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ABSTRACT

Gene fusions are common driver events in leukae-
mias and solid tumours; here we present
FusionAnalyser, a tool dedicated to the identifica-
tion of driver fusion rearrangements in human
cancer through the analysis of paired-end high-
throughput transcriptome sequencing data. We ini-
tially tested FusionAnalyser by using a set of in silico
randomly generated sequencing data from 20
known human translocations occurring in cancer
and subsequently using transcriptome data from
three chronic and three acute myeloid leukaemia
samples. in all the cases our tool was invariably
able to detect the presence of the correct driver
fusion event(s) with high specificity. In one of the
acute myeloid leukaemia samples, FusionAnalyser
identified a novel, cryptic, in-frame ETS2–ERG
fusion. A fully event-driven graphical interface and
a flexible filtering system allow complex analyses to
be run in the absence of any a priori programming or
scripting knowledge. Therefore, we propose
FusionAnalyser as an efficient and robust graphical
tool for the identification of functional rearran-
gements in the context of high-throughput tran-
scriptome sequencing data.

INTRODUCTION

Until a few years ago, the importance of gene fusions as
driver oncogenic events was considered to be virtually
restricted to clonal haematological disorders, such as leu-
kaemias and lymphomas. Recently, oncogenic gene
fusions have been identified also in solid tumours (1),
indicating that the role of fusions in oncogenesis is
broader than previously expected. Fusions are routinely
investigated using cytogenetic analyses. These techniques,
however, although still largely used, suffer from severe
limitations: they require the presence of an adequate
number of mitotic cells, which is often a challenging

problem in many solid cancers and in some types of leu-
kaemia/lymphoma; they are only able to produce a gross
map of the rearrangements, thus requiring further efforts
to identify the fusion partners; finally, they are not able to
detect cryptic fusions.
The recent development of many selective inhibitors

that target proteins abnormally activated in specific
types of cancer and, most notably, the successful experi-
ence of imatinib for the treatment of chronic myeloid leu-
kaemia (CML), strongly suggest that understanding the
biologic, and thus genetic, mechanisms underlying the de-
velopment of cancer is of primary importance to treat it
successfully. In this scenario, the ability to identify the
presence of oncogenic fusions even in ‘difficult’ samples,
such as many solid cancers, where the oncogenic lesions
are still largely unknown, could play a critical role also in
clinical research to develop targeted treatment strategies.
Therefore, the availability of user-friendly fusion-

detection tools, being able to identify new and known
fusions at nucleotide resolution even in the absence of
mitotic events and when the availability of cancer cells is
limited, can have a profound impact in basic as well as
clinical research.
The development of high-throughput short-read

sequencing technologies had a dramatic impact in our
ability to generate whole-transcriptome data of complex
genomes and many pipelines dedicated to digital
expression analysis of transcriptome re-sequencing have
been developed; however, a limited effort has been yet
dedicated to the development of bioinformatics tools
focused on the detection of driver gene fusions through
transcriptome re-sequencing.
In a pioneeristic paper, Gerstein’s (2) group developed a

pipeline for the detection of gene fusions by using
paired-end sequences. By using their work as a starting
point, we developed FusionAnalyser, a graphical, event-
driven tool which makes use of paired-end short-read
transcriptome sequences to initially detect and annotate
the presence of fusion rearrangements and then to identify
the potentially driver event(s) (Supplementary Figure S1).
The core of our procedure relies on the concept of using
multiple annotation layers: FusionAnalyser initially uses
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paired reads, mapping to different genes (Bridge reads), to
build a data set of candidate fusion events. This data set is
then used to generate the first annotation layer (Bridge
Annotation Layer, BAL); by taking in account and
comparing the strand compatibility among the two
fusion partners, the presence of reads mapping to the
hypothetical fusion (Junction reads), the frame of the can-
didate fusions and the presence of a reciprocal event,
FusionAnalyser is able to build multiple layers of biolo-
gical evidence upon the BAL, which allows the user to
dynamically filter the biologically relevant events and
analyse the results in real-time.

MATERIALS AND METHODS

Algorithms

Our approach to detect fusions in transcriptome
sequencing relies on the analysis of short, paired-end
reads. These reads are initially aligned to the reference
genome: paired reads, mapping to two different genes,
are used to generate a first data set of potential intrac-
hromosomal and extrachromosomal fusions candidates
(‘Bridge reads’). Subsequently, a second data set, built
upon those reads where only one of the two sequences
in a pair is successfully mapped to the reference genome
(‘Half-mapped Anchor reads’) is generated. The under-
lying idea is that, in presence of a gene fusion event, a
fraction of the unmapped reads of the ‘Anchor’ data set
could align to the corresponding fusion region, which is
not present in the reference genome. The mapped reads in
the latter data set are used as an anchor to tie each
Half-mapped event to the corresponding Bridge region.
The genomic coordinates of each Bridge event are auto-
matically annotated against an exonic database and the
individual Bridge exons are thus identified. Annotated
Bridge events mapping to the same two genes are
grouped together and reads pertaining to the same
group and their associated exons are analysed using a
dedicated Junction Prediction Algorithm (JPA,
Supplementary Figure S2a) in order to identify the most
likely fusion (‘Junction’ region) for each bridge. The
Junction candidate is generated by identifying all the
exons of each partner being aligned to one or more
Bridge reads. If one of the two partner genes is at the 50

of the fusion (Gene1), according to the Strand prediction
algorithm (Supplementary Figure S3), the Gene1-exon
contributing to the Junction candidate will be the
30-most exon among all those receiving the alignment of
at least one Bridge read. If the partner gene is at the 30 of
the fusion (Gene2), the Gene2-exon contributing to the
Junction candidate will be the 50-most exon among all
those receiving the alignment of at least one Bridge read.
Starting from the two candidate breakpoint exons
identified by the JPA, the heuristic junction projection
module (JPM) algorithm will build all the candidate
Junction regions, taking into account the strand
mapping of each read pair to the corresponding chromo-
some and the physical strand occupancy of the associated
genes (Supplementary Figure S2b). The depth of
the projection can be customized by users, ranging from

0 (i.e. only the two exons deterministically found by the
JPA are considered) to the infinity (i.e. all the candidate
exons pertaining the two genes are taken into account).
These data, together with the corresponding genes and
exons, are then stored in a dedicated data set.

All the mapped reads in the Anchor data set are simi-
larly annotated against the RefSeq exonic database to
identify the corresponding genes and exons.

Subsequently, the Bridge and Anchor data sets are
filtered according to a customizable set of parameters,
namely: Phred-scored read quality, frequency of each
event, maximum number of undetermined nucleotides
(N) in each read, mapping quality, presence of alternative
alignments mapping to the paired read gene, quality of the
Cigar match, HLA–HLA filtering and alignment
homology (Bridge data set only) between the two exons
of each Bridge. Optionally, Bridge reads can be further
filtered with a user defined list of gene pairs (‘a priori’
filter).

Read quality filter
The Read Quality filter is activated by default. This filter
applies to the read quality of each SAM or BAM read. If
the read quality of at least n nucleotides in one of two
reads of a pair is lower than the threshold, the entire
pair is discarded. The read quality threshold is expressed
in Phred units.

Hits threshold filter
The Hits Threshold filter is activated by default. This filter
is applied to candidate Bridge reads only after the identi-
fication of the genes associated to each pair. If the number
of events bridging between two genes is lower than the
Hits threshold, the corresponding reads are discarded.

N filter
The N filter is activated by default. This filter applies to
the sequence of each SAM or BAM read. If the number of
undetermined nucleotides within a read is equal or higher
than the N threshold filter, the pair is discarded.

Mapping quality filter
The Mapping Quality filter is activated by default. It
applies to the mapping quality of each SAM or BAM
read. If the mapping quality of one of two reads in a
pair is lower than the threshold, the entire pair is
discarded.

Alternative alignments filter
During the alignment of paired short reads to the refer-
ence human genome, it may occur that a read aligns to
multiple regions with an identical alignment score. In this
scenario, the aligner may assign that read to the wrong
region. The other read of that pair, however, will still align
to the correct genomic locus. The overall result is that an
artefactual fusion is generated. This is indeed a powerful
source of artefacts in mRNAseq fusion analyses. To
overcome this problem, the Alternative Alignments filter,
which is activated by default, scans the alignment data for
the presence of alternative alignments. If present, these
data are processed, using the exonic database as reference,
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to identify the corresponding genes. Then, these data are
compared with the alignment(s) and gene(s) of the paired
read. If a common gene between the two reads is found,
then the data is considered an alternative alignment
artefact and thus discarded.

Cigar filter
The alignment of short, paired-end reads to a genome may
lead to a perfect match or to a partial match (e.g. a match
carrying small insertions, deletions or mismatches).
Although the ability to identify suboptimal mapping is
critical for single nucleotide or small indel variants iden-
tification, the presence of suboptimal matches in fusion
discovery is usually detrimental, because it increases the
risk of artefacts due to erroneous mapping. This is indeed
another important source of artefacts. To overcome
this problem, the Cigar filter, which is activated by
default, scans the alignment data for the presence of
less-than-perfect alignments. If present, these data are
discarded.

HLA–HLA filter
The HLA genes typically share an extremely high
sequence similarity with one another (e.g. there is a 92%
sequence identity between HLA–B and HLA-C) and they
are highly polymorphic. The identification of HLA–HLA
fusion (or read-through) candidates is most likely the
result of errors during the alignment of the sequencing
reads to the human genome. This is typically due to the
presence of sequencing errors or polymorphisms, which
leads to an erroneous mapping of the two paired reads
to different HLA genes. Therefore, HLA–HLA events
represent sequencing artefacts rather than real fusion
events. Although the ‘ex post’ identification of such
HLA artefacts is trivial, their presence steals computa-
tional power, thus increasing the time required to
complete a run. The HLA–HLA filter is active by default.

Alignment Homology filter
The Homology filter tries to filter out gene pairs by
comparing the homology of the two corresponding
exons. The idea behind this filter is similar to the one of
the Alternative Alignments filter, however this approach is
more computationally intensive and less potent and
should be used only when the Alternative Alignments
filter is not applicable (e.g. the XA Tag is not available
and a new alignment is not feasible). The Homology filter
is inactive by default.

A priori filter
Read-through genes are commonly found in mRNAseq
fusion studies. They represent physiological phenomena
not related to cancer. However, from an analytical point
of view, they mimic intrachromosomal, non-reciprocal
fusions. The processing of read-through data may thus
steal resources and may therefore slow down the whole
process. To overcome this problem, FusionAnalyser
allows the user to define a set of custom a priori filtering
pairs that can be filtered out in the early phases of the
analysis.

After the completion of the filtering step, each filtered
Bridge event is scanned against the annotated, filtered
Anchor data set. If one of the two genes associated with
a Bridge event corresponds to a mapped gene in the
Anchor data set, the matched unmapped read is aligned
to the candidate Junction regions of the Bridge event,
generated by the JPA/JPM, using a dedicated built-in,
gapped alignment algorithm. The result of the alignment
is then evaluated by a first, computationally fast, scoring
algorithm. Alignments passing the first filter are evaluated
by a second, more accurate, scoring algorithm. If the
alignment succeeds, the Junction is deemed to be valid
(Junction read). In this case, FusionAnalyser generates a
‘Junction annotation’ comprising the alignment informa-
tion and the genomic coordinates, gene names and
sequences of the two partner exons involved in the candi-
date fusion. This annotation is associated with the corres-
ponding Bridge event (BJ data set).
Each Bridge or BJ event will then undergo a series of

three further annotation steps:

– Strand annotation: by analysing the strand mapping of
each read pair to the corresponding chromosome and
the physical strand occupancy of the associated genes,
the compatibility of the two candidate fusion genes is
tested (Supplementary Figure S3). If the two genes/
reads are strand compatibles, a ‘Strand annotation’
(S) is associated with the corresponding Bridge event.

– Frame annotation: this algorithm will be generated
only for the Bridge events associated with a Junction
annotation (BJ). The codon frame of each of the two
exons in the exon–exon fusion boundary region in each
BJ event is retrieved by analysing the frame and length
of each exon of the corresponding gene in the exonic
database (Supplementary Figure S4). This information
is then used to verify whether the frame in the fusion
region is conserved. If so, a ‘Frame annotation’ (F) is
associated with the corresponding Bridge event (BF).

– Reciprocal translocation annotation: FusionAnalyser
scans the rearrangement candidates for the presence
of reciprocal events before the application of the
static filters: if a potential reciprocal translocation is
detected, it automatically adapts the filtering strategy
by applying the Hits threshold algorithm to the sum of
the individual contributions of each of the two recip-
rocal events. If such an event is found, FusionAnalyser
adds a ‘Reciprocal annotation’ to the two correspond-
ing Bridge events (BR).

A multiparameter scoring algorithm, which takes into
account the coverage of each candidate and its annotation
status is then applied to each Bridge event and its value is
associated with the corresponding fusion.
After the completion of the annotation steps for each

Bridge event, the corresponding data, together with their
associated annotations, are processed for non-volatile
storage through a serializing algorithm. Finally, the pro-
cessed data are loaded in the Visualization and Dynamic
Filtering (VIDYF) module. Here, intra and extrachromo-
somal candidate fusions can be dynamically filtered in line
with the following set of parameters: read coverage,
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overall scoring threshold, presence of Junction reads
targeting the fusion breakpoint, strand compatibility of
the candidate fusion gene pair, presence of a continuous
translation frame in the candidate fusions, presence of a
reciprocal translocation, junction alignment score and
removal of read duplicates. The fusion data generated
through the dynamic filtering process are shown in
real-time in a dedicated graphical visualization module
(Supplementary Figure S5).

FusionAnalyser

FusionAnalyser is implemented in C# and runs under
64/32 bit Windows (successfully tested under Windows 7,
Vista, XP, 2000) and Linux using Mono (successfully
tested under Ubuntu and RedHat).
It was designed using streaming and serializing

technologies in order to work under a limited memory
footprint, so it can be successfully run on standard
dual or quad core, 4 GB memory desktop/notebook
PC. The typical timing required to complete a run using
a 4 Gigabases human transcriptome data set is 6–8 h on a
4 GB, QuadCore Intel i7 X 940 Notebook.

Transcriptome sequencing

All the transcriptome libraries were generated using
the Illumina TruSeqTM RNA Sample Preparation Kit.
Paired-end 60 base reads were generated using an
Illumina Genome Analyzer IIx and the Illumina
TruSeqTM SBS kit v5. On average, 4.7 Gigabases per
sample were generated.

Alignment to the human genome

All the sequence-processing and alignment steps were per-
formed using a local instance of the Galaxy framework
(3). Each 60 bp FastQ sequence was initially split in
2� 30 bp reads, to maximize the chance of mapping in
presence of small exons. Then, transcriptome sequencing
data were aligned to the human genome (NCBI36/hg18)
using the fast short-reads aligner BWA (4). BWA align-
ment parameters were set as follows: the fraction of
missing alignment, assuming an uniform base error rate
of 0.02, was set at 0.04. The maximum number of gaps per
sequence was fixed to 1. Given the limited length of the
split sequences, seeding was disabled and the mismatch
penalty for single nucleotide variants was set at 3. Gap
open and gap extension penalties were fixed at 11 and 4,
respectively. To improve the efficiency of the alignment,
the identification of suboptimal hits was disabled if the
best hit was a repeat. The maximum number of alignments
to output in the XA tag for discordant read pairs was set
to 10. All the reads were treated as paired and the
maximum insert size for a properly mapped pair was
fixed at 500 bp.

FusionAnalyser settings

The following settings were applied to the analyses of the
transcriptome of the CML patients: the mapping quality
filter was activated, with a mapping quality filter threshold
set to 30 (Phred). The Threshold for the presence of

undetermined nucleotides (N) was set to 2. The read
quality threshold was set to allow a maximum of 2 nt
per read with a read quality of �25. The frequency thresh-
old filter was set to 20. The homology filter was disabled.
The Cigar filter, the alternative alignment algorithms and
the HLA–HLA filter were activated. The intrachro-
mosomal alignment filter threshold, indel malus,
mismatch malus, match gain, continuity gain, split thresh-
old and split minimum value were set to 0.9, �2, �2, 1, 1,
0.8 and 5, respectively. The extrachromosomal alignment
filter threshold, indel malus, mismatch malus, match gain,
continuity gain, split threshold and split minimum value
were set to 0.9, �2, �2, 1, 1, 0.8 and 5, respectively. The
JPM was activated and set to 3. The a priori filter was
disabled. The real-time ‘condense identical reads’ algo-
rithm was activated and the corresponding minimum
coverage threshold was set to 5. The following settings
were applied to the analyses of the in silico data: the
mapping quality filter was activated, with a mapping
quality filter threshold set to 30 (Phred). The N-filter
was disabled. The read quality threshold was set to
allow a maximum of two nucleotides per read with a
read quality of �25. The frequency threshold filter was
disabled for the low coverage analyses and was set to 20
for all the remaining data sets. The homology filter was
disabled. The Cigar filter and the alternative alignment
algorithms were disabled. The intrachromosomal align-
ment filter threshold, indel malus, mismatch malus,
match gain, continuity gain, split threshold and split
minimum value were set to 0.75, �2, �2, 1, 1, 0.8 and
5, respectively. The extrachromosomal alignment filter
threshold, indel malus, mismatch malus, match gain,
continuity gain, split threshold and split minimum value
were set to 0.75, �2, �2, 1, 1, 0.8 and 5, respectively.
The a priori filter was disabled.

Patients

Written informed consent was obtained from each subject
involved in the study. All the human investigations were
performed in accordance with the principles embodied in
the declaration of Helsinki.

In silico data

In silico Sequence Alignment/Map (SAM) data were
generated by using a dedicated software, which accepts
the sequence and coordinates of n 50 and m 30 exons
from the breakpoint and a RefSeq-based database and
the following parameters as input: the simulated read
length (Rl), the total amount of in silico generated bases
(B), the number of random Bridge events (BrN) and the
number of random Junction reads (JnN). The number of
non-chimeric random paired reads per run is thus
calculated according to the following formula: [B – 2 *
Rl * (BrN+JnN)] / (2 * Rl). All the non-chimeric reads
are considered to be exonic and generated accordingly.
The n and m parameters were set to 4 whenever this
was compatible with the exonic structure of the fusion
gene.
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RESULTS

To assess the ability of FusionAnalyser to identify fusion
genes, we generated 1 Gigabase of artificial alignment
data (see ‘Materials and Methods’ section for further
details) for each of 20 known human translocations
(Table 1) occurring in leukaemias (18) and solid cancer
(2) and we analysed these data using our tool. In all the
cases, FusionAnalyser identified the specific translocation
associated with each data set (Supplementary Data S1
and Supplementary Figure S6) and the exact fusion region
at exon and nucleotide level for all the translocations
under analysis, correctly annotating the presence of a
continuous coding frame in each breakpoint junction
and predicting the correct orientation of each fusion,
through the identification of its 50 and 30 partners.

To further test the robustness of our tool, we gene-
rated artificial alignment data for four translocations
(RUNX1–RUNX1T1, EWSR1–ERG, MLLT10–PICAM
and PML–RARA), simulating the presence of 1, 2 or 3
randomly generated single nucleotide variants at a
distance of no more than 15 nt from the breakpoint
site, to take in account the presence of single nucleotide
polymorphisms, somatic variants or sequencing errors
in the context of each breakpoint. The analysis of these
data sets (Figure 1 and Supplementary Data S2)
showed that FusionAnalyser was invariably able to
identify all the translocations and to predict the exact
breakpoints.

Low coverage fusions

To verify the ability of our tool to detect rearrangements
in the context of gene fusions expressed at low levels, we
generated eight new data sets (1 Gigabase each) with a
progressively decreasing number of reads aligning to

the fusion region (RUNX1–RUNX1T1 and PML–
RARA; 24, 12, 6 and 2 reads targeting the fusion, with
20, 10, 5 and 1 Bridge and 4, 2, 1 and 1 Junction reads,
respectively). Even at the lowest expression level (two
fusion reads/16.6� 106 total reads) FusionAnalyser was
consistently able to detect and report the correct trans-
location, even in presence of a single nucleotide variant
within the junction region (Supplementary Figure S7 and
Supplementary Data S3). The presence of the transloca-
tion was also correctly reported in presence of a single
Bridge read targeting the fusion (RUNX1–RUNX1T1
and PML–RARA; Supplementary Data S3), although in
this case the absence of any information pertaining to the
junction prevented the identification of the breakpoint at
nucleotide level.

Heuristic junction prediction

A potential issue when gene fusions are expressed at low
levels or with low sequencing coverage is the absence of
bridge reads mapping to one or both the breakpoint
exons. A similar condition is typically found in presence
of small exons, when the exon length is comparable or
smaller than the length of the read. In this condition
the aligner may fail, leading to a localized coverage
drop. In this scenario, the identification of the correct
junction is particularly challenging, because limited deter-
ministic information about the fusion exons can be
derived. To mimic these situations and put our heuris-
tic algorithm of junction projection under test (see
‘Materials and Methods’ section, Supplementary Figure
S2a and b), we generated two new data sets for the
RUNX1–RUNX1T1 translocation where we enforced
the absence of reads mapping to one of the two break-
point exons (Supplementary Figure 8a) or to both

Table 1. Molecular characteristics of the human fusions analysed using simulated in silico data

Fusion Translocation Exon1 Chr Exon1 Start Exon1 End Exon2 Chr Exon2 Start Exon2 End Disease

BCR–ABL1 (p210) t(9;22)(q34;q11) Chr22 21 962 525 21 962 600 Chr9 132 719 271 132 719 445 CML
BCR–ABL1 (p190) t(9;22)(q34;q11) Chr22 21 852 551 21 854 425 Chr9 132 719 271 132 719 445 ALL
CBFB–MYH11 inv(16)(p13q22) Chr16 65 673 616 65 673 712 Chr16 15 728 205 15 728 412 AML
CEP110–FGFR1 t(8;9)(p12;q33) Chr9 12 297 5773 12 297 5836 Chr8 3 839 8471 38 398 616 8p12 MPD
ETV6–JAK2 t(9;12)(p24;p13) Chr12 11 913 624 11 914 170 Chr9 5 071 724 5 071 861 ALL
NCOA4–RET inv(10)(q11.2;q11.2) Chr10 51 251 275 51 251 384 Chr10 42 932 037 42 932 185 PTC
NPM1–ALK t(2;5)(p23;q35) Chr5 170 751 314 170 751 408 Chr2 29 299 711 29 299 898 ALCL
NUP98–HOXD13 t(2;11)(q31;p15) Chr11 3 722 314 3 722 455 Chr2 176 667 453 176 668 912 AML
PICALM–MLLT10 t(10;11)(p13–14;q14–21) Chr11 85 365 313 85 365 373 Chr10 21 941 282 21 941 386 ALL/AML
PML–RARA t(15;17)(q24;q21) Chr15 72 112 549 72 112 808 Chr17 35 758 093 35 758 242 AML
ETV6–NTRK3 t(12;15)(p13;q25) Chr12 11 913 624 11 914 170 Chr15 86 284 857 86 284 988 AML
ETV6–RUNX1 t(12;21)(p13;q22) Chr12 11 913 624 11 914 170 Chr21 35 187 091 35 187 130 ALL
EWSR1–ERG t(21;22)(q22;q12) Chr22 28 012 911 28 013 123 Chr21 38 696 348 38 696 429 ES
MLL–MLLT1 t(11;19)(q23;p13.3) Chr11 117 857 639 117 858 017 Chr19 6 213 238 6 213 321 ALL/AML
MLL–MLLT3 t(9;11)(p22;q23) Chr11 117 857 639 117 858 017 Chr9 20 353 473 20 353 603 AML
RUNX1–RUNX1T1 t(8;21)(q22;q22) Chr21 35 153 640 35 153 745 Chr8 93 098 629 93 098 767 AML
SFRS3/BCL6 t(3;6)(q27;p21) Chr6 36 672 515 36 672 723 Chr3 188 932 190 188 932 412 NHL–FL
TCF3–PBX1 t(1;19)(q23;p13) Chr19 1 570 109 1 570 233 Chr1 163 028 354 163 028 599 ALL
TRIP11–PDGFRB t(5;14)(q33;q32) Chr14 91 524 380 91 524 480 Chr5 149 486 275 149 486 370 AML
ZBTB16–RARA t(11;17)(q23;q21) Chr11 113 532 268 113 532 366 Chr17 35 758 093 35 758 242 AML

The fusion name, translocation, genomic coordinates of the two breakpoint exons and the disorder most commonly associated with each lesion are
shown.
CML=Chronic Myeloid Leukaemia, AML=Acute Myeloid Leukaemia, MPD=myeloproliferative disorder, PTC=Papillary thyroid carcinoma,
ALCL=Anaplastic Large Cell Lymphoma, ES=Ewing Sarcoma, NHL=Non-Hodgkin Lymphoma, FL=Follicular Lymphoma.
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(Supplementary Figure S8b). Even in complete absence of
Bridge reads mapping to the two breakpoint exons,
FusionAnalyser identified the presence of the
rearrangement, the correct junction at nucleotide level
and the corresponding exons (Supplementary Figure
S8a, b and Supplementary Data S4).

Complex rearrangements

Several recent reports (5–8) suggest that multiple
rearrangements are commonly detected in cancer cells.
To test FusionAnalyser in the context of this complex

scenario, two new data sets were generated, comprising 6
(5 extra and 1 intrachromosomal events) and 20 (18 extra
and 2 intrachromosomal events) rearrangements, respect-
ively. In both cases our tool was able to correctly identify all
the translocations at nucleotide level (Supplementary
Figure S9 and Supplementary Data S5) and to annotate
the coding frame and the orientation of each fusion.

Reciprocal translocations

According to the Mitelman database of chromosomal
aberrations in cancer (1), �96% of the reported

Figure 1. Analysis of artificial alignment data for four translocations: RUNX1–RUNX1T1 (a), EWSR1–ERG (b), MLLT10–PICAM (c) and PML–
RARA (d), simulating the presence of 1, 2 or 3 randomly generated single nucleotide variants within the breakpoint region. In the upper part of each
panel, the standard graphical FusionAnalyser output, in the form of a circular diagram reproducing the identified rearrangement, is shown. In the
lower part of each panel, three representative junction regions are shown. The upper sequence in each box represents the reference breakpoint
sequence, generated by the Junction Prediction/Projection modules; the lower sequence represents part of an anchor read successfully mapped to the
breakpoint region despite the presence of 1 (upper box), 2 (middle box) or 3 (lower box) variants. Each variant is highlighted by the presence of a
yellow (variant occurring in the first gene of the fusion) or red (variant occurring in the second gene of the fusion) asterisk.
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translocations are reciprocal. The ability to identify the
presence of these events may thus play an important role
in the process of data annotation and validation: the dem-
onstration that a candidate fusion event and its reciprocal
coexist in a cancer transcriptome can add a significant layer
of evidence to that candidate and may help in dis-
criminating between real translocations and read-through
fusions. Transcripts generated through reciprocal trans-
locations are under the control of two different promoters,
one for each of the two genes involved in the translocation.
If one of the two promoters is weak, an unbalanced expres-
sion of the two transcripts may occur, with one of the tran-
scripts being expressed at low levels. Under these
circumstances, the information pertaining the latter tran-
script may be lost during the filtering steps, preventing the
detection and annotation of the reciprocal event. To
overcome this limitation, we developed a dedicated algo-
rithm to automatically scan the rearrangement candidates
for the presence of reciprocal events before the application
of the static filters: if a potential reciprocal translocation is
detected, FusionAnalyser automatically modifies the Hits
threshold algorithm by applying it to the sum of the indi-
vidual contribution of each reciprocal event, thus raising
the overall sensitivity in presence of candidate reciprocal
translocations and avoiding the risk of an undesired loss of
information.

To test the ability of FusionAnalyser to identify recip-
rocal translocations, we generated two new data sets where
we modelled the presence of reciprocal fusions (PML–
RARA+RARA–PML, NPM1–ALK+ALK–NPM1). In
all these models, our tool identified each rearrangement
and annotated the presence of the corresponding recipro-
cal translocation (Supplementary Data S6).

Transcriptome analysis of chronic and acute myeloid
leukaemia samples

The ideal objective of transcriptome based fusion analyses
is the identification of driver rearrangements occurring in

patients affected by solid tumours or leukaemias, either to
identify new, yet unknown translocations or to diagnose
the presence of known ones. However, a critical problem
of these studies is the co-detection of a very high number
of spurious events generated either during the library
preparation or due to misalignments, with no involve-
ment in the pathogenesis of the clonal disorder (9). The
presence of such a high background may seriously impair
our ability to discriminate the real driver events.
To assess the potential of our approach to the identifi-

cation of driver rearrangements, we generated paired-end
transcriptome sequencing data (4.5, 3.0 and 3.7 Gigabases,
respectively) from the peripheral blood of three patients
affected by CML in Chronic Phase (CML–CP) at onset of
the disease (Table 2). CML patients at onset typically lack
the extensive genomic rearrangements that are more
typical of the advanced phase of the disease (10) and of
many cancer-derived cell lines. Indeed, in all the CML
patients under analysis, cytogenetic studies failed to
reveal any other genomic alteration besides the presence
of the Philadelphia chromosome (data not shown). This
approach allowed us to test our tool in a model where only
a single ‘real’ rearrangement was bona fide present and
thus to assess whether FusionAnalyser was able to filter
out the majority of the artefacts and to identify a driver
translocation with sufficient specificity. Despite the
presence of a relatively high number of BAL events (11,
9 and 75 for transcriptome of patient CML–CP-001,
CML–CP-002 and CML–CP-003, respectively), the appli-
cation of the algorithms of driver fusion identification was
sufficient to narrow down our candidates to the single
BCR/ABL1 translocation in all the three data sets
(Supplementary Figure S10). Moreover, FusionAnalyser
correctly reported the absence of the reciprocal ABL1–
BCR translocation in CML–CP-003, where loss of the
derivative chromosome 9 was known to be present
(Table 2).
To further put the ability of FusionAnalyser to identify

driver events under test, we generated paired-end tran-
scriptome sequencing data (6.4, 6.2 and 4.4 Gigabases,
respectively) on three Acute Myeloid Leukaemia (AML,
Table 3) specimens in absence of any a priori knowledge
about their cytogenetic status. In all the three cases our
tool identified a specific fusion event (RUNX1–
RUNX1T1 in Patient 1 and PML–RARA in Patients 2
and 3). Subsequent PCR analysis confirmed the correct-
ness of each prediction (data not shown). Interestingly, in
patient AML-002, FusionAnalyser identified the presence
of a second, in-frame, cryptic, intrachromosomal event
localized on chromosome 21, involving two closely

Table 2. Summary of clinical details of the three CML patients included in this study

Patient ID Age at
diagnosis

Sokal
Score

WBC
at diagnosis
(perml)

Platelets
at diagnosis
(perml)

Additional
cytogenetic
abnormalities

Q-PCR
at diagnosis/100
copies of ABL (IS)

CML–CP-001 23 0.8 74.5� 103 748� 103 No 59.5
CML–CP-002 52 0.66 55.7� 103 281� 103 No 60.5
CML–CP-003 45 0.91 34.4� 103 1068� 103 Loss of der (9) 44.2

Table 3. Summary of clinical details of the three AML patients

included in this study

Patient ID Age at
diagnosis

Sex WBC at
diagnosis
(perml)

Platelets at
diagnosis
(per ml)

Haemoglobin
at diagnosis
(g/dl)

AML-001 34 Male 74.5� 103 748� 103 10.9
AML-002 18 Male 55.7� 103 281� 103 6.3
AML-003 64 Female 34.4� 103 1068� 103 7.1
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related genes: ETS2 and ERG (Figure 2a). The presence of
the ETS2–ERG fusion was confirmed by PCR amplifica-
tion and sequencing (Figure 2b and c). The detailed
analysis of the biological and functional role of this
fusion will be discussed elsewhere.
Although the analysis of in silico samples suggests that

our tool is able to efficiently manage multiple events
(Supplementary Figure S9), it is also conceivable that
in silico data are less noisy than real transcriptomes,
mostly because library preparation artefacts can be
present in the latter case. Therefore, to test Fusion
Analyser on real sequencing data in presence of multiple
fusions, we conceived a new test, where we combined the
alignment data set of one BCR–ABL1 positive patient
(CML–CP-002) with patient AML002, in whom the
PML–RARA and ETS2–ERG fusions were detected. By
using this approach we generated a new, hybrid data set
containing three fusions in the context of real transcrip-
tome data. It is important to notice that this approach is
even tougher than ‘real’ transcriptome analyses, since in
our test the individual contribution of each fusion
comes from approximately half of the entire data set
and thus the signal-to-noise ratio for each event is
halved. In addition, the overall size of the alignment
data is doubled, potentially leading to an increase of the

background noise against statically defined filters (which
were unchanged from previous analyses). Even in presence
of these demanding conditions, FusionAnalyser was able
to identify all the fusions at exon and nucleotide level
(Supplementary Figure S11).

Comparative analysis of three fusion detection tools

A critical step to fully validate a new tool is to compare it
with already available packages. Although a direct
comparison of different tools in bioinformatics is always
challenging, we compared FusionAnalyser with two
known fusion detection tools: FusionSeq (2) and
FusionHunter (11). The results of the comparison
are schematized in Table 4. As an ideal candidate for
this test we chose the ‘AML002’ data set because
FusionAnalyser was able to identify two fusions, a
known (PML–RARA) and a completely new one
(ETS2–ERG) and the two fusions were fully validated at
exon and nucleotide level using conventional molecular
biology techniques. To perform this test we focused on
four different criteria:

1) Results: obviously, this is the most important criter-
ion. When the AML002 data set was analysed
(Table 4) with FusionHunter under standard

Figure 2. Analysis of transcriptome sequencing data of patient AML002 (a): the red curved line highlights the presence of the PML–RARA
translocation; the blue lines indicate bona fide read-through events; the thick green line points to the intrachromosomal ETS2–ERG fusion. (b)
Schematic model of the ETS2–ERG fusion: the ETS2 exons are shown as thick green arrows; the 30 ERG exon is shown as a thick red arrow. The
thin green arrow shows the open reading frame of the fusion. The blue and yellow boxes indicate the PNT domain of ETS and the ETS domain of
ERG, respectively. The two black lines indicate the position of the two primers used for the amplification of the breakpoint region. In the bottom
panel, the result of the ETS2–ERG amplification in patients AML001 (1), AML002 (2) and AML003 (3) is shown. (c) Sequence of the ETS2–ERG
breakpoint region. The solid black line highlight the PNT domain of ETS, the dotted line the ETS domain of ERG. The black arrow indicates the
breakpoint site.
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settings, the software readily identified the PML–
RARA fusion but failed to detect ETS2–ERG.
A possible explanation for this behaviour is that
FusionHunter implements an homology filtering algo-
rithm in its standard fusion discovery pipeline. The
criterion behind this algorithm is that in paired-end
sequencing it is possible that the two paired reads are
mistakenly aligned to two different genes sharing a
high level of homology and this misalignment could
be erroneously identified as a fusion by the
rearrangement discovery tool. Indeed, ETS2 and
ERG are members of the same Ets family of onco-
genes and they share a global 34.2% consensus and
25.1% similarity with a peak of 72.6% similarity in
the C-terminus. The use of homology filters, albeit
potent, is potentially detrimental because it may
filter out real fusions involving two homologous
genes. Surprisingly, the same analysis failed to
identify any fusions under FusionSeq. This could be
due to several factors: the first one is that we used the
latest FusionSeq version (0.7.0) which is still an alpha
and may require some further ‘fine tuning’. The
second reason could be that, after the identification
of the ‘fusion junction library’, we aligned the whole
library against the Anchor reads instead of the entire
data set, in order to decrease the challenging compu-
tational complexity of this step. Although unlikely, we
cannot however exclude that this weakened the power
of the analysis.

2) Complexity of installation and configuration. The
main criteria used to evaluate the installation and
configuration steps are directly linked to the number
of dependencies necessary to complete the installation
and to the number of ‘hands-on’ steps required to
complete the setup (Table 4).

3) Flexibility of the hardware/software configuration
required to run the software: the requirements for
both FusionSeq and FusionHunter are demanding: a
multicore Linux server, possibly not less than eight
cores with 32 GB of RAM, was required to efficiently
perform the most complex steps of the analysis, while
FusionAnalyser was able to smoothly run on a
standard dual or quad-core desktop or notebook
computer with 4 GB of RAM on a Linux or

Windows operative system. These requirements
make our tool ideal also for laboratories with no
in-site ‘high-throughput sequencing’ infrastructures
(where no high-throughput-sized server machines
are available) because it allows the analysis of tran-
scriptome data, such as those generated by external
companies, with no investment in costly and complex
multicore clusters. Another important parameter to
assess the flexibility of the three tools is their depend-
ence from other software. FusionHunter is dependent
on the Bowtie (12) alignment tool and cannot accept
already aligned data sets as input, while FusionSeq
and our tool allow the user to choose the preferred
aligner. However, while FusionAnalyser accepts either
SAM or BAM/BAI alignment files, which are the uni-
versally accepted standard alignment formats,
FusionSeq requires dedicated ‘mrf’ files.
It is worth noticing, however, that our tool is ex-
pressly dedicated to the detection of fusions in
human transcriptomes while FusionHunter and
FusionSeq can ideally be run also on transcriptomes
from other species, provided that all the required an-
notation files are generated (Table 4).

4) Friendliness of use: FusionAnalyser is fully graphical
and event-driven: installation, configuration, filtering
parameters, input/output files selection and data visu-
alization are entirely managed through graphical
windows and point-and-click interfaces thus requiring
no background in bioinformatics or scripting know-
ledge. The output is automatically visualized in a
dedicated module, which is able to react to the
post-processing filters and selections in real time.
FusionHunter requires command-line interaction
under a Linux framework and requires manual con-
figuration of initialization files; FusionSeq requires
extensive command-line interaction under a Linux
framework, the implementation of job parallelization
techniques and the development of dedicated scripts.

DISCUSSION

In this study we described FusionAnalyser, a new graph-
ical tool dedicated to the identification of driver fusion

Table 4. Comparison of three fusion discovery tools

CRITERIA FUSIONANALYSER FUSIONHUNTER FUSIONSEQ

FUSIONS DETECTEDa 2 1 0
INSTALLATIONb EASY (0/1 dep.) EASY (0/1 dep.) COMPLEX (� 4 dep.)
CONFIGURATIONc EASY NORMAL COMPLEX
MULTIPLE SPECIESd NO YES YES
HARDWARE DUAL/QUAD CORE PC, 4 GBYTES RAM MULTICORE SERVER MULTICORE SERVER
ALIGNMENT TOOLe OPEN (SAM/BAM) CLOSE (Bowtie) OPEN (.mrf)

aExpressed as the number of validated fusions identified in the AML002 data set.
bThe complexity of the installation was scored proportionally to the number of dependencies typically required to complete the installation.
cConfiguration scores the complexity and hands-on time required to configure a standard analysis.
dThe ‘Multiple species’ field indicates if the tool is able to analyse transcriptomes from other species besides humans.
eThe ‘Alignment tool’ field indicates if the fusion discovery tool is dependent on a specific aligner. ‘OPEN (SAM/BAM)’ means that any aligner
generating correct SAM/BAM alignments can be used to perform the analysis. ‘CLOSE (Bowtie)’ means that only the Bowtie aligner can be used.
‘OPEN (.mrf)’ means that any aligner can be used but the output format must be converted into .mrf files.
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rearrangements through the analysis of short, paired-end
transcriptome sequencing data.
To verify the ability of FusionAnalyser to effectively

detect rearrangements, we initially tested our tool using
an extensive set of in silico generated data characterized
by a progressively increasing complexity. In all these
models, FusionAnalyser was invariably able to identify
and annotate the correct fusion, to annotate the
sequence of the fusion region at nucleotide level, to test
strand and frame compatibility between the fusion
partners and to assess the presence of reciprocal transloca-
tions, even in presence of multiple rearrangements,
demonstrating the robustness of our approach. Then we
generated paired-end transcriptome sequencing data from
three patients affected by CML at the onset of the disease.
We reasoned that the use of CML patient samples would
lead to two major advantages: the first one was the chance
to test FusionAnalyser in the contest of patient data,
which is the most likely scenario for the application of
our tool in the next future; the second was related to the
fact that most CML patients at onset present only the
t(9;22) translocation, lacking extensive genomic
rearrangements: this allowed us to test the ability of
FusionAnalyser to identify a single driver translocation
with high specificity.
The analysis of these data sets revealed that, in line with

previously published data (9), the number of candidate
rearrangement events was in the range of 9–75 per
patient (Supplementary Figure S10). However, when we
dynamically filtered our candidates according to presence
of strand compatibility, evidence of junction reads,
presence of a coding frame throughout the fusion and
reciprocal recombination, we were able to narrow down
our driver fusion candidates to the single BCR–ABL1
rearrangement. In a similar analysis done on three AML
samples, we were also able to identify a new, cryptic,
in-frame ETS2–ERG fusion, which is now under
characterization.
Taken globally, these data indicate that FusionAnalyser

is a robust discovery software: it is able to identify driver
rearrangements from transcriptome paired-end data even
in presence of single nucleotide mismatches, such as single
nucleotide polymorphisms or sequencing artefacts in the
context of the breakpoint region or in presence of
extremely low-coverage data. The use of data streaming
and serialization, of memory-sparing algorithms and of
dynamic parallel programming, allows FusionAnalyser
to be run in standard dual or quad-core desktop or
notebook machines, saving the precious computational
time of servers/workstations to more demanding tasks.
The presence of a highly flexible filtering system,
comprising read quality filters, frequency of each event,
maximum number of undetermined nucleotides in each
read, mapping quality, analysis of paired-reads alternative
alignments, dynamic removal of read duplicates, quality
of the Cigar match, HLA–HLA and alignment homology
filtering, together with the use of a fully event-driven
graphical interface grants the end-user a significant ana-
lytical flexibility even in absence of a priori bioinfor-
matics/scripting knowledge. Therefore we propose
FusionAnalyser as a potent and practical tool for the

identification of functional rearrangements in the context
of high-throughput transcriptome sequencing data.

FusionAnalyser Executable for Windows 32 and 64 bit
and for Linux, complete source code, FusionAnalyser
manual and a test data set are available at NAR online.

FusionAnalyser is also available for download, together
with hg19 and hg18 reference databases, from: http://
www.ilte-cml.org/FusionAnalyser.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–11, Supplementary Data 1–6,
FusionAnalyser Executable and source code,
FusionAnalyser manual, FusionAnalyser test data set.
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