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Abstract: The encapsulation of cells into polymeric micro-

spheres or microcapsules has permitted the transplantation

of cells into human and animal subjects without the need for

immunosuppressants. Cell-based therapies use donor cells to

provide sustained release of a therapeutic product, such as

insulin, and have shown promise in treating a variety of dis-

eases. Immunoisolation of these cells via microencapsulation

is a hotly investigated field, and the preferred material of

choice has been alginate, a natural polymer derived from

seaweed due to its gelling conditions. Although many natural

polymers tend to gel in conditions favorable to mammalian

cell encapsulation, there remain challenges such as batch to

batch variability and residual components from the original

source that can lead to an immune response when implanted

into a recipient. Synthetic materials have the potential to

avoid these issues; however, historically they have required

harsh polymerization conditions that are not favorable to

mammalian cells. As research into microencapsulation

grows, more investigators are exploring methods to microen-

capsulate cells into synthetic polymers. This review describes

a variety of synthetic polymers used to microencapsulate

cells. VC 2014 The Authors. Journal of Biomedical Materials Research

Part A Published by Wiley Periodicals, Inc.: 103A: 846–859, 2015.
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INTRODUCTION

Cells are considered microencapsulated when entrapped
within a semipermeable polymer matrix (microsphere,
microbead) or membrane (microcapsule) at the micrometer
scale (Fig. 1). These microparticles have also been referred
to as artificial cells and when implanted into a living host,
the encapsulating polymer prevents both migration of the
entrapped cells and invasion of host immune responders.
The micrometer scale of microencapsulated cell implants is
within the diffusion limits of many small molecules such as
nutrients, oxygen, and electrolytes, while the pores of the
encapsulating polymer are large enough to permit their
ingress (Fig. 2). Simultaneously, small molecules produced
by entrapped cells are permitted egress, such as hormones,
metabolites, and waste. The larger host immune responders
comprise cells, immunoglobulins, antibodies, and comple-
ment, which at 160–900 kDa cannot penetrate the micro-
particle walls and are, therefore, hindered from interacting
with surface antigens on microencapsulated cells (Fig. 3).1,2

Thus, microencapsulated cells are immunoisolated, which
has benefits over immunosuppression.

Although immunosuppression can prevent host rejection
of donor tissues, nearly 50 significant side effects have been

identified as a result of immunosuppressant drug use, not
including the additional consequences of multiple drug
interactions that can result in from attempts to ameliorate
the adverse effects.3 Furthermore, the 5-year graft survival
rate while on immunosuppressants is only 50%.1 In addi-
tion to their various side effects, immunosuppressants only
allow allogeneic transplantation, whereas immunoisolation
permits the transplantation of both xenogeneic and alloge-
neic grafts.1,4–6 Thus, with protection from the host immune
response, microencapsulated donor cells can deliver thera-
peutic factors to augment or replace impaired function of
native tissues.

Eukaryotic cells have been microencapsulated within
polymers for more than half a century, when in 1966 Chang
et al.7 first reported encapsulating human erythrocytes in
nylon microspheres. A therapeutic application of microen-
capsulated cells was first demonstrated in 1980 when Lim
and Sun transplanted into diabetic rats microencapsulated
pancreatic islets of Langerhan cells, which responded to glu-
cose levels with insulin release and returned the rats to
normoglycemia for 2–3 weeks.8,9 Over a decade later, this
application was first investigated clinically, when in 1994
Soon-Shiong et al.10 implanted microencapsulated islets into
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a diabetic patient who maintained normoglycemia for
9 months. Microencapsulation materials and methods have
since evolved and microencapsulated islet cells have
retained their function in the transplant site for over
2 years.9,11 Allogeneic and xenogeneic cells have been suc-
cessfully microencapsulated and transplanted into mice,
rats, dogs, monkeys, and humans without the use of immu-
nosuppressants.4–6,12,13 Microencapsulated pancreatic islets
within alginate/poly-L-lysine (PLL) microspheres are the
most highly investigated microencapsulated cell system, and
are currently in multiple clinical trials to treat diabetes.13–16

In addition, many different microencapsulated cell systems
are now being investigated clinically, including: parathyroid
hormone released by microencapsulated parathyroid cells to
treat hypothyroidism; ciliary neurotrophic factor (CNTF)
released by microencapsulated retinal pigment epithelium
cells to treat atrophic macular degeneration or retinitis pig-
mentosa; microencapsulated baby hamster kidney (BHK)
cells genetically modified to release CNTF to treat Hunting-
ton’s disease; microencapsulated cells genetically modified
to release nerve growth factor (NGF) to treat Alzheimer’s
disease; microencapsulated cells genetically modified to
release cytochromes for pancreatic cancer therapy; and
microencapsulated cells genetically modified to release
glucagon-like peptide-1 to treat stroke.16–21

As different cell types and applications are being
explored, different materials for microencapsulation are being
investigated. Microencapsulation materials have comprised
natural or synthetic polymers or blends, including collagen,
gelatin, fibrin, polyphosphazenes, poly(acrylic acids), poly
(methacrylic acids), copolymers of acrylic acid and metha-
crylic acid, poly(alkylene oxides), poly(vinyl acetate), polyvi-
nylpyrrolidone, polyethylene glycol (PEG), polyethersulfone,
polysaccharides such as agarose, cellulose sulfate, chondroitin
sulfate, chitosan, hyaluronan, and copolymers, and blends of
each.22,23 Each has advantages and drawbacks. In general,
natural polymers have properties that cannot be changed.
For instance, alginate-PLL microcapsules have a 50–80 kDa
molecular weight cutoff (MWCO), which renders it ineffective
in applications where the product to be released is greater
than 80 K, as is the case in the liver.24 Also, because natural
polymers come from a living source, they must undergo

harsh chemical processes to isolate them from their native
origins. Often, the process is not absolute and remnant pro-
teins remain. Additionally, these chemical processes them-
selves often leave residual toxins, which along with any
remnant proteins can elicit an immune response, hence the
resulting polymer properties and immunogenicity can vary
with purification and processing.25,26 For instance, a high
mannuronic acid content in the seaweed extract, alginate,
often results in fibrosis when alginate microspheres are
delivered in vivo.27 Nevertheless, alginate has historically
been the hydrogel material of choice for cell microencapsula-
tion due to the ease of forming microspheres under gentle
conditions.28,29 Despite the ease of use, alginate-PLL capsule
membranes have additional drawbacks that drive research
toward more clinically and economically feasible materials.30

For instance, alginate-PLL capsules have poor long-term
durability in chelating agents typically present in physiologic
solutions,31 PLL is expensive and cytotoxic,32,33 and capsules
under strain are more likely to rupture than to deform.34

Alternatively, synthetic polymers such as covalently
crosslinked PEG and polyacrylates have many advantages
including both greater mechanical and chemical stability,

FIGURE 1. Common microencapsulation strategies. From left to right: dual core microsphere, polymer matrix microsphere, coated matrix micro-

sphere, microcapsule. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIGURE 2. Microencapsulation permits the free exchange of nutrients

and waste while excluding agents of the immune system, thereby

promoting transplanted cell survival. The microsphere also permits

release of therapeutic cell products. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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increased reproducibility due to the minimized batch to
batch variation, reduced nonspecific protein binding, ease of
modification, and tunable properties.29,30 In the past, these
advantages were outweighed by the disadvantages of using
synthetic polymers to microencapsulate cells: primarily,
microsphere fabrication using synthetic polymers often
requires harsh conditions such as nonphysiological pH or
temperature, or organic solvents toxic to cells.29,35,36 As a
result, there are few reports in the literature describing cell
microencapsulation using synthetic materials. Traditionally,
efforts have focused on increased purification of alginate or
coating alginate microspheres with bioinert synthetic mate-
rials and despite advances, there remains variation in algi-
nate microsphere chemistry.28 Eliminating the natural
polymer all together may prove necessary to advance the

field of immunoisolation further. Investigators exploring
microencapsulation with purely synthetic materials have
had varying successes (Tables I and II), but there is no sin-
gle source that documents these. Although there are abun-
dant reviews of cell microencapsulation, few delve into
microencapsulation with synthetic materials. The few that
do conflate microencapsulation with macroencapsulation.
Microencapsulation involves the encapsulation of cells with
at least one dimension of the microparticle below 1000 lm,
whereas macroencapsulation geometries are above 1 mm.
Generally, microparticles are spherical, but can have multi-
ple simple geometries (cube, prism, cylinder, etc.), whereas
macrocapsules are essentially either tubular or planar. The
difference in geometries and sizes leads to differences in
specifications and challenges. The goal of this review is to

FIGURE 3. The membrane MWCOs of different materials used to make microcapsules are listed on the left and the molecular weights of various

cells, enzymes, antibodies, etc. are listed on the right. Reprinted from Prakash and Jones,2 with permission from Wiley. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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present a comprehensive examination of the synthetic poly-
mers used for microencapsulation purposes; macroencapsu-
lation materials will not be discussed.

ALIPHATIC POLYESTERS

Aliphatic polyesters are biodegradable polymers that have
been used for some time in biomedical applications and
comprise resorbable sutures, drug delivery systems, bone
screws, and tissue engineering scaffolds.111–113 Aliphatic lin-
ear polyesters are based on either the [ACOA(CH2)xAOA]n
or the [ACOA(CH2)xACOAOA(CH2)yAOA]n repeat groups,
where x and y, the density of the ester groups, determine
their physical properties.114 Six aliphatic polyesters and
their copolymers are currently approved by the US Food
and Drug Administration for wound closure and orthopedic
applications: poly(E-caprolactone) (PCL), poly(glycolic acid)
(PGA), poly(lactic acid), poly(lactic-co-glycolic acid) (PLGA),
polydioxanone, and poly(trimethylene carbonate).115 They
degrade by hydrolysis of main chain ester bonds in a bulk
or surface erosion manner, and the degradation rate and
extent depends on polymer characteristics such as structure,

initial molecular weight, exposed surface area and size,
degree of crystallinity, level of hydrophobicity, applied
stresses, amount of residual monomer and, in the case of
copolymers, the ratio of the hydroxyacid mono-
mers.111,116,117 Hence these polymers are often copolymer-
ized to adjust material properties such as degradation
rate.118 One such copolymer, PLGA, has been extensively
investigated for the microencapsulation of therapeutic
agents to effect sustained and controlled delivery. In the last
two decades, particular attention has been given to the
development of protein-loaded PLGA microspheres or
microcapsules.119 Only within the past 15 years has PLGA
been investigated for cell microencapsulation and challenges
remain. During degradation, the microspheres undergo a pH
drop that can result in instability, chemical modification,
and aggregation of loaded proteins, which can elicit an
immune response.120–127 Although these issues are more
relevant to controlled release of proteins than microencap-
sulated cells, it may also affect proteins that are released by
entrapped cells. Abalovich et al.37 encapsulated porcine
islets of Langerhans into PLGA microcapsules and implanted
them into wild type Wistar rats. Over a period of 35 days,

TABLE I. An Overview of Microencapsulation Materials and Encapsulated Cells

Polymer Microstructure Method Encapsulated Cell Application Reference

Aliphatic Polyesters

PLGA Microcapsules Interfacial
polymerization

Porcine islets Diabetes 37

Polyacrylates

AN69 Microcapsules Coextrusion NIH 3T3, Porcine,
rat hepatocytes

Macular
degeneration,
liver failure

24,38

HEMA-MMA,
HEMA-MMA-MAA

Microcapsules Interfacial
precipitation

CHO, PC12, L929,
human erythrocytes,
human fibroblasts,
H4IIEC3, HepG2, rat
islets, hepatocytes

Parkinson’s,
angiogenesis,
diabetes, immune
suppression

1,39–60

PAN/PVC Hollow fibers Dry-jet wet spinning,
proprietary

PC12, embryonic
mesencephalon tissue,
BHK, thymic epithelial
cells, adrenal chromaffin
cells, islets, R208F

Alzheimer’s,
Huntington’s,
diabetes

19, 61–68

Polyphosphazines

Ca-PCPP Al-PCPP Microspheres,
microcapsules

Interfacial ionic
crosslinking

Hybridoma cells Immunoisolation 35,69

Polyepoxides

SU-8 Microcontainer
(box with lid)

Photolithography Breast cancer cells, islets,
rat glioma cells

Diabetes 71–73

PEGDA Microcylinders,
microcapsules,
microspheres,
conformal coats

Photolithography,
microfluidics,
emulsion
photopolymerization

b cells, bEnd.3, CHO
HUVEC, mouse ESCs,
erythrocytes, MRC5,
MC3T3, NIH 3T3,
hepatocytes, Leydig
cells, leukocytes, islets,
macrophages,
MHP36, C3H10T1,
splenocytes

Blood replacement,
diabetes, tissue
engineering,
fracture
repair, hormone
replacement

30,38,73–107

PVA Microspheres Electrospray
photopolymerization

L929 cells Immunoisolation 29

REVIEW ARTICLE

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A | FEB 2015 VOL 103A, ISSUE 2 849



T
A

B
L
E

II
.

A
n

O
v
e
rv

ie
w

o
f

M
ic

ro
e
n

c
a
p

s
u

la
ti

o
n

T
e
ch

n
iq

u
e
,

M
a
te

ri
a
l,

C
e
ll

T
y
p

e
a
n

d
In

V
iv

o
A

p
p

li
c
a
ti

o
n

P
o

ly
m

e
r

M
ic

ro
st

ru
ct

u
re

/M
e
th

o
d

M
ic

ro
e
n

ca
p

su
la

ti
o

n
T

e
ch

n
o

lo
g

y
C

e
ll

T
y
p

e
!

A
n

im
a
l

S
e
cr

e
te

d
P

ro
d

u
ct

/A
p

p
li
ca

ti
o

n
R

e
fe

re
n

ce

A
li
p

h
a
ti

c
p

o
ly

e
st

e
rs

P
L
G

A
M

ic
ro

ca
p

su
le

s/
in

te
rf

a
ci

a
l

p
o

ly
m

e
ri

za
ti

o
n

E
x
tr

u
si

o
n

a
n

d
tu

rb
u

le
n

ce
P

o
rc

in
e

is
le

ts
!

ra
t

In
su

li
n

/D
ia

b
e
te

s
3
8

P
o

ly
a
cr

y
la

te
s

A
N

6
9

M
ic

ro
ca

p
su

le
s

C
o

e
x
tr

u
si

o
n

P
o

rc
in

e
,

ra
t

h
e
p

a
to

cy
te

s
!

ra
t,

N
IH

3
T

3
!

ra
t

U
re

a
,

a
lb

u
m

in
/

li
v
e
r

fa
il
u

re
2
4
,3

8

h
F
G

F
-2

/m
a
cu

la
r

d
e
g

e
n

e
ra

ti
o

n
H

E
M

A
-M

M
A

,
H

E
M

A
-M

M
A

-M
A

A
M

ic
ro

ca
p

su
le

s/
in

te
rf

a
ci

a
l

p
re

ci
p

it
a
ti

o
n

C
o

a
x
ia

l
fl

u
id

e
x
tr

u
-

si
o

n
,

a
ir

je
t

co
a
x
ia

l
e
x
tr

u
si

o
n

C
H

O
!

m
ic

e
,

2
/I
n

v
iv

o
te

st
IL

-1
0
/i
m

m
u

n
o

su
p

p
re

ss
io

n
V

E
G

F
/a

n
g

io
g

e
n

e
si

s

5
9
,1

0
8
,1

0
9

P
A

N
/P

V
C

P
re

fo
rm

e
d

h
o

ll
o

w
fi

b
e
rs

D
ry

-j
e
t

w
e
t

sp
in

n
in

g
,

p
ro

p
ri

e
ta

ry
R

2
0
8
F
!

ra
t,

B
H

K
!

h
u

m
a
n

p
a
ti

e
n

ts

N
G

F
/A

lz
h

e
im

e
r’

s,
C

N
T

F
/H

u
n

ti
n

g
to

n
’s

1
9
,6

1
–6

8

P
E

G
/P

O
E

/P
E

O
P

E
G

D
A

M
ic

ro
sp

h
e
re

s/
p

h
o

to
-

p
o

ly
m

e
ri

za
ti

o
n

,
C

o
n

fo
rm

a
l

co
a
t

W
a
te

r-
in

-o
il

a
g

it
a
ti

o
n

-i
n

d
u

ce
d

e
m

u
ls

io
n

,
co

v
a
le

n
t

su
rf

a
ce

b
in

d
in

g
v
ia

cy
a
n

u
ri

c
ch

lo
ri

d
e

co
u

p
li
n

g
,

in
te

rf
a
-

ci
a
l

p
h

o
to

p
o

ly
m

e
-

ri
za

ti
o

n
,

h
y
d

ro
p

h
o

-
b

ic
in

te
ra

ct
io

n
,

se
lf

a
ss

e
m

b
ly

,
p

h
o

to
-

p
o

ly
m

e
ri

za
ti

o
n

fo
l-

lo
w

in
g

co
e
x
tr

u
-

si
o

n
,

su
rf

a
ce

p
e
g

y
la

ti
o

n
,

se
le

c-
ti

v
e

w
it

h
d

ra
w

a
l

b
E

n
d

3
!

ra
t;

S
h

e
e
p

o
r

m
o

u
se

e
ry

th
ro

cy
te

s
!

m
ic

e
;

M
R

C
-5
!

m
ic

e
;

M
C

3
T

3
!

m
ic

e
;

ra
t

fi
b

ro
b

la
st

s
!

ra
t;

M
H

P
3
6
!

ra
t;

ra
t,

p
o

rc
in

e
,

h
u

m
a
n

is
le

ts
!

m
ic

e
,

ra
ts

,
h

u
m

a
n

;
m

o
u

se
sp

le
n

o
cy

te
s
!

m
ic

e

O
x
y
g

e
n

/b
lo

o
d

re
p

la
ce

m
e
n

t
B

M
P

2
/b

o
n

e
ti

ss
u

e
e
n

g
in

e
e
ri

n
g

In
su

li
n

/d
ia

b
e
te

s

1
6
,7

3
,9

2
,9

5
,1

0
4
,1

0
6
,1

1
0

C
H

O
,

C
h

in
e
se

H
a
m

st
e
r

O
v
a
ry

;
B

H
K

,
B

a
b

y
H

a
m

st
e
r

K
id

n
e
y
;

V
E

G
F
,

V
a
sc

u
la

r
E

n
d

o
th

e
li
a
l

G
ro

w
th

F
a
ct

o
r;

N
G

F
,

N
e
rv

e
G

ro
w

th
F
a
ct

o
r;

C
N

T
F
,

C
il
ia

ry
N

e
u

ro
tr

o
p

h
ic

F
a
ct

o
r;

B
M

P
2
,

B
o

n
e

M
o

rp
h

o
g

e
n

e
ti

c

P
ro

te
in

ty
p

e
2
.

850 OLABISI SYNTHETIC CELL MICROENCAPSULATION



they achieved significantly reduced blood glucose levels, but
the rats did not return to normoglycemia. In their in vitro
studies, they noted that equivalent numbers of islets within
diffusion chambers released more insulin than the PLGA
microencapsulated islets. This result may indicate that the
pH drop during PLGA microsphere degradation also affects
proteins released from encapsulated cells. Nevertheless, the
authors concluded that PLGA was a suitable material for
islet microencapsulation, and suggested that further investi-
gation would improve insulin yields. Despite this assertion,
a more recent publication by Abalovich investigates pig islet
transplantation into spontaneously diabetic dogs using PLL-
alginate microspheres, rather than the PLGA microcapsules
they developed.128 In fact, none of the original eight authors
who participated in the PLGA-encapsulated islet study have
published further investigations of PLGA as a microencapsu-
lation material.

This abandonment by the developing authors suggests
that encapsulating mammalian cells within PLGA was
wrought with too many difficulties to further develop.
Encapsulated plasmid DNA is thought to be damaged by
organic solvents and shear forces arising during PLGA parti-
cle formation in addition to the low pH environment of the
degrading PLGA particle.129 This phenomenon has been
observed repeatedly,130–133 and may also have an adverse
effect on entrapped cells. Although PCL has been success-
fully used to macroencapsulate human atrial natriuretic
peptide-releasing Chinese hamster ovary (CHO) cells for
implantation into hypertensive rats,134 microencapsulation
using PCL has not yet been described, which may indicate
that PCL also suffers a pH drop that is toxic to encapsulated
cells.

POLYACRYLATES

Polyacrylates are bioinert nondegradable polymers that vary
in their hydrophilicity based on the crosslinking agent used.
These polymers are based on the [ACH2AC(R1)COOR2A]n
repeat unit where if R2 5 CH3, R1 5 H results in poly
(methyl acrylate), which is soft and rubbery while R1 5

CH3 results in poly(methyl methacrylate), which is a hard
plastic. When R1 5 CH3, R2 5 CH2CH2OH corresponds to
poly(2-hydroxyethyl methacrylate), and R2 5 CH2CH2N(CH3)2
corresponds to poly(2-dimethylaminoethyl methacrylate).
These chemical substituents cause a wide variety in the
chemical and physical properties of polyacrylates. For
instance, poly(methyl methacrylate) (polyMMA) is a stiff,
transparent glass-like material that has been used to pro-
duce intraocular lenses, bone cement, dentures, and middle
ear prostheses.135,136 Conversely, poly(2-hydroxyethyl meth-
acrylate) (polyHEMA) is a compliant hydrogel that has been
used in soft contact lenses, burn dressings, artificial carti-
lage, and as a matrix in drug delivery systems.136 This wide
range in mechanical and chemical properties enables the
design of polymers with physical properties tuned to a spe-
cific application, simply by blending two or more polyacry-
lates. For instance, the hydrogel polyHEMA is often blended
with the glassy polyMMA to produce the copolymer hydrox-

yethyl methacrylate–methyl methacrylate (HEMA–MMA),
which is a hydrogel with elasticity suited to forming
microcapsules.

Polyacrylates containing HEMA, MMA, methacrylic acid
(MAA), and dimethylaminoethyl methacrylate (DMAEMA)
have been used successfully to microencapsulate mamma-
lian cells.1,39–44 Sefton and Broughton45 developed a method
to use polyacrylates to microencapsulate mammalian cells.
Their group and others furthered investigations into polya-
crylates, using Eudragit RL (a commercially available acrylic
methacrylic acid copolymer), HEMA–MMA, HEMA–MAA,
DMAEMA–MMA, and DMAEMA–MAA–MMA to microencap-
sulate a variety of cells: CHO cells, human fibroblasts,
human erythrocytes, rat islet cells, hepatocytes, PC-12 cells,
rat hepatoma H4IIEC3 cells, and HepG2 cells have been
encapsulated within microcapsules with membranes 200–
300 Å thick.42,45–60 Of these polyacrylates, HEMA–MMA
proved superior in terms of mechanical strength, permeabil-
ity, cell viability, and biocompatability.22,137 Encapsulated
cells demonstrated long-term in vitro viability,138 but similar
in vivo results have not been attained. The Sefton group
found that HEMA–MMA microcapsules were capable of post-
poning xenogeneic graft destruction, but not preventing it.59

Having determined that the MWCO of their microcapsules
was approximately 100 kDa,48 they postulated that shed
antigens freely escape the microspheres and activate T
cells.59 The group implanted microencapsulated luciferase-
expressing CHO cells into the peritoneal cavity of Balb/c
mice. The luciferin expression enabled live-animal imaging
of the implanted cells. The authors were able to demon-
strate that despite microencapsulation, the majority of cells
had been destroyed between 4 and 10 days. When donor
cells were transduced to express the immunosuppressant
IL-10, the survival of these cells was extended beyond 21
days.59 The group further investigated whether microencap-
sulated cells would fare better when transfected to produce
vascular endothelial growth factor (VEGF; Fig. 4).108

Their rationale was that VEGF would promote an angio-
genic response and provide an improved blood supply to
their microencapsulated cells. They found that VEGF did not
improve the survival of their cells.

Despite the increased viability with IL-10, the use of an
immunosuppressant in concert with immunoisolation tech-
niques circumvents the motivation behind immunoisolation
as a means to avoid immunosuppressants. It has been sug-
gested that when using xenogeneic versus allogeneic grafts,
different MWCO criteria may be needed.139 In fact, when
HEMA–MMA microencapsulated cells were xenogeneic, they
survived less than 7 days in vivo; when these cells were
allogeneic, they survived 7–14 days.109 The immune reac-
tion to transplanted cells can be classified as direct or indi-
rect recognition of antigens of the major histocompatibility
complex by host T-helper cells. Direct recognition requires
cell-to-cell contact between the antigen-presenting cells of
the graft and the T-helper cells of the host. Indirect recogni-
tion occurs when shed antigens from the graft are proc-
essed by the host’s own antigen-presenting cells and then
presented to host T-helper cells. The dominant immune
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reaction to allogeneic grafts involves direct allorecogni-
tion.140 Thus, in the case of allogeneic grafts, simply pre-
venting direct contact between transplanted cells and host
immune responders may be sufficient. In contrast, xenoge-
neic grafts trigger both the direct and indirect immune
pathways.140 The antigens of the major histocompatibility
complex are shed from entrapped donor cells and are small
enough to escape the microparticle membrane where they can
be processed by host antigen-presenting cells that then pres-
ent them to host T-helper cells. In essence, microcapsules can
prevent activating the direct pathway, but not the indirect
pathway: the antigens shed by xenogeneic grafts diffuse
through the membrane activating systemic CD4 T-cells and
other complement components, which are cytotoxic to the
xenogeneic cells.141 As complement components include pro-
teins ranging in size from 74 to 460 kDa,142 it is likely that
the 100 kDa MWCO HEMA–MMA microcapsules fail to restrict
certain complement proteins, resulting in the destruction of
xenogeneic cells.143 Thus, rather than adding immunosuppres-
sants, another approach to increasing xenogeneic graft viabil-
ity should include reducing the MWCO of the HEMA–MMA
membranes.

In addition to HEMA–MMA, other polyacrylates have
been explored for mammalian cell microencapsulation. Polya-
crylonitrile (PAN) and polyacrylamide are polyacrylate deriv-
atives containing nitrogen and are based on the
[ACH2AC(H)CNA]n and [ACH2AC(H)CONH2A]n repeat units,
respectively. Multiple groups have used PAN copolymers to
encapsulate cells within hollow fibers with micrometer-scale
diameters (Fig. 2).21,24,38,61–63 Honiger et al.24 used AN69, a
PAN-sodium methallylsulfonate copolymer, to encapsulate
hepatocytes because of its demonstrated biocompatibility as
a hemodialysis membrane. They demonstrated that the
microfibers were permeable to 150 kDa human immunoglob-
ulin G, but impermeable to 170 immunoglobulins A.24 The
investigators found that AN69 did not activate the comple-
ment system and its �160 kDa MWCO was desirable to per-
mit efflux of important liver proteins. Through histological
examination, the group demonstrated a low inflammatory
response to encapsulated hepatocytes 6 weeks postimplanta-
tion in the peritoneum of syngenic rats. Sections showed
connective tissue around the implants, with no giant multinu-
cleate cells. Recovered hepatocytes demonstrated an 85%

viability rate at 45 days postimplantation and albumin
release was sustained during this period.

Successful results using AN69 were also achieved in a
degenerative photoreceptor model. Uteza et al.38 genetically
engineered mouse fibroblasts (NIH 3T3) to express human
fibroblast growth factor (hFGF-2) and then encapsulated the
cells within AN69 hollow microfibers. The loaded microfib-
ers were implanted into the vitreous cavity of the eyes of
Royal College of Surgeons rats. Encapsulated fibroblasts sur-
vived at least 90 days both in vitro and in vivo, and contin-
ued to secrete hFGF-2, delaying photoreceptor cell
degeneration. The group found no evidence of immune
response nor hFGF-mediated tumor formation. Despite such
promising results, there have been few publications using
AN69 to microencapsulate cells since the late 90s.144 Sev-
eral groups began macroencapsulating cells using AN69
with a 65 or 80 kDa MWCO.145–148 Kessler et al.145 demon-
strated a reduced permeability to glucose and insulin over
time, which they correlated to increasing protein

FIGURE 4. Microcapsules are uniform in size (light microscope, A) and about 400 lm in diameter (SEM, B). 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT)-stained viable cells (dark core) at the center of the microcapsules are seen in panel C. From Cheng et al.108 J

Biomed Mater Res A, 2008, 87, 321–331, reproduced with permission.

FIGURE 5. Typical hollow microfiber structure. (A)–(D) Scanning elec-

tron micrograph of polyethersulfone hollow microfibers containing a

PVA matrix used to encapsulate human fibroblasts secreting glial cell

derived neurotrophic factor for implantation into the corpus striatum

of the forebrain. (A) A cross section showing the PVA matrix and the

microfiber walls; (B) the glued-end; (C) the microfiber membrane

pores (C); (D) a high power cross section showing the microfiber wall;

and (E) a photomicrograph of encapsulated cells implanted for 1

month in the rat striatum. Reprinted from Zanin et al.,64 with permis-

sion from Elsevier. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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adsorption.149 This may have been a contributing factor to
abandoning AN69 as a microencapsulation material.

Copolymers containing PAN have also been used to
microencapsulate cells for treatment in models of neurode-
generative disorders (Fig. 5).64 Hoffman et al.61 used the
acrylonitrile/vinyl chloride copolymer (PAN/PVC) to form
hollow microfibers with a 50 kDa MWCO. They microencap-
sulated a rat fibroblast line (R208F) genetically engineered
to release NGF and implanted these into Sprague-Dawley rat
brain lesions. The implants successfully prevented a lesion-
induced reduction in acetyltransferase expression by neu-
rons and did not elicit an immune response. Such successes
paved the way for clinical trials to treat neurodegenerative
disorders in humans. Bloch et al.62 transduced BHK cells to
secrete CNTF, a protein identified to have neuroprotective
effects in the adult brain. The researchers encapsulated
these cells into PAN/PVC hollow microfibers and implanted
them into the right lateral ventricle of the brains of patients
with Huntington’s disease. The implants were exchanged
every 6 months for a total of 2 years. Retrieved capsules
were intact, but the numbers of surviving cells varied,
resulting in a concomitant variation in CNTF release.
Increased release corresponded to better response in
patients: the research group observed improvements in
patients’ electrophysiological results that correlated to
implants releasing the highest amounts of CNTF. Improved
electrophysiological results indicated better function of
intracerebral neural circuits. The group reported that no
adverse events were noted, and touted the procedure as a
feasible treatment for the disease, with future improvements
planned to increase cell survival.

In addition to Huntington’s disease, PAN microfiber-
encapsulated cells have been examined for treating Alzhei-
mer’s disease. In a two-prong approach, researchers led by
J€onhagen and Linderoth63 transduced BHK cells to express
NGF, encapsulated them within PAN/PVC microfibers, then
implanted them into Alzheimer’s patients. The microfibers
have a 280 kDa MWCO and are macroscale in terms of length
(11 mm), but remain within the microscale in terms of diame-

ter (720 lm). The 2010 phase I clinical trial with these micro-
fibers demonstrated the implantability, retrievability, 12-
month NGF secretion, long-term safety, and tolerability of the
device within Alzheimer’s patients.65 The investigators intend
to repeat the study with NGF levels increased to therapeutic
doses. These devices arguably straddle the boundary between
microencapsulation and macroencapsulation; nevertheless,
the diffusion kinetics across the diameter dimension retain
the benefits of microscale devices. The microfiber/cell combi-
nation releasing NGF is a commercial product in development
dubbed NsG0202, which is currently produced by NsGene. Of
the synthetic methods used to microencapsulate cells, it is one
of the few that continues to be investigated in humans on
both the macro- and microscale.66–68

POLYAMIDES

Polyamides or poly(amino acids) are biodegradable poly-
mers that like proteins are linked by amides, but polya-
mides are composed of only one type of amino acid. There
are many potential polyamides that can be synthesized, but
only three are known to occur naturally: poly(�-L-lysine) (�-
PLL), poly(g-glutamic acid) (g-PGA), and multi-L-arginyl-
poly(L-aspartic acid) (cyanophycin granule polypeptide,
CGP).150 Nylons are examples of synthetic polyamides and
though not degradable by mammalian enzymes, are now
degradable by microbial systems that have evolved the
capability since the introduction of nylons.151 Nylons are
common in many household items and were the first mate-
rials used to microencapsulate cells.7 Since Park and
Chang’s152 original encapsulation of erythrocytes, polya-
mides were briefly explored for microencapsulating bacte-
rial cells but eventually abandoned because conventional
monomers were shown to be very toxic to live cells.

POLYEPOXIDES

Polyepoxides form by reacting polyamines with epoxides to
add epoxy functional groups to the polymers and increase
their crosslinking ability. One such polyepoxide, SU-8, has an
average epoxide group functionality of 8, from whence it
derives its name. SU-8 was originally developed at the Inter-
national Business Machines corporation (IBM) as an epoxy
resin photoresist for semiconductor applications,153 but has
more recently been used in cell microencapsulation applica-
tions.70–72,154,155 Applying sequential steps involving spin
coating, baking, and ultraviolet exposure, Gimi et al.70–72

used SU-8 to fabricate micrometer scale boxes complete with
removable lids to microencapsulate a variety of cells. The
authors first established the viability cells of encapsulated
within their microcontainers by transducing 9L rat glioma
cells to express luciferase when in hypoxic conditions.72 Cells
were loaded with automatic pipettes, lids were placed with
microforceps and secured with biocement. They determined
that when microcontainer lids had nanopores, encapsulated
cell viability was improved. The group next encapsulated sin-
gle islets within their microcontainers and performed viabil-
ity and glucose challenge assays.70 The group observed
similar results with dynamic imaging of Ca21 fluxes for both

FIGURE 6. Ca-PCPP microspheres containing hybridoma liver cells via

phase contrast microscopy. (magnification 31540). Reprinted with

permission from Cohen et al.35 J Am Chem Soc, 1990, 112, 7832–7833
VC American Chemical Society.
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encapsulated and free islets in response to elevated glucose.
They concluded that encapsulation in the microcontainers
did not impair the islet function. They have recently com-
pleted animal studies in BALB/c mice to evaluate the in vivo
compatibility of SU-8,155 but have yet to deliver cells encap-
sulated with their microcontainers into an animal model.

POLYPHOSPHAZENES

Over 700 different polyphosphazene polymers have been
identified and these polymers are based on the
[AN@PR1R2A]n repeat group, where R1 and R2 are generally
organic or organometallic chemical substituents.156 These
side chain substituents are responsible for the high number
of polyphosphazene polymers and also determine the wide
range of physical, chemical, and biomaterial properties of the
resulting polymers.157 As such, polyphosphazenes have highly
tailorable properties, and are biocompatible and biodegrad-
able through hydrolysis that results in nontoxic and neutral
pH degradation products, which lend these polymers well to
tissue engineering applications. Led by the Langer group,
Ba~n�o et al.35,69 used calcium or aluminum crosslinked poly[-
bis(carboxylatophenoxy)phosphazene] (Ca-PCPP or Al-PCPP,
respectively) microspheres to microencapsulate hybridoma
cells (HFN 7.1 and CC9C10, Fig. 6). The group found that Ca-
PCPP had better viability results than Al-PCPP (70 vs. 50%)
and that antibody production of the cells was significantly
decreased when encapsulated within Al-PCPP microspheres.
The researchers then used Ca-PCPP to form both solid micro-
spheres and liquid-core microcapsules. Microspheres were
coated with PLL then exposed to a potassium chloride solu-
tion to liquefy the core, resulting in PCPP–PLL microcapsules.
The group found that liquefying the core permitted increased
cell growth compared to cells entrapped within solid micro-
spheres. The increased cell growth resulted in a concomitant
increase in antibody production by intracapsular cells.

Despite this promise, much of the research into poly-
phosphazenes has shifted from cell microencapsulation

since the early 90s. Recent publications of these materials
for use to microencapsulate mammalian cells include only
reviews and patent applications. At present, the primary
focus of these polymers is now as a tissue engineering
scaffold or as an immunoadjuvant (an enhancer of vaccine
activity). In fact, the investigators who developed the
approach have stated that their successes with cell microen-
capsulation paved the way for their investigations toward
using polyphosphazenes as a delivery vehicle for vaccine
molecules in oral vaccinations, for which they established a
company.158

POLY(ETHYLENE GLYCOL)

PEG is a polyether compound based on the
(AOACH2ACH2A) repeating unit. PEG and its derivatives
can be functionalized with groups such as acrylates and
methacrylates, enabling their ability to form crosslinked
hydrogel networks. Hydrogels formed from PEG polymers
are bioinert and their biomechanical properties can be
tuned to mimic those of most soft tissues.73,159 PEG-based
hydrogels have been used to microencapsulate a variety of
cell types in a medley of micrometer-scaled containers,
including cylinders, spheres, stars, cubes, conformal coats,
and capsules.73–80 The Hubbell group immunoisolated por-
cine pancreatic islet cells by encasing them in a conformal
coat of PEG diacrylate (PEGDA), then evaluated their per-
formance in vitro and in vivo.81 Encapsulated islets released
insulin when subjected to glucose challenges, and were able
to return diabetic immunocompromised mice to normogly-
cemia for 110 days. In their immune competent xenotrans-
plantation model, encapsulated cells remained viable and
continued to produce insulin after 30 days in the peritoneal
cavities of Sprague-Dawley rats. Their work led to further
research into PEG-encapsulating islet cells,81–89 and has
resulted in a clinical trial in human diabetic patients.16

Although the trial was terminated with no published results,

FIGURE 7. Viability of AdBMP2-transduced cells (2500 VP/cell) within microspheres was assessed at Day 7 using a LIVE/ DEADVC Viability/Cytotox-

icity Kit for mammalian cells (Invitrogen, Molecular Probes, Eugene, OR). (A) Minimum intensity projection of a differential interference contrast

Z-stack. (B) Maximum intensity projection of fluorescent Z-stack merge of red and green channels. The red channel was thresholded to eliminate

diffuse virus staining. Dead cells appear red and live cells appear green. (C) Overlay of panels (A) and (B). Living cells accounted for 95.08 6

0.47% of total cells encapsulated. BMP, bone morphogenetic protein; VP, viral particle. From Olabisi et al.73 Tissue Eng Part A, 2010, 16, 3727–

3736, reproduced with permission. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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such a trial shows promise for the potential of PEG in this
application.

Since the Hubbell group’s work, other researchers have
attempted using PEG to immunoisolate islet cells through a
variety of methods. Many of these groups focus on attaining
thinner and thinner layers of PEG. Miura et al.89 bound PEG
to lipids (PEG-lipid), and these PEG-lipids spontaneously
formed thin coatings around islets when mixed with islet
suspensions. Kizilel et al.87 also developed a layer-by-layer
self-assembly process to encapsulate islets, using heterobi-
functional PEGs (biotin-PEG-N-hydroxysuccinimide [biotin-
PEG-NHS] and biotin-PEG-peptides) with streptavidin to
generate nanothin covalently bound PEG layers around
islets. Wyman et al.90 encapsulated islets in a single layer of
PEGDA by adapting a method of selective withdrawal,
whereby islets are soaked in liquid PEG, which is selectively
withdrawn until the desired thickness of the polymer is
achieved, followed by polymerization of the PEG. Teramura
and Iwata160 used PEG-lipid or PEG-urokinase to form a
surface layer around islets, and demonstrated that these
coatings reduced the instant blood-mediated inflammatory
reaction to transplanted cells. The group further improved
islet survival by immobilizing into the PEG layer soluble
complement receptor 1 and heparin, which functioned
against complement activation and coagulation, respec-
tively.161 An even greater number of researchers are explor-
ing combining PEG with natural materials,162–167 but the
focus of this review is microencapsulation using purely syn-
thetic approaches.

Although the microencapsulation of islet cells dominate
the research, PEG has also been used to microencapsulate a
variety of other cell types for both tissue engineering and
immunoisolation applications. The Hubbell group also pio-
neered this work, encapsulating into microspheres human
foreskin fibroblasts, CHO cells and b-cell insuloma cells.91

They monitored diffusion profiles of proteins from 10 kDa
PEGDA microspheres, demonstrating the effusion of BSA (67
kDa), but not IgG or fibrinogen (150 and 350 kDa, respec-
tively). Research led by Fisher and coworkers, Meiselman
and coworkers, and Pourpak and coworkers have investi-
gated methods to conformally coat erythrocytes with PEG to
use them as universal blood replacements.92–94 The West
group microencapsulated neural stem cells within PEG
microspheres and implanted them into a rat model of stroke
where they successfully released neurotrophic factors.95,96

The group also used PEG to microencapsulate fibroblasts
genetically modified to release bone morphogenetic protein,
type 2 (BMP2, Fig. 7).73 The immunoisolated cells formed
heterotopic bone and were able to repair critical size
defects in rat femurs.73,110 Histological evaluation showed
normal bone healing without infiltration of inflammatory
cells at time points from as early as 2 weeks to as late as 1
year postimplantation.

CONCLUSIONS

Challenges still remain when microencapsulating cells
within synthetic polymers. The conditions required for gel-

ling many synthetic hydrogels have traditionally not been
compatible with mammalian cells and must be modified.
Further, successful in vitro results do not always correspond
to biocompatibility when microspheres are placed in vivo.
Nevertheless, synthetic polymers avoid the batch to batch
variability posed by many natural polymers and circumvent
the toxic residues left by the purification processes natural
polymers must undergo. An increasing body of research is
demonstrating synthetic polymers with terminal reactive
groups that allow chemical crosslinking in conditions mild
enough to support mammalian cell microencapsulation. As
one process or polymer is abandoned, another emerges
with improved viability and simpler protocols. Synthetic
polymers offer greater flexibility in molecular design, per-
mitting the fine tuning of mechanical, chemical, and trans-
port properties. Currently, the most promising systems
appear to be the PAN/PVC microfibers and PEG micropar-
ticles, with ongoing research into each material. Polyphos-
phazenes’ abandonment appeared to be more a result of
changing interests of the inventors than a failure of the
material. As this review has attempted to demonstrate, syn-
thetic polymers are a promising means to achieve future
cell-encapsulation systems as immunoisolated cell therapies
are increasingly emerging into the clinical arena.
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