing leq = 10 μm in the interacting regions;
C1’ = C2’ = 0.4 nF/m in the non-interaction region. c Time-dependent I1 and
I2 at x = 400 μm in right interaction region. Each packet shows I2 = −I1/3 of
the charge mode.
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−0.3–−0.4 V on gate GD to change the transmission probability to the detector
ohmic contact by ΔTD ~ 0.17. This induced a detector current
ID= ΔTDρ(t)tw/Trep with repetition time Trep of the voltage step and the pulse of a
width tw= 0.08–0.15 ns. The charge in the wave packet was estimated from the
integrated current. The time origin of the delay td was calibrated from a similar
experiment at zero magnetic field, where the wave packet propagates much faster
with a velocity on the order of 107 m/s16,26,38.

The charge velocity was estimated from the time-of-flight. For the wave packets
shown in Fig. 2b, velocities v2/3,u and v1,u of the Δν = 2/3 and 1 channels under the
gate (length L) were estimated from the time-of-flight of the first wave packet in
traces (i) and (ii), respectively, by disregarding the short time-of-flight (~ 0.5 ns) in
the Δν = 2/3 ungated channel39. Subsequently, the velocity v1/3,s of the Δν = 1/3
channel along the side of the gate (length L+ 2ℓ) was estimated from the delay of
the second wave packet in trace (ii) and the predetermined v1,u. Because the
velocity depends strongly on the electrostatic environment, the channels formed
along the side of the gates were compared, as shown in Fig. 4d.

Capacitance of interface channel. The interface channel is a compressible stripe
of finite width w between two incompressible regions. As the electrostatic potential
for this situation is challenging54, we assumed finite widths wg and wu in the gated
and ungated regions, respectively, as shown in Fig. 4a. By considering the
incompressible regions as insulators, the capacitance between the channel and the
gate was calculated using commercial software COMSOL based on the finite-
element method.

Fractionalization factor at high frequencies. We used the plasmon scattering
approach to simulate the fractionalization process in the presence of disorder-induced
tunneling4,46,47. Consider two one-dimensional chiral channels (n= 1 and 2) with
conductance σn (positive for right movers and negative for left movers), as shown in
Fig. 5a. The charge density ρn, electrochemical potential Vn, and current In= σnVn are
related to each other with the Coulomb interaction characterized by the self-
capacitance Cn (to the ground) and coupling capacitance CX per unit length16,26. The
quantum capacitance was absorbed in those capacitances. Scattering between the
channels was considered with scattering conductance g per unit length47. Based on
current conservation, we derived the following wave equation:

� ∂

∂x

I1
I2

� �
¼ C1 þ Cx �Cx

�Cx C2 þ Cx

� �
∂

∂t
þ g

1 �1

�1 1

� �� �
V1

V2

� �
: ð1Þ

Transport eigenmodes Îm ¼ ~I1
~I2

� �
can be calculated for alternating current In ¼

~Ine
i kx�ωtð Þ with amplitude ~In at frequency ω. The resulting k (complex) for each mode

measures the wavenumber in the real part and the decay rate in the imaginary part.
For the fractional case with σ1 = e2/h, σ2 = −e2/3 h, and g > 0, pure charge and
neutral modes with ~I2=~I1 ¼ −1/3 and −1, respectively, appeared at g >> ω(C1 + 3C2)
in the disorder-dominated regime, and interaction-dependent modes appeared at g <<
ω(C1 + 3C2) in the interaction-dominated regime. Because the solution in the zero-
frequency limit (ω → 0) provides the equilibration length leq ¼ σq=2g, the disorder-
dominated regime corresponds to the plasmon wavelength λ much longer than leq.
Our wave packet contains a long wavelength in the Fourier components (λ ≳ 800 μm
in the Δν = 2/3 channel for the data in Fig. 2b and λ ≳ 300 μm in the Δν= 2 channel
for the data in Fig. 2c). Hence, all data shown herein are obtained from the disorder-
dominated regime for our sample with leq ~ 10 μm. In this case, the charge mode

exhibits a slight decay with an angle arg k½ � � 2π C1 þ 3C2
C1 þC2

� �2 leq
λ in the lowest order. This

broadens the wave packet only slightly. The time evolutions of I1 and I2 in Fig. 5 were
obtained by integrating Eq. (1) with current conservation at the boundaries of non-
interacting (CX = 0 and g = 0) and interacting regions.

Data availability
The data and analysis used in this work are available from the corresponding author
upon reasonable request.

Code availability
The codes that are used to generate results in the paper are available from the
corresponding author upon reasonable request.
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